

COBE (1992):

• John Mather DIRBE: temperature, blackbody • George Smoot DMR: fluctuations, embryonic structure

Cosmic Microwave Background: Some Facts

6) CMB photons Last Scattered

379,000 yrs. after Big Bang

at a redshift z=1089 (ie. expansion factor a(t)=1/1089)

7) Following the - Decoupling of Radiation and (Baryonic) Matter

- Recombination Hydrogen Atoms

(as protons and electrons combine)

8) At recombination T ~ 3000 K: the (CMB) sky would look red

Since then, gradual cooling of radiation through expansion (Universe:

- cosmic redshift photons

9) The CMB photons created at much earlier epoch !!!

Last surge: positron-electron annihilation,

1 min. after Big Bang, redshiftz~10°

Cosmic Microwave Background

COBE (1992):

Accurate measurement Planck spectrum CMB

First detection angular temperature perturbations $(\theta \sim 7^{\circ})$: Sachs-Wolfe effect

Primordial Anisotropies CMB sky

Recombination & Decoupling

- Note that the decoupling transition occurs rather sudden at T~3000 K, with a "cosmic photosphere" depth of only Δz_{dec} ~195 (at z~1089).
- The cosmological situation is highly exceptional. (Inder more common circumstances the (re)combination transition would already have taken place at a temperature of $T \sim 10^{4}$ K.
- Due to the enormous amount of photons in the universe, signified by the abnormally high cosmic entropy,

$$\frac{n_{\gamma}}{n_B} \approx 10^9$$

even long after the temperature dropped below T~ 10⁺ K there are still sufficient photons to keep the hydrogen ionized (i.e. there are still plenty of photons in the Wien part of the spectrum).

• Recombination therefore proceeds via a 2-step transition, not directly to the groundstate of hydrogen. The process is therefore dictated by the rate at which $Ly\alpha$ photons redshift out of the $Ly\alpha$ rest wavelenght. For $n_y / n_B \sim 10^9$ this occurs at

Millennium Simulation

The Standard Model

Over the past decade we have arrived at a Standard Cosmological

Temperature Anisotropies

Temperature Perturbations in terms of

Spherical Harmonics:

$$T(\theta, \phi) = \sum_{l,m} a_{lm} Y_l^m(\theta, \phi)$$

$$\phi \sim \frac{\pi}{l} \sim \frac{180^{\circ}}{l}$$

Spherical Harmonics

http://web.uniovi.es/qcg/harmonics/harmonics.html

CMB Power Spectrum

• Maybe..

Inflation make >10³⁰ times bigger

Quantum Mechanics "waves in a box" calculation vacuum state, etc...

After inflation Huge size, amplitude ~ 10^{-5}

Characteristic scales: sound wave travel distance; diffusion damping length

Calculation of theoretical perturbation evolution

Perturbations O(10⁻⁵)

Simple linearized equations are very accurate (except small scales)

Can use real or Fourier space

Fourier modes evolve independently: simple to calculate accurately

Physics Ingredients

•Thomson scattering (non-relativistic electron-photon scattering)

- tightly coupled before recombination: 'tight-coupling' approximation

(baryons follow electrons because of very strong e-m coupling)

•Background recombination physics (Saha/full multi-level calculation)

•Linearized General Relativity

•Boltzmann equation (how angular distribution function evolves with scattering)

Hu & White, Sci. Am., 290 44 (2004)

Perturbation Modes

- Linear evolution
 - · Fourier k mode evolves independently
 - · Scalar, vector, tensor modes evolve independently
 - · Various linearly independent solutions

Scalar modes: Density perturbations, potential flows $\delta \rho, \nabla \delta \rho, etc$ Vector modes: Vortical perturbations velocities, v ($\nabla \bullet v = 0$) Tensor modes: Anisotropic space distortions – gravitational waves

http://www.astro.cf.ac.uk/schools/6thFC2002/GravWaves/sld009.htm

General regular linear primordial perturbation

+ irregular modes, neutrino n-pole modes, n-Tensor modes Rebhan and Schwarz: gr-qc/9403032

+ other possible components, e.g. defects, magnetic fields, exotic stuff...

