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Ergodic  Theorem  

Cosmological  Principle:

Universe  is  Isotropic  and  Homogeneous  

Statistical  Cosmological  
Principle

Homogeneous & Isotropic  Random  Field             : 

Homogenous

Isotropic      

[ ( )] [ ( )]p x a p x  
  

[ ( )] [ (| |)]p x y p x y   
   

( )x


Within  Universe one particular realization :

Observations:  only spatial distribution in that one particular
Theory:                  

( )x


( )x


[ ( )]p x

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Ergodic  Theorem 

Spatial  Averages 
Ensemble  Averages                       over one realization 

of  random field      

• Basis for statistical analysis  cosmological large scale structure

• In statistical mechanics Ergodic Hypothesis usually refers to time evolution 
of system, in cosmological applications to spatial distribution at one fixed time

Validity Ergodic  Theorem:

• Proven for Gaussian random fields with continuous power spectrum

• Requirement:

spatial correlations decay sufficiently rapidly with separation 

such that

many statistically independent volumes in one realization

All information present in complete distribution function                  available 
from  single sample            over all space 

Ergodic  Theorem 

( )x
 [ ( )]p x


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• Statistical  Cosmological   Principle

+

• Weak cosmological  principle
(small fluctuations initially and today over Hubble scale)

+

• Ergodic Hypothesis

Fair  Sample  Hypothesis 

fair sample hypothesis
(Peebles  1980)

Discrete  e.g.  Continuous  
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• How to relate discrete and continuous  distributions:

• Define number density             for a point process:

Dirac Delta function

ensemble average

Discrete &  Continuous
Distributions 

( )n x


( ) [1 ( )] ( )iD
i

n x n x x x    
   

( )D x


( )D i
i

x x n  
 

Correlation  Functions  
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Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

Joint probability that 
in each one of 

the two infinitesimal volumes 
dV1 & dV2, 

at distance r,

lies a  galaxy 

mean density 

Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

In case of  
Homogeneous & Isotropic
point process

then 

only dependent on 

mean density 

| |r r


( )r

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Discrete                                                            Continuous     

Two-point correlation function Autocorrelation function

Correlation Functions

2

1 2 1 2 12( , ) [1 ( )]dP x x n dV dV r 
 

12 1 2( ) ( ) ( )r x x  
 

12 1 2| |

( ) 0

r x x

x

 



 



probability for 2 points in 
dV1 and dV2 

• Gaussian (primordial and large-scale) density field:

Autocorrelation function x(r) Fourier transform power spectrum P(k)

Autocorrelation function completely specifies statistical properties 
of field

• First order measure of deviations from uniformity 

• Nonlinear objects (halos):  
x(r)  measure of density profile

• Large Scales:
related to dynamics of structure formation via e.g. 
cosmic virial theorem

Correlation Functions
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Correlation Functions:  
related measures

Other measures related to         :

• Second-order intensity

• Pair correlation function

• Conditional density 

( )r

2

2 ( ) ( ) 1r n r  

( ) 1 ( )g r r 

( ) (1 ( ))r n r  

Correlation Functions:  
related measures

2
3 0
( ) ( )J r y y dy


 
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3 30

3 ( )3
( ) 4 ( )

4

r J r
r x x dx

r r
 


 

Volume averaged  correlation function  ( )r
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Power-law  Correlations

0

( )
r

r
r






 
  
 

Totsuji & Kihara  1969

Peebles 1975, 1980, … 

1
0

1.8

5r h Mpc








Correlation Functions

Clustering length/
“Correlation” length

Coherence length
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Correlation  Function
Estimators   

Minimal  Estimator


min

1

( )( )
( ) 1

inN
i

iin sh

n rV W
r

NN V




 
For galaxies close to the boundary 
the number of neighbours is 
Underestimated. One way to 
overcome this problem is to consider 
as centers for counting neighbours 
only galaxies lying within an inner 
window Win

Vsh is the volume of the shell of 
width  dr



12/01/2015

11

Edge-Corrected Estimator

Ni(r):   number of neighours at distance
in the interval  [r,r+dr] from galaxy I

Vi:       volume of the intersection of the 
shell with W

W:       when W a cube, an analytic 
expression for Vi can be found 
in  Baddely et al. (1993). 


