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1 Introduction

This assignment is meant to introduce you to the clustering properties and
analysis of a range of spatial (3-D) point processes and distributions.

The assignment involves two parts. The first is the generation of a point
set in a cubic volume. You will have to generate a few different point sets.
Subsequently, in the second part of the assignment you will have to com-
pute and analyze the two-point correlation function of the generated point
distributions.

2 the Two-Point Correlation Function

The discrete equivalent of the autocorrelation function ξ(r) is the two-point
correlation function ξ12(r). If a given point distribution represents a fair
sampling of the underlying continuous distribution, the two-point correlation
function ξ12 should be equal to the autocorrelation function ξ(r).

In cosmology the two-point correlation function ξ12(r) of a homogeneous
point process is follows on the basis of the excess probability of finding points
at a distance r. For a homogenous Poisson process one knows that if we take
two volumes dV1 and dV2 at a distance r, the probability dP12 (or, rather,
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number) of points in the two volumes is given by

dP12 = n̄2 dV1dV2 . (1)

For an inhomogeneous point process, i.e. in the case of clustering (due to the
existence of underlying density perturbations), there will be an excess with
respect to the Poisson distribution. This is encapsulated in the function
ξ12(r),

dP12 = n̄2 {1 + ξ12(r)} dV1dV2 (2)

In other words, the correlation function measures the excess probability. If
there is clustering at a distance r, ξ(r) > 0. If points are anticorrelated at
that distance, ie. tend to avoid each other, then ξ(r) < 0. And if there
is no clustering at all but a homogeneous distribution we have ξ(r) = 0.
Note that from now on we simply assume that ξ12(r) = ξ(r). Notice that
we assume that because of the isotropy of the density fluctuations the two-
point correlation function should also be isotropic and only a function of
distance r. The significance of the two-point correlation function ξ(r) has

formed the main tool in the study of the large scale galaxy distribution.
It has formed the main statistical measure for clustering in the Universe.
Every catalogue of galaxy positions, on the sky or in redshift space, has been
analyzed to determine the two-point correlation function. The same holds
true for catalogs of clusters of galaxies, of active galaxies, etc. There are a
variety of reasons for its prominence:

• Clustering of galaxies, clusters of galaxies, radio galaxies, etc. is clearly
an important aspect of the cosmic large scale matter distribution. The
two-point correlation function is the first order measure for character-
izing deviations from a uniform distribution: it forms the first order
description of clustering.

• The autocorrelation function is the Fourier transform of the Power
Spectrum P (k), and in particular in the linear regime it contains crucial
information on the cosmological scenario prevailing in our Universe.
Hamilton et al. (1991) even managed to find a relation between the
measured nonlinear ξ(r) and the linear power spectrum.
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• For highly nonlinear clustering we often find that the two-point corre-
lation function is a power-law function of distance r,

ξ(r) =

(
r

r0

)−γ
(3)

The socalled correlation length r0 (the name is a misnomer and often
confusing for physicists, who have another definition) is a measure for
the amplitude of the clustering process. It is the value of the distance at
which ξ(r) = 1, and thus the distance at which the clustering strength
becomes comparable to the probability of the homogeneous point pro-
cess. It therefore provides a good measure for the scale of nonlinear-
ities: above the correlation scale the point distribution rapidly enters
the linear clustering regime.

• The corresponding power-law slope γ appears to have a rather uni-
versal value of γ ≈ 1.8. In the nonlinear clustering regime γ is closely
coupled to the slope n of the power spectrum P (k),

n(k) ≡ d logP (k)

d log k
, (4)

and thus contains a wealth of information on the underlying structure
formation process.

• The most reliable estimates of the two-point correlation function con-
cern the analysis of (two-dimensional) sky distributions of galaxies.
The best galaxy sky catalogues contain millions of galaxies. Statisti-
cally this guarantees estimates with small errors. The resulting angular
two-point correlation function ω(θ) is basically a weighted projection of
the spatial two-point correlation function ξ(r) (expressed through the
socalled Limber equation). On small scales, the power-law behaviour
of the latter thus translates into a power-law angular two-point corre-
lation function,

ω(θ) =

(
θ

θ0

)1−γ

(5)
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where γ is the power-law slope of the spatial two-point correlation func-
tion. Interesting is the behaviour of the angular correlation scale θ0. It
is very sensitive to the selection of galaxies in the catalogue: it scales
with the depth of the sample. The large the apparent magnitude limit
mlim, i.e. the deeper we look into the Universe, the smaller θ0 becomes.
This of course is due to the projection of ever more shells on top of each
other, as well as in a shift of the angular scale corresponding to a partic-
ular physical scale. There is a very precise relation between this angular
correlation scale and the depth of the survey on the condition that we
live in a Universe which on the largest scales is homogeneous.
This indeed appears to be true, one of the most convincing arguments
for the Homogeneity of the Universe, one of the basic tenets of the
Cosmological Principle. Fairness demands to say that this finding
has been challenged by a few groups, although none of them came up
with convincing evidence for the contrary.

