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Ergodic  Theorem  

Cosmological  Principle:

Universe  is  Isotropic  and  Homogeneous  

Statistical  Cosmological  

Principle

Homogeneous & Isotropic  Random  Field             : 

Homogenous

Isotropic      

[ ( )] [ ( )]p x a p x  
  

[ ( )] [ (| |)]p x y p x y   
   

( )x


Within  Universe one particular realization :

Observations:  only spatial distribution in that one particular

Theory:                  

( )x


( )x


[ ( )]p x

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Ergodic  Theorem 

Spatial  Averages 

Ensemble  Averages                       over one realization 

of  random field      

• Basis for statistical analysis  cosmological large scale structure

• In statistical mechanics Ergodic Hypothesis usually refers to time evolution 

of system, in cosmological applications to spatial distribution at one fixed time

Validity Ergodic  Theorem:

• Proven for Gaussian random fields with continuous power spectrum

• Requirement:

spatial correlations decay sufficiently rapidly with separation 

such that

many statistically independent volumes in one realization

All information present in complete distribution function                  available 

from  single sample            over all space 

Ergodic  Theorem 

( )x
 [ ( )]p x


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• Statistical  Cosmological   Principle

+

• Weak cosmological  principle

(small fluctuations initially and today over Hubble scale)

+

• Ergodic Hypothesis

Fair  Sample  Hypothesis 

fair sample hypothesis

(Peebles  1980)

Discrete  e.g.  Continuous  
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• How to relate discrete and continuous  distributions:

• Define number density             for a point process:

Dirac Delta function

ensemble average

Discrete &  Continuous

Distributions 

( )n x


( ) [1 ( )] ( )iD

i

n x n x x x    
   

( )D x


( )D i

i

x x n  
 

Correlation  Functions  
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Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

Joint probability that 

in each one of 

the two infinitesimal volumes 

dV1 & dV2, 

at distance r,

lies a  galaxy 

mean density 

Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

In case of  

Homogeneous & Isotropic

point process

then 

only dependent on 

mean density 

| |r r


( )r

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Discrete                                                            Continuous     

Two-point correlation function Autocorrelation function

Correlation Functions

2

1 2 1 2 12( , ) [1 ( )]dP x x n dV dV r 
 

12 1 2( ) ( ) ( )r x x  
 

12 1 2| |

( ) 0

r x x

x

 



 



probability for 2 points in 

dV1 and dV2 

• Gaussian (primordial and large-scale) density field:

Autocorrelation function (r) Fourier transform power spectrum P(k)

Autocorrelation function completely specifies statistical properties 

of field

• First order measure of deviations from uniformity 

• Nonlinear objects (halos):  

(r)  measure of density profile

• Large Scales:

related to dynamics of structure formation via e.g. 

cosmic virial theorem

Correlation Functions



7/1/2009

8

Correlation Functions:  
related measures

Other measures related to         :

• Second-order intensity

• Pair correlation function

• Conditional density 

( )r

2

2 ( ) ( ) 1r n r  

( ) 1 ( )g r r 

( ) (1 ( ))r n r  

Correlation Functions:  
related measures

2

3
0
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
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3 30

3 ( )3
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4

r J r
r x x dx

r r
 


 

Volume averaged  correlation function  ( )r
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Power-law  Correlations

0

( )
r

r
r







 
  
 

Totsuji & Kihara  1969

Peebles 1975, 1980, … 

1

0

1.8

5r h Mpc








Correlation Functions

Clustering length/

“Correlation” length

Coherence length
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Correlation  Function
Estimators   

Minimal  Estimator


min

1

( )( )
( ) 1

inN

i

iin sh

n rV W
r

NN V




 

For galaxies close to the boundary 

the number of neighbours is 

Underestimated. One way to 

overcome this problem is to consider 

as centers for counting neighbours 

only galaxies lying within an inner 

window W in

Vsh is the volume of the shell of 

width  dr
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Edge-Corrected Estimator

Ni(r):   number of neighours at distance

in the interval  [r,r+dr] from galaxy I

Vi:       volume of the intersection of the 

shell with W

W:       when W a cube, an analytic 

expression for Vi can be found 

in  Baddely et al. (1993). 


2

1

( )( )
( ) 1

inN

i
edge

i i

n rV W
r

N V




 

Estimators  Redshift Surveys
• In redshift surveys, galaxies are not sampled uniformly over the survey volume

• Depth selection: 

in magnitude-limited surveys, the sampling density decreases as function of 

distance

• Survey Geometry

boundaries of survey often nontrivially defined:

- slice surveys

- non-uniform  sky coverage

etc. 

