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The exercises in this task are meant to give you a working knowledge of Fourier
space, amplitudes, phases, power spectra and last but not least random Gaussian
fields. Please put the answers into your final report such that the report becomes
a self contained story, not just a collection of problem solutions.

Part I: Gaussian Fields.

Structure formation in the Universe started out from a nearly homogeneous
distribution of gas, with tiny perturbations of, as far as current observations
can tell us, perfect Gaussian nature. Most inflation theories predict deviations
from Gaussianity, but we won’t delve into that here. In any case it is very
important to have a firm understanding of what these Gaussian random fields
are. To give a first impression I plotted two examples here.
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Figure 1: two examples of random Gaussian fields.

From a single image it is in principle impossible to say whether it was generated
using a Gaussian process. One of the above images could have been that of a
cat or a dog, and you still couldn’t tell. We can give a probability that it is
Gaussian by looking at the phases in Fourier space. Gaussian fields have the
property that all of their statistics is found in the two-point correlation function.
Without showing any proof, it turns out this property implies that the Fourier
phases of the random field are all independent (you will find out what this means
exactly).

To determine the random nature of a die, we can throw it many times and build
statistics of the emerging numbers. Every outcome of the process of throwing
the die, we call a realisation of this zero-dimensional field. We could also throw
two dice at the same time and, asuming mutual independance, learn about
the random process governing the dice. Now suppose the dice are rigged with
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magnets. Their outcome is now correlated. Moreover their correlation depends
on the distance they fall appart, since the magnetic force falls off with distance.
If the process is Gaussian, we would learn nothing more by adding more dice
(higher order correlation functions).

To create a complete Gaussian random field, we can add points one by one.
Every time we add a point (throw a dice to some location), we have to multiply
the probability functions with respect to all points already present to find the
distribution for the new point. If we were to compute a random field on a
computer by this method the algorithm would have O(n!) running time! This
is why we use Fourier theory to ease our pains.

In reality we have only one Universe, so we have to find a different method of
finding correlation statistics than creating multiple ‘realisations’. In this reality
we use the property that the Universe is homogeneous on the largest scales. We
assume that in a different realisation we would be one of our neighbours or one
of our neighbour’s neighbours (and so on). This substitution of probabilistic
averaging with spatial averaging is called the ergodic theorem.

We are going to generate Gaussian random fields. We have a field of scalars
f(x), which has the following Gaussian one-point (probability density) function

P (f) =
1√
2πv

exp

[
−f

2

2v

]
,

where f expresses the value of f(x) at some chosen location x. Choosing two
locations x1 and x2 we can write a bivariate Gaussian two-point function

P (f1, f2) =
1

2π
√
v2 − ξ2

exp
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.

We assume isotropy so we can write the two-point corellation as a function of
|x2 − x1| = |r|,

ξ(|r|) = 〈f(x)f(x + r)〉,

and the variance
v = σ2 = ξ(0) = 〈f(x)f(x)〉.

A bivariate Gaussian distribution has the defining property that any linear
combination of the two variates should be normally distributed. Also it solves
the multi-dimensional equivalent of the central limit theory.

a. Write out the exponent of P (f1, f2) in full. To save you some time:(
a b
b a

)−1
=

1

a2 − b2

(
a −b
−b a

)
What happens when f1 = f2?
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Fourier Space.

Properties of Gaussian random fields are most easily computed in Fourier space

f(x) =

∫
d3k

(2π)3
f̂(k)e−ik·x,

f̂(k) =

∫
d3xf(x)eik·x.

b. The main advantage of Fourier space is the Fourier convolution theorem∫
d3xf(x)g(y − x) =

∫
d3k

(2π)3
f̂(k)ĝ(k)e−ik·y.

Prove it.

c. Show that for a real-valued field f , f̂(k) = f̂∗(−k). Turning this relation
around, what does this tell you about the Fourier transforms of even and/or
odd functions?

bonus. Show that, using the Fourier convolution theorem, we can express the
correlation function as

ξ(|r|) =

∫
d3k

(2π)3
P (|k|)e−ik·r,

where P (k) is the power spectrum.

(2π)3P (k)δ(k − k′) ≡ 〈f̂(k)∗f̂(k′)〉

d. Calculate P (f1, f2) for P (k) = 1. We call this white noise; what is special
about this case?

e. Suppose we have a field of white noise (call this field g(x)). How can we

take this noise, and give it the power spectrum we want? (hint: write f̂ in terms
of ĝ and P (k)). Do we sample the space of Gaussian random field realisations
with this particular power spectrum evenly using this method?
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Discrete Fourier space.

f(xn) =

N∑
j=0

f̂je
−ikjxn

Working in Fourier space takes some fingerspitzengefühl. We will be working
with Fourier transforms of real-valued arrays. They follow a symmetry

f̂(k) = f̂∗(−k).

In the context of DFT this introduces two special frequencies: the zero-mode
and the Nyquist frequency. The zero-mode gives you the average over the whole
field, while the Nyquist frequency is the smallest scale mode: half the sampling
frequency. In general the array of Fourier coefficients is stored as follows

ki =
2π

N
[0, 1, 2 . . . ,Nq, 1−Nq, 2−Nq . . . ,−2,−1] .

Both the zero and Nyquist mode have no counterpart in negative frequencies
on the discrete Fourier space. There is only one mean value, as there is only
one sequence going −1,+1,−1,+1, . . . . So the symmetry relation given above
forces their imaginary parts to vanish.
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Figure 2: Discrete Fourier space: for an array of size N , the Fourier modes are
stored from 0 to N/2, then −N/2 + 1 to −1. The zero- and Nyquist-modes are
special, they obey a different symmetry: there is no k = −0 nor k = −Nq.

e. Generate 2-D Gaussian random fields with P (k) ∝ kn for n = 1, 0,−1,−2,
using the same white noise realisation.
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Take a distinct 2-D data set; you will be given a suitable text file containing
pixel values, but you may use a different picture if you don’t like cats (in the
light of verifiability, supply the data along with your report if you choose to use
your own data)

f. Compute the power spectrum of the image, as if it were Gaussian (include
error-bars in your plot). What is the source of the uncertainty?

g. Randomize the Fourier amplitudes of this image; you may vary the power
spectrum or leave it the same.

h. Randomize the Fourier phases. What do you conclude from this exercise?