• The two-point correlation function plays an important role in dynami-
cal analysis of structure formation: the measured cosmic flows can be
related to the matter distribution through the two-point correlation
function (“cosmic virial theorem”, although for this we also need the
three-point function”). From this we may infer cosmological parame-
ters. Most noteworthy in this is the determination of the two-point
correlation function in redshift space: the anisotropic distortions in-
duced by the influence of cosmic flows on the measured redshifts can
be directly translated into an estimate of Ωm.
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3 Point Processes and Distributions

A point process is a form of stochastic or random process. It may be thought
of as a set of random points in a space, with a certain probability defined
over the same space. Formally, it should be called a point field, but let
us just use both names as stochastic variation on the theme. In general,
we can broadly distinguish two kinds of point process, homogeneous and
inhomogeneous process. If the intensity is not a function of location x, then
we speak of a homogeneous poisson process.

We restrict ourselves to point processes in three-dimensional space R3,
and to the bounded region V in which a point field is located. In our case
this will be the unit cube. Note that many other volumes may be imagined,
for example the observationally defined pie slices.

For astronomy point processes are very relevant, many observables may
be modelled by them. For example the spatial distribution of stars and galax-
ies can be thought of as a point process. In this respect we should note that
in general the mean of the distribution is defined as the average value at a
certain point in space over many realizations. Only if one assumes Ergodic-
ity, the spatial mean is equal to the average of the probability distribution.
Ergodicity is of utmost importance to cosmology as our Universe is the only
one sample we have.
In this computer assignment, We will be looking at four different spatial
point processes.

3.0.1 Random/Poisson distribution in Cubic Volume

One of the simplest and fundamental point processes is the spatial Poisson
point process. The points are stochastically independent and the probabil-
ity of the number of points N(A) in a region A, is given by the Poisson
distribution:

P (N(A)) =
(λV (A))k

k!
e−λV (A) (6)

Here λ is the intensity of the point distribution, which is the mean of the
distribution.

Generating a Poisson field is straightforward. For a realization in a volume
V (A), determine with a random poisson deviate, the number of points lying
in V (A). Distribute these points randomly over the volume. In practice, it
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is often assumed that the number of points in a volume V (A) is so large that
N(A) can be taken as constant defining the total number of points in the
sample volume, N . Strictly speaking, this is not correct, but for our purpose
this you are advised to do.

For the generation of the random points, use a uniform random number
generator U [0, 1]. A computer random number generator only returns a
uniformly distributed random number Z ∈ [0, 1]. For a d-dimensional space,
for a Poisson process in a Cartesian coordinate system you generate one
random number for each coordinate.

In summary, when you wish to generate a random point ~Xi = (xi, yi, zi)
in a cubic volume with size L, with all points contained in its volume,

V = [0, L]× [0, L]× [0, L] , (7)

you can obtain this via calling three times the random number generator to
obtain three uniformly distributed numbers Z1, Z2 and Z3 (Z ∈ [0, 1]),

x1 = Z1L ,

yi = Z2L , (8)

, zi = Z3L .

Note that if you generate random points in other coordinate systems, such
as spherical coordinates, you have to take care that the volume elements are
properly accounted for.

3.0.2 Random/Poisson distribution in Sphere

For the generation of a uniformly distributed point set in a sphere of radius
R there are a few options.

By far the most efficient method is to generate the spherical coordinates
(r, θ, φ) of a point. For spherical coordinates you have to take into account
the volume element defined by a range (dr, dθ, dφ) in the spherical coordinate
system,

dV = r2 cos θdrdθdφ (9)

To generate a randomly distributed point in the spherical volume, gener-
ate three random numbers (Z1, Z2, Z33) ∈ [0, 1] from a uniform distribution
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Figure 1: Illustration of the generation of a Matern process.

