08/01/2015

the Zel’dovich Formalism

Yakov Borisovich Zel’dovich




rgasiters | «

Schntifie | -
O

Yakov Borisovich Zel’dovich
Minsk, 1914- Moscow, 1987

TETETTTTTTT T T TR T T T T T T TR T TROE WY

f.6. 3ENLAOBMY

19141587

15¢

T N L T T T T T
stamp Zeldovich, monument Zeldovich,
Russia 2014 Minsk, Belorussia

08/01/2015



08/01/2015

Zel'dovich & pope John Paul Il

Zel'dovich & Andrei Sacharov

Zeldovich & Raizer

PHYSlCS OF standard book on shock waves ...
SHocK WAVES AND

HIGH-TEMPERATURE

HYDRODYNAMIC

PHENOMENA

Ya. B. Zeldovich and
Yu. P. Raizer

Edieed by 'Wallace D. Hapes and
FAnasld F Probstein




08/01/2015

ov Borisovich Zel’dovich

Zel’dovich Approximation

X=q+D1)u(a)




08/01/2015

Zel’dovich Approximation

Zeldovich Approximation

Zel’dovich Formalism:
Streaming & Caustics
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| lllustration of the formation of caustics due to streaming paths of light through
Tam




X=q+D()u(@)

0(q) =-V(q)

P8 = D04 (4) (- D)4 (@) - DOA @)

structure of the cosmic web determined by the ﬂl A ﬂ?
spatial field of eigenvalues U
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Zel’dovich Formalism:
Density Evolution

Density Profile through pancake, at moment of formation and shortly thereafter (multistream)

Singularities & Catastrophes

Zeldovich
deformation eigenvalue
landscape

Hidding, Shandarin & vdW
2014
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Zel’dovich Formalism

lllustration:

Caustic formation of weblike
matter distribution according
to the Zel’dovich formalism.

From: Buchert 1989
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Adhesion Approximation

Burger’’s Equation

o+ (u-V)u=vViu

Adhesion Approximation

Hidding 2012
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Velocity & Gravity
Potential
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Burger’s Equation: Hopf Solution

S
\

Hidding 2012/2014

Convex Hull
quadratically lifted potential field

!

Delaunay tessellation
generated by maxima potential field
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Eulerian — Lagrangian
Voronoi - Delaunay

Eulerian — Lagrangian
Voronoi - Delaunay
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Cosmological Sensitivity

the morphology of the weblike network is
highly sensitive to the underlying cosmology

P(K)ock 15 Hidding 2012/2014 P(K)ock-20

Hierarchical Clustering:
P(k) < k15
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Hierarchical Clustering:
P(k) < k20

the Spherical Model
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Spherical Model

The spherical model (Gunn & Gott 1972) describes the evolution of a
spherical mass distribution. It forms THE reference point for all further

evaluations of structure formation.

o Because of Birkhoff’s theorem we may see the evolution of each
individual mass shell as due only to the integrated mass distribution within
its radius.

® As long as two mass shells are not crossing - e.g. due to the faster infall
of an outer shell into an overdensity -- the motion of a shell - with radius
1 -- is simply that of an individual spherical shell attracted by a point mass
M(r), with M(r) the integrated mass within radiusr.

® Perhaps not surprisingly, the equations of motion for the mass shells are
the same as that of Friedmann-Robertson-Walker universes for an
equivalent density parameter (r).

o These equations of motion for each mass shell can be solved analytically for any
decently behaving mass profile (i.e. the mass profile should be sufficiently
centrally concentrated to prevent shell crossing).

o The spherical model is equally valid for overdensities as well as for
underdensities.

Spherical Model

Contraction/Expansion of a shell with initial (Lagrangian) radius r; is described by a
scale factor R(t,r;), such that the radius r(t,r;) at time t is given by:

R(t, 'T;_)?‘f,g 4

16



Spherical Model

The motion is fully determined by the average mass density A(r,t) within a radius r,

Alnt) = — pult)

3 [p(y.,t) - 1] y? dy 1+Ay = Q1+ A(t,ri)]
0
g " , ;o= [N

= Ffu 8y )y dy, & (H,n-) L

and by the the peculiar velocity v,,; of the shell. For this we usually take the peculiar
velocity predicted by linear theory for the growing mode.