Clustering in survey compared with sample of Poisson distributed points, 

following the same sampling behaviour in depth and survey geometry

Difference in clustering between 

data sample (D)  and   Poisson sample (R)

genuine clustering   
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Estimators  Redshift Surveys
Clustering in survey compared with sample of Poisson distributed points, 

following the same sampling behaviour in depth and survey geometry

Difference in clustering between 

data sample (D)  and   Poisson sample (R)

genuine clustering   

• Davis-Peebles

(1983)

• Hamilton 

(1993)

Landy-Szalay

• (1993)

( ) 1R
DP

D

DDn
r

n RR
  

2

( ) 1 2R R
LS

D D

DD DRn n
r

n RR n RR


 
   

 

2
( ) 1Ham

DD RR
r

DR
  

Angular 
Two-point  Correlation Function 
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Nonlinear Descriptions
Angular Correlation  Function

Galaxy sky distribution:

 Galaxies clustered, 

a projected expression of the 

true 3-D clustering 

 Probability to find a galaxy near 

another galaxy higher than 

average (Poisson) probability

 Quantitatively expressed by 

2-pt correlation function w():

2

1 2( ) {1 ( )}dP n w d d    

Excess probability of finding 

2 gal’s at angular distance 

Nonlinear Descriptions
Angular & Spatial  Clustering

2

1 2( ) {1 ( )}dP n w d d    

Two-point angular correlation 

function is the “projection” of

Limber’s  Equation:  

( )r

2 2

1 2 1 2 1 2 1 2

2

2

0

( ) ( ) (| |)
( )

( )

p x p x x x dx dx x x
w

x p x dx









 
 
 





   

p(x):    survey  selection  function 
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Nonlinear Descriptions
Limber  Equation 

2 2

1 2 1 2 1 2 1 2
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Nonlinear Descriptions
Angular Clustering Scaling

Two-point correlation function:

 small angles:    power-law

 large angles                 0
ie.  to homogeneity

APM survey

 0
( )

0.8

w












Nonlinear Descriptions
Angular Clustering Scaling

Projection of more layers leads to 

decreasing amplitude   w()

Angular size structures 
smaller when more distant

APM survey
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Nonlinear Descriptions
Angular Clustering Scaling

*

* *
1( , ) ( )
D

w D w D 

Projection of 
more layers 
leads to 
decreasing 
amplitude w()

Angular size structures 
smaller when more distantAPM survey

Nonlinear Descriptions
Angular Clustering Scaling

*

* *
1( , ) ( )
D

w D w D 

Projection of 
more layers 
leads to 
decreasing 
amplitude w()

Angular size structures 
smaller when more distantAPM survey
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Nonlinear Descriptions
Angular Clustering Scaling

The angular scaling of w() is found back to even fainter magnitudes in the 

SDSS survey (m=22) 

Clear evidence that there are no significant large structures on scales > 100-200 Mpc

Redshift  Space  Distortions 
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Redshift  Distortions

• In   reality,   galaxies  do  not  exactly  follow  the
Hubble flow:

In addition  to the  cosmological  flow,   there are 
locally  induced  velocity  components  in  a  galaxy’s
motion:            

the  galaxy’s  peculiar  velocity  vpec

• As  a  result,   maps  on  the basis of  galaxy  z  do not 
reflect  the galaxies’  true spatial   distribution

peccz Hr v 

Redshift  Distortions
Origin  of  peculiar  velocities:

three  regimes

 very  high-density virialized  
cluster  (core) regions:
“thermal”  motion  in cluster, 
up to  > 1000  km/s

“Fingers   of  God”

 collapsing overdensity 
(forming cluster):
inflow/infall  velocity 

 Large scales:
(linear, quasi-linear)  cosmic flow, 
manifestation of structure growth



7/1/2009

19

Galaxy velocity 

component along 

line of sight 

Fingers  of   God

gal gal

clust

gal

v r
cz Hr

r


 

 

Fingers  of   God
Clusters of galaxies:

Mass:                    1014-1015 M
Radius:                        ~  1.5  Mpc
Overdensity  ~  1000

Thermal  velocity:   ~ 1000 km/s

Internal  cluster  galaxy velocities  
visible in projection  along line of sight

“Finger  of  God” 
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Nonlinear   Infall   Pattern

Cluster Infall:

Matter in surroundings falling 
in onto cluster:

 infall velocities up to 1000 km/s
radially declining :   
 velocities decrease as distance 

to cluster centre increases
 projected radial velocity

function of angle & distance 
wrt. cluster centre.

 triple-value region redshift space:
- within turnaround radius, 

a particular redshift z 
may correspond to 3 spatial 
positions

Nonlinear   Infall   Pattern

Cluster Caustics:

Three-value  region cluster infall:

Projection  onto  restricted  cone-shaped 
redshift space regions around clusters

Enclosed within caustic surfaces

Position caustics dependent on  Ωm
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Large  Scale  Flows
Large-Scale Flows:

 On large (Mpc) scales,  
structure formation 
still in linear regime

 Structure buildup  
accompanied  
by displacement of matter:  
- Cosmic flows

 Directly related to 
cosmic matter distribution 

 In principle possible to 
correct for this distortion, 
ie. to invert the mapping 
from real  to  redshift space

 Condition:
entire mass distribution 
within volume should 
be mapped

Large  Scale  Flows

Large-Scale Flows:

The induced large scale 
peculiar velocities translate 
into extra contributions to 
the redshift of the galaxies

Compare 
“real space”  structure vs.
“redshift space” structure
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Correlation  Functions:

Redshift  Space  
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sky-redshift space 

2-pt correlation function (,)

Correlation function determined 

in sky-redshift space:

( , )  

sky position:               

redshift coordinate:  
( , )  
cz 

Close distances:  

distortion due to non-linear

Finger of God

Large distances:

distortions due to large-scale 

flows

Redshift Space Distortions 

Correlation Function

Large distances:

distortions due to large-scale 

flows

On average,            gets amplified 

wrt.            

Linear perturbation theory

(Kaiser 1987):   

( )s s
( )r r

0.6 1.22 1
( ) (1 ) ( )

3 5
s rs s     
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Measurement 

Spatial  2pt-Correlation  Function
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Deprojected Spatial Correlations

2pt correlation function

not an ideal power-law:

Halo Model:

Two-point correlation function

combination of

1)  small-scale correlations, 

due to galaxies inside 

one dark matter halo

2) large scale correlations 

between dark matter halos   

The correlation function              

g(r)=1+r) 

Stromlo-APM, Las Campanas, 

CfA2, ESP redshift surveys.

The fractal behavior at small

scales dissapears at larger 

distances, providing evidence

for a gradual transition to

homogeneity.

(3)

Plot from Martínez, 1999,  Science, 284, 445.

(1) Loveday et al., 1995, ApJ, 442, 457

(2) Tucker et al., 1997, MNRAS, 285, L5

(3) Guzzo et al.,  2000, AA, 355, 1

Convergence to Homogeneity  
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Luminosity Dependence 
Correlation  Functions

Galaxy  Luminosity  Dependence 

SDSS 

correlation function

for galaxies in different 

luminosity bins 
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Spatial  Structure  &

Correlation  Functions

Structural  Insensitivity

2-pt correlation function is 

highly insensitive to the geometry & morphology

of weblike patterns:

compare 2 distributions with same 

(r), cq.  P(k), 

but totally different phase distribution

In practice, some sensitivity in terms of distinction 

Field, Filamentary, Wall-like and Cluster-dominated 

distributions:

because of different fractal dimensions
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Structural  Sensitivity

Wall-

dominated

Filamentary

Cluster-like

Cluster

Correlation  Functions
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Clusters of 

Galaxies 

Coma  Cluster

Perseus Cluster

Clustering 

of

Clusters 

Clusters cluster much more strongly 

than galaxies:

- clustering defines superclusters !

- also power-law 2-pt correlation fct.

- same power law slope 1.8

- much higher correlation length r0 :

r0 ~   15-25  h-1 Mpc
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Richness-Dependent  Cluster Correlations  

More massive clusters are  

systematically more strongly 

clustered than lower mass ones.  
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Richness-Dependent  Cluster Correlations  

More massive clusters are more 

systematically more strongly 

clustered than lower mass ones:

simple model:

Szalay & Schramm  1985

Scaling   of

Cluster  Correlation  Functions:

a geometric model 
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Voronoi  Models:
Templates  for the Cosmic Web

filament

wall
cluster

void

Perfect 

Power-law clustering

Voronoi vertices 
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Self-similar  Clustering

As function of mass, the correlation length r0 and coherence length ra  

increase unanimously.   

Self-similar  Clustering

As function of mass, the correlation length r0 and coherence length ra  

increase unanimously.   
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Higher Order

Correlation  Functions:

N-point  correlation  functions

• N-point correlation function 

• Probability function of finding an n-tuplet  of  galaxies in 

n  specified volumes  dV1, dV2, …, dVn

( )

1 2 1 2( , ,..., ) [1 ] ...
n n

n ndP x x x n dV dV dV 
  

( )

1 2( , ,..., )n

nx x x
  
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3-point  correlation  functions

3-point correlation function 

3 (3)

1 2 3 1 2 3( , , ) [1 ]dP x x x n dV dV dV 
  

(3)[1 ] (1 )i

i

   

(3)