2

1

( )( )
( ) 1

inN
i

edge
i i

n rV W
r

N V




 

Estimators  Redshift Surveys
• In redshift surveys, galaxies are not sampled uniformly over the survey volume

• Depth selection: 
in magnitude-limited surveys, the sampling density decreases as function of 
distance

• Survey Geometry
boundaries of survey often nontrivially defined:

- slice surveys
- non-uniform  sky coverage
etc. 

Clustering in survey compared with sample of Poisson distributed points, 
following the same sampling behaviour in depth and survey geometry

Difference in clustering between 
data sample (D)  and   Poisson sample (R)

genuine clustering   
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Estimators  Redshift Surveys
Clustering in survey compared with sample of Poisson distributed points, 
following the same sampling behaviour in depth and survey geometry

Difference in clustering between 
data sample (D)  and   Poisson sample (R)

genuine clustering   

• Davis-Peebles
(1983)

• Hamilton 
(1993)

Landy-Szalay
• (1993)

( ) 1R
DP

D

DDn
r

n RR
  

2

( ) 1 2R R
LS

D D

DD DRn n
r

n RR n RR


 
   

 

2( ) 1Ham

DD RR
r

DR
  

Angular 
Two-point  Correlation Function 
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Nonlinear DescriptionsAngular Correlation  Function
Galaxy sky distribution:

∏ Galaxies clustered, 

a projected expression of the 

true 3-D clustering 

∏ Probability to find a galaxy near 

another galaxy higher than 

average (Poisson) probability

∏ Quantitatively expressed by 

2-pt correlation function w(q):

2
1 2( ) {1 ( )}dP n w d d    

Excess probability of finding 

2 gal’s at angular distance q

Nonlinear DescriptionsAngular & Spatial  Clustering
2

1 2( ) {1 ( )}dP n w d d    

Two-point angular correlation 
function is the “projection” of

Limber’s  Equation:  

( )r

2 2
1 2 1 2 1 2 1 2

2

2

0

( ) ( ) (| |)
( )

( )

p x p x x x dx dx x x
w

x p x dx









 
 
 





   

p(x):    survey  selection  function 
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Nonlinear DescriptionsLimber  Equation 
2 2

1 2 1 2 1 2 1 2
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Nonlinear DescriptionsAngular Clustering Scaling

Two-point correlation function:

∑ small angles:    power-law

∑ large angles                 0
ie.  to homogeneity

APM survey

 0( )

0.8

w


 







Nonlinear DescriptionsAngular Clustering Scaling

Projection of more layers leads to 
decreasing amplitude   w(q)

Angular size structures 
smaller when more distant

APM survey
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Nonlinear DescriptionsAngular Clustering Scaling

*

* *
1( , ) ( )
D

w D w D 

Projection of 
more layers 
leads to 
decreasing 
amplitude w(q)

Angular size structures 
smaller when more distantAPM survey

Nonlinear DescriptionsAngular Clustering Scaling

*

* *
1( , ) ( )
D

w D w D 

Projection of 
more layers 
leads to 
decreasing 
amplitude w(q)

Angular size structures 
smaller when more distantAPM survey
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Nonlinear DescriptionsAngular Clustering Scaling
The angular scaling of w(q) is found back to even fainter magnitudes in the 

SDSS survey (m=22) 
Clear evidence that there are no significant large structures on scales > 100-200 Mpc

Correlation  Functions:

Redshift  Space  
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sky-redshift space 
2-pt correlation function x(s,p)

Correlation function determined 
in sky-redshift space:

( , )  

sky position:               
redshift coordinate:  

( , )  
cz 

Close distances:  
distortion due to non-linear
Finger of God

Large distances:
distortions due to large-scale 
flows

Redshift Space Distortions 
Correlation Function

Large distances:
distortions due to large-scale 
flows

On average,            gets amplified 
wrt.            