CMB Anisotropy

$$\begin{pmatrix} \frac{\delta T}{T} \end{pmatrix}_{\text{jour}} = -\int d\Phi + \int (\dot{\Phi} + \dot{\Psi}) dt + \boldsymbol{v}_{\text{obs}} \cdot \hat{\boldsymbol{n}} \\ = \Phi(t_{\text{dec}}, \boldsymbol{x}_{\text{ls}}) - \Phi(t_0, \boldsymbol{0}) + \int (\dot{\Phi} + \dot{\Psi}) dt + \boldsymbol{v}_{\text{obs}} \cdot \hat{\boldsymbol{n}} \\ \stackrel{\Psi \cong \Phi}{=} \Phi(t_{\text{dec}}, \boldsymbol{x}_{\text{ls}}) - \Phi(t_0, \boldsymbol{0}) + 2\int \dot{\Phi} dt + \boldsymbol{v}_{\text{obs}} \cdot \hat{\boldsymbol{n}}$$

$$\left(\frac{\delta T}{T}\right)_{\rm obs} = \frac{1}{4}\delta_{\gamma}^{N} - \boldsymbol{v}^{N}\cdot\hat{\boldsymbol{n}} + \Phi(t_{\rm dec},\boldsymbol{x}_{\rm ls}) + 2\int \dot{\Phi}dt \,.$$

Sources of CMB anisotropy

Sachs Wolfe:

Potential wells at last scattering cause redshifting as photons climb out

Photon density perturbations:

Over-densities of photons look hotter

Doppler:

Velocity of photon/baryons at last scattering gives Doppler shift

Integrated Sachs Wolfe:

Evolution of potential along photon line of sight: net red- or blue-shift as photon climbs in an out of varying potential wells

Others:

Photon quadupole/polarization at last scattering, second-order effects, etc.

Secondary Anisotropies

CMB Perturbations

The Angular Power Spectrum

- The CMB angular power spectrum is the sum of many individual physical effects
 - acoustic oscillations
 - (static) variations in potential (Sachs-Wolfe Effect)
 - baryon loading of oscillations
 - photon drag and damping
 - moving scatterers (Doppler)
 - time-varying gravitational potentials (ISW)
 - delayed recombination
 - late reionization

Seeing Sound	For graphics & science see website Wayne Hu
 Colliding electrons, protons and photons forms a plasma 	
• Acts like a gas	
 Compressional disturbance propagates in the plasma 	
through collisions	
• Unlike sound in the air:	
- air molecules travel≈ 10 ⁻⁵ cm before colliding	
– in primordial plasma, photons travel 10 ⁺ pc	
• (Inlike sound in the air:	
~ we do not hear it but see it in the CMB	
- compression heats the gas resulting in a hot spot in the CN	1B

Harmonic Signature

- dentify structure and composition of the Universe
 - through detailed examination of the pattern of overtones on the
 - fundamental frequency
 - much like using them for a music instrument
- Observed frequency spectrum consistent with inflationary origin:
 spectrum of cosmic sound has harmonics at integer ratios of fundamental
- Without inflation, fluctuations should have been generated at intermediate times
- This would have destroyed the harmonic structure of the peaks (like drilling holes in an organ pipe)

Fig. 3. Evolution of the combination $\delta_{\gamma}/4 + \psi$ (top left) and the photon velocity v_{γ} (bottom left) which determine the temperature anisotropies produced at last scattering (denoted by the arrow at η_*). Three modes are shown with wavenumbers k = 0.001, 0.1 and $0.2 \,\mathrm{Mpc}^{-1}$, and the initial conditions are adiabatic. The fluctuations at the time of last scattering are shown as a function of linear scale in the right-hand plot.