12 13 23 1 2 3[1 ] 1 ( ) ( ) ( ) ( , , )r r r r r r         
  
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•   0:              non-Gaussian density field

• Hierarchical  ansatz (Groth & Peebles 1977) 

reduced 3-point correlation function

excess correlation over that described by the 2-pt contributions

3-point  correlation  functions

(3)

12 13 23 1 2 3[1 ] 1 ( ) ( ) ( ) ( , , )r r r r r r         
  

1 2 3 1 2 3( , , )r r r   
  

3-point correlation function

1 2 3 12 23 23 31 31 12( , , ) ( )r r r Q        
  

Power  Spectrum 
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Power Spectrum

• Directly measuring clustering in 

Fourier space:

- More intuitive physically:

separating processes on different scales

- Theoretical model predictions are made 

in terms of power spectrum

- Amplitudes for different wavenumbers are

statistically orthogonal

Power Spectrum  P(k)
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CDM Power Spectrum  P(k)

Power Spectrum  P(k)
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Power Spectrum - Correlation Function

3( ) ( ) i k rP k d r r e  
 

3

3
( ) ( )

(2 )

i k rd k
r P k e



  
 

2

3

0

sin( )
( ) 4 ( )

(2 )

k dk kr
r P k

kr
 





 Isotropy:

Delta-power
2 2

2

1
( ) ( )

2
k P k k


 
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Estimators of P(k)

• Direct estimator

• Pixelization and maximum likelihood

• Karhunen-Loèwe (signal-to-noise) 

transform

• Quadratic compression

• Bayesian 

• Multiresolution decomposition
Tegmark, Hamilton, Strauss, Vogeley, and Szalay, (1998),

Measuring the galaxy power spectrum with future redshift 

surveys, ApJ, 499, 555

Power Spectrum Estimators

Karhunen-

Loeve

Decomposition in series of 

orthogonal 

signal-noise eigenfunctions

Vogeley & Szalay 1995
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Minimal  Spanning  Tree  
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Topology 

Topology and the Morphology of 

LSS

• Deals with Excursion Sets, i.e. regions where a 

field exceeds a certain level usually given in 

terms of the rms fluctuation.

• This could be the temperature field on the CMB 

Sky or the density field traced by galaxies.

• In general the excursion set will consist of a 

number of disjoint pieces which may be simply 

or multiply connected.
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The Gauss-Bonnet Theorem

)()(2
1







n

i

i
M

g
M

dskkdAM 

Two dimensional manifold M with boundary M; k is the 

Gaussian curvature of M; kg is the geodesic curvature 

of M; the boundary is piecewise smooth, having n 

vertices

The quantity  is the Euler-Poincaré characteristic of M 

and is a topological invariant…
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Topology in 2D

For a 2D excursion set defined on a flat  plane,

 
21

2
RR

ds
dskg

In 2D, this gives the number of isolated regions 

minus the number of holes in such regions..

Lots of isolated regions: >0, like “meatballs”

One isolated region with lots of holes: <0, like 

“Swiss cheese”

The mean value of  can be 

calculated analytically for 

Gaussian random fields 

(test of GRF hypothesis?)

In 3D the mean level is 

characterised by g>0 (a 

sponge)

In 2D the mean level has 

=0.

There is no 2D equivalent of 

a sponge!

The Usefulness of 
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Topology in 3D

For a 3D excursion bounded by a 2D surface 

)1(42 gdAk   

In 2D, it is typical to refer to the genus, g, which is 

the number of “handles”

g=0 g=1

Topological  Genus
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Minkowski functionals

• More recently this has been put on a much more rigorous 
footing using Minkowski functionals.

• In d dimensions there are (d+1) invariants satisfying additivity, 
continuity, translation invariance and rotation invariance.

• In 3D, for example, these are:

volume, 

area, 

mean curvature, 

Euler-Poisson characteristic 
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Minkowski functionals in 2D 

(area, length and )

Kerscher & Martínez (1998), 

Bull. Int. Statist. Inst. 57-2, 363

In  R3 four functionals:

volume V

surface area A

integral mean curvature H

Euler-Poincare characteristic 

The are the Minkowski Functionals

Minkowski functionals
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Morse  Theory 

Density  Field  Flow Lines
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Density  Field  Flow Lines

Density  Field: 

Flow  Lines f


Density  Field  Flow Lines

Critical   Points:
- Maxima
- Minima
- Saddle  Points    (of various signature)

0f 

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Density  Field  
Critical Points:

Ridges:

Connections
Saddle-
Maxima

Integral Lines  &  Field Ridges:
Singularities
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Void  Basins

Filamentary   Ridge

Cluster Node

Minimum

Filamentary   Ridge

Maximum

Saddle