Linear perturbation theory
(Kaiser 1987):   

( )s s
( )r r

0.6 1.22 1
( ) (1 ) ( )

3 5s rs s     
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Evolution Growth Rate

0.55( , )m m

a dD
f

D da    

Peebles growth rate factor 

Linder  2008
Guzzo et al. 2008 

Measurement 

Spatial  2pt-Correlation  Function
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Deprojected Spatial Correlations

2pt correlation function
not an ideal power-law:

Halo Model:

Two-point correlation function
combination of

1)  small-scale correlations, 
due to galaxies inside 
one dark matter halo

2) large scale correlations 
between dark matter halos   

The correlation function              
g(r)=1+r) 

Stromlo-APM, Las Campanas, 
CfA2, ESP redshift surveys.

The fractal behavior at small
scales dissapears at larger 
distances, providing evidence
for a gradual transition to
homogeneity.

(3)

Plot from Martínez, 1999,  Science, 284, 445.

(1) Loveday et al., 1995, ApJ, 442, 457

(2) Tucker et al., 1997, MNRAS, 285, L5

(3) Guzzo et al.,  2000, AA, 355, 1

Convergence to Homogeneity  
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Luminosity Dependence 
Correlation  Functions

Galaxy  Luminosity  Dependence 

SDSS 
correlation function

for galaxies in different 
luminosity bins 
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Spatial  Structure  &

Correlation  Functions

Structural  Insensitivity
2-pt correlation function is 
highly insensitive to the geometry & morphology
of weblike patterns:

compare 2 distributions with same 
x(r), cq.  P(k), 
but totally different phase distribution

In practice, some sensitivity in terms of distinction 
Field, Filamentary, Wall-like and Cluster-dominated 
distributions:

because of different fractal dimensions
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Structural  Sensitivity

Wall-
dominated

Filamentary

Cluster-like

Cluster

Correlation  Functions
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Clusters of 
Galaxies 

Coma  Cluster

Perseus Cluster

Clustering 
of

Clusters 

Clusters cluster much more strongly 
than galaxies:

- clustering defines superclusters !
- also power-law 2-pt correlation fct.
- same power law slope g~1.8
- much higher correlation length r0 :

r0 ~   15-25  h-1 Mpc
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Richness-Dependent  Cluster Correlations  

More massive clusters are  
systematically more strongly 
clustered than lower mass ones.  
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Richness-Dependent  Cluster Correlations  

More massive clusters are more 
systematically more strongly 
clustered than lower mass ones:

simple model:
Szalay & Schramm  1985

Scaling   of

Cluster  Correlation  Functions:

a geometric model 



12/01/2015

28

Voronoi  Models:
Templates  for the Cosmic Web

filament

wall
cluster

void

Perfect 
Power-law clustering
Voronoi vertices 
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Self-similar  Clustering

As function of mass, the correlation length r0 and coherence length ra  

increase unanimously.   

Self-similar  Clustering

As function of mass, the correlation length r0 and coherence length ra  

increase unanimously.   
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Higher Order

Correlation  Functions:

N-point  correlation  functions

• N-point correlation function 

• Probability function of finding an n-tuplet  of  galaxies in 

n  specified volumes  dV1, dV2, …, dVn

( )
1 2 1 2( , , ..., ) [1 ] ...

n n
n ndP x x x n dV dV dV 

  

( )
1 2( , , ..., )n

nx x x
  
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3-point  correlation  functions

3-point correlation function 

3 (3)
1 2 3 1 2 3( , , ) [1 ]dP x x x n dV dV dV 
  

(3)[1 ] (1 )i
i

   