Challinor: astro-ph/0403344

Contributions to temperature C_I

Challinor: astro-ph/0403344

CMB Checklist:

primary predictions inflation-based cosmologies

- · acoustic oscillations below horizon scale
 - nearly harmonic series in sound horizon scale
 - signature of super-horizon fluctuations (horizon crossing starts clock)
 - even-odd peak heights baryon density controlled
 - a high third peak signature of dark matter at recombination
- nearly flat geometry
 - peak scales given by comoving distance to last scattering
- primordial plateau above horizon scale
 - signature of super-horizon potential fluctuations (Sachs-Wolfe)
 - nearly scale invariant with slight red tilt ($n\approx 0.96$) and small running
- damping of small-scale fluctuations
 - baryon-photon coupling plus delayed recombination (& reionization)

CMB Checklist:

Secondary predictions inflation-based cosmologies

- late-time dark energy domination
- low <code>l ISW bump correlated with large scale structure (potentials)</code>
- late-time non-linear structure formation
- gravitational lensing of CMB
- Sunyaev-Zeldovich effect from deep potential wells (clusters)
- late-time reionization
- overall supression and tilt of primary CMB spectrum
- Doppler and ionization modulation produces small-scale anisotropies

Search for Anisotropies in 1980s

- Aside from dipole, only upper limits on anisotropy
 - Sensitivity limited by microwave technology
- Best limits on small (arcminute) angular scales
 - Uson & Wilkinson 1984; Readhead et al. 1989
 - $\Delta T/T < 2 \times 10^{-5}$ on 2'-7' scales
 - requires dark matter for reasonable $\Omega_0 > 0.2$
- Theory of CMB power spectra (e.g. Bond & Esthathiou 1987)

CMB Observations 1990's

- Better receivers (e.g. HEMT) = first detections!
- COBE satellite: •
 - FIRAS (spectrum), DMR (anisotropies)
- Ground and Balloon-based •
- Hint of first peak detection! •

Turn of the Century: 2000-

- Balloon results (Boomerang, Maxima);
- Interferometers (CBI, DASI, VSA);
- Satellites (WMAP)
 - Measurement of first 2-3 peaks and damping tail
 - Detection of E-mode polarization _

Turn of the Century: 2000-

- Balloon results (Boomerang, Maxima);
- Interferometers (CBI, DASI, VSA);
- Satellites (WMAP)
 - Measurement of first 2-3 peaks and damping tail
 - Detection of E-mode polarization
 - Dawn of Precision Cosmology!

the WMAP Mission

- Wilkinson Microwave Anisotropy Probe

 - proposed 1995selected by NASA 1996
 - launched June 2001
 - at L2 point (Sun and Earth shielded), scan full sky in 1 year
 - fast spin (2.2m) plus precession (1hour), scan 30% sky in 1 day

Courtesy WMAP Science Team http://map.gsfc.nasa.gov

the WMAP Telescope

- 1.4m 1.6m Gregorian mirrors (0.3 0.7 resolution)
 - two telescopes pointed 140 apart on sky differential radiometry
 - HEMT microwave radiometers (built by NRAO), orthogonal linear polarizations
 - 5 Bands: K (23GHz), Ka (33GHz), Q (41GHz), V (61GHz), W (94GHz)

Courtesy WMAP Science Team http://map.gsfc.nasa.gov

WMAP 1-yr data release (2003)

- Bennett et al. (2003) ApJS, 148, 1
- TT spectrum
- TE spectrum
- ILC vs. 41/61/94GHz image

WMAP Mission to 2006

- First year data release (2003)
 - first and second peaks in TT
 - low-l anomalies & cold spots: geometry? foreground? variance?
 - first peak in TE polarization (but no EE or BB results reported)
 - confirmation of nearly flat Universe
 - consistent with scale-invarinat $n_{s}{\approx}1,$ hint of running $\alpha_{s}\left(w/Ly\alpha\right)$
 - − high TE < 10 \rightarrow τ =0.17 early reionization (z~20)
- Third year data release (2006)
 - rise to third peak (hint of lower σ_8 ~ 0.7)
 - better models for galactic (polarized) foregrounds!!!
 - EE & BB : lower τ =0.09 standard reionization (z<10)
 - $n_{s\approx}0.95~0.02,$ no hint of running α_s in WMAP alone

WMAP 3yr internal linear combination (ILC) temperature map (CMB -200 to 200 μ K)

WMAP 3 - synchrotron

WMAP 3-yr 23 GHz synchrotron map (galaxy)

(linear scale: -1 to 5 mK)