U [0, 1]. Subsequently, you can obtain the spherical coordinates (ri, θiφi) of
the random point i as follows:

ri = RZ
1/3
1 ,

θi = arccos (1− 2Z2) , (10)

φi = 2π Z3 . (11)

By repeating the procedure above N times, you obtain a nice distribution of
N uniformly distributed points within a sphere of radius R, with Cartesian
coordinates ~Xi = (xi, yi, zi),

xi = ri sin θ cosφ ,

yi = ri sin θ sinφ , (12)

zi = ri cos θ .

3.0.3 Matern process

In a Matern process, spheres of fixed size R are generated. Each sphere is
subsampled with a Poisson point distribution, with mean µ. For a realization
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see Figure 1. The generating process consists of three steps,

1. Decide on number N of randomly located (spherical) clusters.

2. For each cluster draw a random position ~Ci, the center of a (spherical)
cluster i.

3. Populate each sphere i uniformly (!) with a Poisson random number
Ni of points. This number follows from the Poisson distribution with
mean µ and volume Vi(R) of the sphere (see eqn. 6),

Vi(R) =
4π

3
R3 . (13)

3.0.4 Soneira-Peebles model

The Soneira-Peebles model is a fractal-like pont distribution involving hier-
archically embedded levels of ever larger point density, see Figure 2a. It was
introduced by Soneira and Peebles to model the galaxy distribution obeying
various clustering measures. A realization is generated as follows:

1. The starting point is a level-0 sphere of radius R.

2. In this sphere η level-1 spheres are placed with radius R/λ and λ > 1.
The new spheres are placed at a random position inside the level-0
circle, such that their centers fall inside the original level-0 sphere.

3. Within each of these η level-1 spheres, one places η level-2 spheres of
radius R/λ2.

4. This process is repeated until one ends up with in total ηL level-L
spheres of radius R/λL. At the center of each of these level-L spheres
a point is placed.

One therefore ends up with in total ηL points, which in the Soneira-Peebles
model represent galaxies. This procedure is illustrated in the top panel of
Figure 2.

The Soneira-Peebles model is controlled through three parameters, µ, L
and λ. The effect of varying these parameters on the resulting point distri-
bution is illustrated in the 2nd to 4th row of Figure 2.
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Figure 2: Definition of the parameters of the Soneira-Peebles process.

For a given number of points, η determines the dynamic range of the
resulting point distribution. For a small value of η, many levels are needed
to reach a fixed number of points, while a large value of η results in a smaller
number of levels. A small value of η also results in a smaller filling fraction
of space with spheres than a high value of η (2nd row in Figure 2). L denotes
the total number of levels and therefore determines the range of densities
and scales in the resulting point distribution. For a fixed value of η, L also
determines the total number of points (third row in Figure 2).

Finally, for given values of η and L, λ determines the range of spatial
scales. A value of λ close to 1 means that subsequent spheres of higher levels
are of comparable size. Values of λ much larger than one mean that each
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subsequent level consists of spheres which are significantly smaller than the
spheres in the preceding level (bottom row in Figure 2).

An important property of the Soneira-Peebles model is that it is one of
the few analytic self-similar models of the galaxy distribution for which the
two-point correlation function can be analytically evaluated.
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4 Assignment/computer task, part1:

the Point Samples

The point samples to be generated should be contained in a cubic volume of
size L, with volume V = L× L× L.

In all cases it concerns a cube with periodic boundary conditions. This
means that the cube is surrounded by copies of itself. In other words, each
point in the cube is also found in each of the surrounding 26 cubes (the copies
are translated by the appropriate amounts of L, e.g. a point (x, y, z) has a
periodic copy (x + L, y, z) in the cube on the right and a copy (x + L, y +
L, z + L) in the cube on the upper righthand side.

Armed with this knowledge, this assignment concerns the following:

1. Write a program that generates a uniform point distribution with N =
10000 points in a cube of size L. Plot the positions of the points on
the xy plane (ie. plot the x-coordinate vs. y-coordinate of each point.

2. Write a program that generates random points in a sphere of radius R.
For a sphere of unit radius and 10000 point, plot the positions of the
points in the xy plane and the yz plane. Infer the radial distribution,
ie. the distribution f(r) of the radial distance of each point to the
center of the sphere.