(3)
12 13 23 1 2 3[1 ] 1 ( ) ( ) ( ) ( , , )r r r r r r         

  
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• z ∫ 0:              non-Gaussian density field

• Hierarchical  ansatz (Groth & Peebles 1977) 

reduced 3-point correlation function

excess correlation over that described by the 2-pt contributions

3-point  correlation  functions

(3)
12 13 23 1 2 3[1 ] 1 ( ) ( ) ( ) ( , , )r r r r r r         

  

1 2 3 1 2 3( , , )r r r   
  

3-point correlation function

1 2 3 12 23 23 31 31 12( , , ) ( )r r r Q        
  

Power  Spectrum 
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Power Spectrum

• Directly measuring clustering in 

Fourier space:

- More intuitive physically:

separating processes on different scales

- Theoretical model predictions are made 

in terms of power spectrum

- Amplitudes for different wavenumbers are

statistically orthogonal

Power Spectrum  P(k)
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CDM Power Spectrum  P(k)

Power Spectrum  P(k)
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Power Spectrum - Correlation Function

3( ) ( ) ik rP k d r r e  
 

3

3
( ) ( )

(2 )
ik rd k

r P k e


  
 

2

3
0

sin( )
( ) 4 ( )

(2 )

k dk kr
r P k

kr
 





 Isotropy:

Delta-power
2 2

2

1
( ) ( )

2
k P k k


 
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Estimators of P(k)
• Direct estimator

• Pixelization and maximum likelihood

• Karhunen-Loèwe (signal-to-noise) 
transform

• Quadratic compression

• Bayesian 

• Multiresolution decomposition
Tegmark, Hamilton, Strauss, Vogeley, and Szalay, (1998),
Measuring the galaxy power spectrum with future redshift 
surveys, ApJ, 499, 555

Power Spectrum Estimators

Karhunen-
Loeve

Decomposition in series of 

orthogonal 

signal-noise eigenfunctions

Vogeley & Szalay 1995
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Baryonic  Acoustic 
Oscillations  
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BAO

BAO
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BAO

Measuring BAO
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BAO as cosmological tools

Until recombination, the 
sound wave travels a 
distance of: 

This distance can be 
accurately determined from 
the CMB power spectrum, 
and was found to be 147±2 
Mpc. 

Cosmic Constraints
LSS Clustering

SDSS DR7 LRG sample 
Clustering,   Reid et al. 2010
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Topological Analysis 

of the Cosmic Web 

To assess the 

key aspects of the 

nonlinear cosmic matter and galaxy distribution:
● multiscale character                                   hierarchical structure formation

● weblike network                                          anisotropic collapse

● volume dominance voids                           asymmetry overdense vs. underdense

Cosmic Structure Analysis

Many statistical measures:                         clustering measures (correlation functions)
density distribution functions

Topological Characteristic of network:      genus statistics
Geometric   Characteristics:                       Minkowski functionals
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1. Direct intuitive meanings

- characterize the LSS as a quantitative measure with a physical  
interpretation attached

2. Easy to measure

- global genus topology from integration of local curvature: 

According to the Gauss-Bonnet theorem  the integrated Gaussian 
curvature of a surface is related with its topological genus by 

Why is the topology study useful?
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Intrinsic topology 
does not change by trivial change in the shape of structure

or by trivial coordinate transformation, which result in monotonic 

expansion/contraction, distortion, rotation ...

II. Introductory theory of topology statistics

Measures of intrinsic topology - Minkowski Functionals

3D

1. 3d genus (Euler characteristic)     2. mean curvature                                              
3. contour surface area                     4. volume fraction

3d galaxy redshift survey data, 3d HI map

2D

1. 2d genus (Euler characteristic)     2. contour length                                              
3. area fraction

CMB temp./polarization,  2d galaxy surveys

1D

1. level crossings                                 2. length fraction

Lyα clouds, deep HI surveys, pencil beam galaxy surveys

II. Introductory theory 
of topology statistics
1. Measures of 
intrinsic topology
2. Definitions of MFs
3. Gaussian formulae
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: 2 holes – 1 body = +1