. Hi?’i .
Upeci — — 3 j

() A(ri, t;) ,

o = —%f(ﬂ?;)ﬁ(ri.‘t,;).

It is convenient to describe the density perturbation with respect to a EdS Universe, in
terms of A; and the velocity perturbation with respect to the Hubble expansion in terms

of parameter o .

Spherical Model

The solutions for the scale factor of overdense/underdense shells can be written in the
same parameterized form, by means of shell angle 0, as we know from the solutions for

FRW universes,
%ﬁ {cosh©, — 1) A < ay,
R(O,) =
L 1+ A 08 O
3 m (1 —cos®,) Ay > ay,

with time dependence specified by

1 Ar’i i
%(ajT)‘“ (sinh®, - ©,)  An<a

1 1+ A, O, —sin® Ay >
2 (Am - O’i):i 2 ( T8 ‘r) a &

08/01/2015
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Spherical Model

The corresponding peculiar velocity of the shell

Upcc(rtt) - U(Tat) - H’.‘.a(t)r(t)a

can be inferred from

- 9(6y)
?)pec(’r* t) - Hu(t}’.'"(t) {g((-)u) - 1}

with
sinh & (sinh ® — 8) e
(cosh® — ]}." '

g(@) = % critical,

sin® (O — sin©)
(1 —cos i—)]!

closed
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Evolution

Spherical
Tophat
Halo

Foall)  [57 dipc]

ell Expansion Factor
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Shell Peculiar Velocity
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Spherical Model

Having determined the evolution of the radius and velocity of each spherical shell of
the density perturbation, we may then proceed to derive the corresponding evolution
of the density profile of the shell. Here we limit ourselves to the integrated density
profile A(r,t),

1+ Ai(ri) a(t)®
73 o

1+ A(r,t) =

whose solution can be specified in terms of a density function f(8),

1+ A(r,t) = £(©,)/1(Ou),

Spherical Model

whose solution can be specified in terms of a density function f(8),

(sinh©® — ©)* oben
(cosh® —1)° ot
f(©) = <¢2/9 critical ,
M closed
(1 —cos®)” ’

At maximum expansion of an overdense shell, ©=mr, defining the turnaround radius of
the matter concentration, we thus find that the integrated overdensity of the shell is

1+ A(r,ta) = (37/4)° [“56

08/01/2015
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Spherical Model

In the “imaginary” situation in which the overdensity would have continued to evolve
linearly, it would have reached an overdensity dictated by the linear growth factor D(t)
for the corresponding background Universe. For the situation of an Einstein-de Sitter
Universe, with

D o (t/tg)%/3
amass ovcrc]cnsity reaches its turnaround at a linear ovcrdcnsitg
Aién (Zta) — 5ta = (3/5)(37‘7/4)2/3 ~ 1.062.

The consequences of this finding are truely wonderful: the cosmologist may resort to
the primordial density field, search for the peaks in this Gaussian field, and assuming
they are spherical (which they are not at all), and identify the ones that reach
turnaround at some redshift z. Even more useful is the equivalent case for final
collapse.

Spherical Model

Collapse, ie. A=~, happens when the density fluctuation would have reached a linear
overdensity of

/3N (3r\2/3 -
Alin(z(:) =0 = g ? ~ 1.686.

The fact that this is a universal value, valid for any (spherical) density peak, makes it
into one of the most crucial numbers in the theory of structure formation. We may
thus find the collapse redshifts z ., for any primordial density peak,

D(zcol) Aing = bc -

08/01/2015
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the Ellipsoidal Model

Homogencous E_”ipsoids

22



Homogeneous E“ipsoids

q)(fof}(r) — q)b(r) e @(int,dl)(r) & q)((g_;;t)(r)

Homogeneous E“ipsoids

2 ' :
Dy(r) = ngpb (rf 4+ 72 +75)
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Homogcncous E”ipsoids
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Homogcncous E”ipsoids
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Homogcncous E”ipsoids
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Homogcncous E”ipsoids
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Homogcncous E_”ipsoids
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Homogeneous E“ipsoids
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