3. Write a program that produces a realization of the Matern point dis-
tribution, and plot the generated point distribution in the xy plane for
the parameters:

a. λ = 1000, r = 0.05 and N = 12

b. λ = 1000, r = 0.05 and N = 100

4a. MSc students: write a program that produces a realization of the
Soneira-Peebles point distribution, and plot the generated point dis-
tribution in the xy plane for the parameters:

a. η = 6, λ = 3, L = 6

b. η = 3, λ = 1.7, L = 10

c. η = 4, λ = 1.9, L = 8
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4b. BSc students: write a program that produces a realization of the
Soneira-Peebles point distribution, and plot the generated point dis-
tribution in the xy plane for the parameters:

a. η = 6, λ = 3, L = 6
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5 Measuring

the Two-Point Correlation Function

The issue is of course how to measure the clustering properties of the various
point processes by means of the correlation function.

Again, we are beset by the problem that there is only one realization of
our Universe known. Our own cosmos. Luckily, also here we are saved by
the ergodic theorem. We may measure the function by averaging over many
different positions. Thus, we will follow this approach. In essence, it becomes
a large counting exercise. We are going to count the number of points within
spherical shells around a given point. By adding them all up and averaging
them in a proper way we get an estimate of the probability that on average
at a distance r we have a certain amount of points and thus it’s excess or
deficit with respect to a homogeneous Poisson process. From this we may
infer ξ(r). Easier said then done ...

5.1 Correlation Function Estimators

For measuring ξ(r) on the basis of point counts we need to take into account
that we cannot always fit in complete spheres of radius r at every position
within a survey volume. In other words, one needs a way of dealing with
edge corrections. The common practice is to deal with this by means of an
equivalent Poisson point catalog in exactly the same volume (and with the
same selection criteria concerning depth of the survey).

Assume we have therefore two point sets. One is the sample one, desig-
nated by the letter “D” (data). It contains ND points. In addition there is
the Poisson point set “R”, with NR points. Position yourself on a number (as
large as practically feasible) of the data points and count the number of data
points you find in a spherical shell of with radius [r, r + ∆r]. The total sum
of points counted is designated as DD(r). One may also count, for the same
number of points, the number of Poisson points in the same shells, DR(r).

• The first estimator is that defined by Davis and Peebles (1983), some-
times called the standard estimator,

ξ̂DP (r) =
NR

ND

DD(r)

DR(r)
− 1 (14)
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• Hamilton (1993) found systematic biases in this estimator, surpassing
the regular uncertainties (due to finite sampling) in ξ̂DP (r). He there-
fore proposed the socalled Hamilton estimator:

ξ̂HAM(r) =
DD(r) ·RR(r)

[DR(r)]2
− 1 (15)

in which RR(r) is the number of pairs in the random catalog with
separation in the interval [r, r + ∆r].

• Almost simultaneously another improved estimator was defined by Landy
& Szalay (1993). It has similar properties as the Hamilton estimator,

ξ̂LS(r) = 1 +

(
NR

ND

)2
DD(r)

RR(r)
− 2

NR

ND

DR(r)

RR(r)
. (16)
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6 Assignment/computer task, part 2:

point clustering & correlation functions

In this experiment you will be invited to determine the two-point correlation
function of each of the point sets that you have generated in section 4.

In this second part of the assignment, you will have to measure the two-
point correlation function of these point sets, produce linear-linear plots and
log-log plots, and determine the correlation length r0 and clusterig slope γ
of the 2-pt correlaation function.

We assume, for simplicity, that there these are completely sampled point
sets without any sampling involved (such as involving a radial selection func-
tion).

• Write a program to analyze your point set and make the corresponding
graphs of the function. You will have to do this both in logarithmic
bins, in particular at small scales, to infer the predicted power-law
shape (log-log plot). In addition, for the same set you will have to
determine ξ(r) out to somewhat larger scales in linear bins (lin-lin
plot).

• As at small distances the two-point correlation function behaves like a
power-law of the distance r between points,

ξ(r) =

(
r

r0

)−γ
, (17)

you will also have to fit a power-law to the function you have pro-
duced. From this fit you should derive the power-law slope γ and
the correlation length r0.

• MSc students: Repeat this for three different estimators ξ̂ of the two-
point correlation function, the “standard” Davis-Peebles estimator, the
Hamilton estimator and the Landy-Szalay estimator. See the following
subsection for their specification.

• BSc students: Use the the “standard” Davis-Peebles estimator ξ̂ for
the calculation of the two-point correlation functions of the generated
point sets.
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