Topological definition of  the genus, G=-V3

Genus = # of holes in iso-density contour surfaces - # of isolated regions 

[ex. G(sphere)=-1,             G(torus)=0,            G(two tori)=+1   ]

The topological genus is related with the integrated Gaussian curvature of a 
surface by (Gauss-Bonnet theorem )

For a surface with c components, the genus G specifies # handles on 
surface,  and is related to the Euler characteristic c(∂M) via:

where, according to the Gauss-Bonnet theorem, the Euler-Poincare 
characteristic is given by the surface integral over the Gaussian 
curvature

Gauss – Bonnet Theorem

1
( )

2
G c M  

1 2

1 1
( )

2
M dS

R R



 

   
 

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The mean value of  can be 
calculated analytically for 
Gaussian random fields 
(test of GRF hypothesis?)

In 3D the mean level is 
characterised by g>0 (a 
sponge)

In 2D the mean level has 
=0.

There is no 2D equivalent of 
a sponge!

The usefulness of Euler

Topology 

of  the 

Primordial Gaussian Field
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Earliest View 
of our Cosmos:

the Universe 
379,000 years 
after the Big Bang

Perfect 
Gaussian Field

Origin: Inflation, 
t =10-36 sec 

Edge of the Visible Universe

Cosmic  Microwave  Background

WMAP
CMB 
temperature map
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Primordial Gaussian Field
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Gaussian  Random  Fields:
Genus

Genus Gaussian Field, the “cosmological” way :

g G c 

    2

3/2
2

2 /2
2

1
1

8 3

k
g e  




 
   
 
 

       0 1 2g          
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Topology 

of  

non-Gaussian Fields

Analytic formulae for the genus in weakly nonlinear regime due to gravitational evolution are known too 
(Matsubara 1994). So the non-Gaussianity due to non-linear gravitational evolution can be separated, 
and the primordial topology can be better explored.  

G=-V3
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Moore et al. (1992): The topology of the QDOT IRAS redshift survey
The amplitude of the genus curves on large (21Mpc/h) scales is inconsistent with the predictions 

of a constant-bias SCDM model, and the shape of the best-fit PS from genus analysis is n=-1
* IRAS QDOT: 2163 redshifts out to $z=0.07$, randomly sampled at a rate of 1/6 
from IRAS PSC (f_60m > 0.6Jy), |b|>10

Vogeley et al. (94): Topology Analysis of the CfA Redshift Survey
Genus on RG = 4.2 ~ 14 Mpc/h. Statistics derived from the genus curve
Amplitude drop relative to the fields with the same PS due to phase correlation on scales <10Mpc/h    

 amplitude of the genus curve is not a good measure of n.
The amplitude of the genus curves on large scales is inconsistent with the predictions of a constant 

bias SCDM, but consistent with a LCDM with h=0.24 and =0.6 and an OCDM with  h=0.2.
* CfA2: ~12000 galaxies with m_B  < 15.5$.
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Genus  Non-Gaussian Fields
Clusters                                        Bubbles                         

(Weinberg, Gott & Melott 1987)
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Minkowski Functionals

Minkowski  Functionals

∏ Minkowski Functionals (defined by isodensity surface):

- Volume

- Surface area

- Integrated mean curvature

- Integrated Intrinsic curvature
Euler Characteristic

∏ Complete quantitative characterization of local geometry and    
morphology  of isodensity surfaces in terms of 

Minkowski Functionals

S dS 

V dV 

1 2

1 1 1

2
C dS

R R

 
  

 


1 2

1 1

2
dS

R R



 

  
 

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Theoretical predictions for Gaussian fields are known.

(Schmalzing & Buchert 1997)

Minkowski  Functionals:
Non-Gaussianity Measure

Kerscher & Martínez (1998), 

Bull. Int. Statist. Inst. 57-2, 363

In  R3 four functionals:

volume V
surface area A
integral mean curvature H
Euler-Poincare characteristic c

These are the Minkowski Functionals

Minkowski functionals
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Homology Analysis

of the Cosmic Web

Cosmic Structure Topology

∏ Complete quantitative characterization of homology in terms of 

Betti  Numbers

∏ Betti number  bk:       - rank of homology groups Hp of manifold
- number of k-dimensional holes of an 
object or shape

• 3-D object,   e.g.  density superlevel set: 

b0:                               - # independent components
b1:                               - # independent tunnels
b2:                               - # independent enclosed voids
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Geometry &  Topology
∏ Complete quantitative characterization of homology in terms of 

Betti  Numbers

∏ Minkowski Functionals:
- Volume
- Surface area 
- Integrated mean curvature
- Genus/Euler Characteristic

∏ Complete quantitative characterization of local geometry in terms of 

Minkowski Functionals

Genus,  Euler  &   Betti  

æ Euler – Poincare formula 

Relationship between Betti Numbers & Euler Characteristic  c:

 
0

1
d

k

k
k

 

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Genus,  Euler  &   Betti  

æ Euler – Poincare formula 

Relationship between Betti Numbers & Euler Characteristic  c.

3-D  manifold M:

2-D boundary manifold  ∂M:

  0 1 2 3

0 1 2

M    

  

   

  

  0 1 2b b bM      

æ For a surface with c components, the genus G specifies # handles on 
surface,  and is related to the Euler characteristic c(∑M) via:

where, according to the Gauss-Bonnet theorem 

Genus, Euler & Betti

1
( )

2
G c M  

1 2

1 1
( )

2
M dS

R R



 

   
 


 0 1 2( ) 2M      

   1

2
M M  

æ Euler characteristic 3-D  manifold M & 2-D boundary manifold  ∂M:
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Gaussian  Random  Fields:
Betti Numbers

In a Gaussian field:
• # tunnels dominant at intermediate density levels, when superlevel domain spongelike
• overlap between b0 and  b2 at n=0, domain punctured by clumps with cavities
• # clumps/islands reaches maximum at             ,  # cavities/voids at  3  3  

Gaussian  Random  Fields:
Betti Numbers

Distinct sensitivity of Betti curves on 
power spectrum P(k):

unlike genus (only amplitude P(k) sensitive) 
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Gaussian  Random  Fields:
Correlation Betti Numbers

   kl k lC     

Gaussian  Random  Fields:
Betti Numbers
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Homology

of the Cosmic Web

Homology of evolving 
LCDM cosmology

b2

b1b0
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Betti2:
evolving void populations

LCDM  vs. SUGRA
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Homology
sensitivity LCDM vs. Quintessence

b2

b1b0

Persistence
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Persistence:
search for topological reality

Concept introduced by Edelsbrunner:

Reality of features (eg. voids) determined on the basis of a-interval between 
“birth” and “death” of features 

Persistent Homology 
Persistent Homology describes the homological features which persist
as a single parameter changes  
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Persistent   LCDM Cosmic Web 
Death 
a

Birth a

Minimal  Spanning  Tree  
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Morse  Theory 
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Density  Field  Flow LinesDensity  Field  Flow Lines

Density  Field  Flow LinesDensity  Field  Flow Lines

Density  Field: 

Flow  Lines f

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Density  Field  Flow LinesDensity  Field  Flow Lines

Critical   Points:
- Maxima
- Minima
- Saddle  Points    (of various signature)

0f 


Density  Field  
Critical Points:

Ridges:

Connections
Saddle-
Maxima

Density  Field  
Critical Points:

Ridges:

Connections
Saddle-
Maxima
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Integral Lines  &  Field Ridges:
Singularities

Integral Lines  &  Field Ridges:
Singularities
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Void  Basins

Filamentary   Ridge

Cluster Node
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Minimum

Filamentary   Ridge

Maximum

Saddle