WMAP 3 – free-fee

WMAP 3-yr 23 GHz free-free map (galaxy)

(linear scale: -1.0 to 4.7 mK)

WMAP 3 - dust

WMAP 3-yr 94 GHz dust map (galaxy)

(linear scale: -0.5 to 2.3 mK)

Galactic microwave map for orientation

WMAP3 - masks

- To compute power spectrum and determine cosmological parameter constraints the WMAP team used <u>galactic masks</u>
 - top panel
 - the Kp2 mask was used for temperature data analysis. This was derived from the K-band (23GHz) total intensity image.
 - bottom panel –
 - the P06 (black curve) was used for polarization analysis. The mask was derived from the Kband (23GHz) polarized ¹¹⁴intensity.

WMAP 3 & additional experiments

WMAP 3 – TE power spectrum

WMAP 3yr TE power spectrum (Hinshaw et al. 2006)

WMAP 3 Cosmological Parameters

			$10^2\Omega_b h^2$	=	$2.23^{+0.07}_{-0.09}$
			A	=	$0.68\substack{+0.04\\-0.06}$
Ω_{c}	_	$0.20^{+0.02}$	$A_{0.002}$	=	$0.80\substack{+0.04 \\ -0.05}$
$\Omega_c h^2$	=	$0.104^{+0.007}_{-0.010}$	$\Delta^2_{\mathcal{R}}$	=	$(20^{+1}_{-2}) \times 10^{-10}$
Ω_{Λ}	=	$0.76^{+0.04}_{-0.03}$	$\Delta_{\mathcal{R}}^2(k=0.002/Mpc)$	=	$(24^{+1}_{-2}) \times 10^{-10}$
Ω_m	=	$0.24^{+0.03}_{-0.04}$	h	=	$0.73_{-0.04}^{+0.03}$
$\Omega_m h^2$	=	$0.127^{+0.007}_{-0.009}$	H_0	=	$73^{+3}_{-4} \text{ km/s/Mpc}$
σ_8	=	$0.74^{+0.05}_{-0.06}$	ℓ_A	=	$302.6^{+0.9}_{-1.4}$
$\sigma_8 \Omega_m^{0.6}$	=	$0.31^{+0.04}_{-0.05}$	n_s	=	$0.951\substack{+0.015\\-0.019}$
$A_{\rm SZ}$	=	$0.99^{+0.92}_{-0.99}$	$n_s(0.002)$	=	$0.951^{+0.015}_{-0.025}$
t_0	=	$13.7^{+0.1}_{-0.2}$ Gyr	Ω_b	=	$0.042^{+0.003}_{-0.005}$
τ	=	$0.088^{+0.028}_{-0.034}$	$\Omega_b h^2$	=	$0.0223^{+0.0007}_{-0.0009}$
$ heta_A$	=	0.595 ± 0.002 $^{\circ}$			
z_{eq}	=	3036^{+168}_{-250}			
~		$10.9^{+2.7}$			

The Cosmic Background Imager is...

- 13 90-cm Cassegrain antennas
 - 78 baselines
 - 6-meter platform
 - Baselines 1m 5.51m
 - reconfigurable
- 10 1 GHz channels 26-36 GHz
 - HEMT amplifiers (NRAO)
 - Tnoise 8K, Tsys 15 K
- Single polarization (R or L)
 - U. Chicago polarizers < 2% leakage
- Analog correlators
 - 780 complex correlators
 - pol. product RR, LL, RL, or LR
- Field-of-view 44 arcmin
 - Image noise 4 mJy/bm 900s
- Resolution 4.5 10 arcmin

CBI Temperature Observations

Observed January 2000 to June 2002
 – extended configuration, reach higher l

CBI Polarization Program

Observed September 2002 to April 2005
 – compact configuration, maximum sensitivity

CBI 2000-2005 Temperature

CBI 2000-2005 Temperature

also including new Boomerang (B03), plus VSA and ACBAR

What can we learn from the CMB?

- Initial conditions
 What types of perturbations, power spectra, distribution function (Gaussian?);
 => learn about inflation or alternatives.
 (distribution of ΔT; power as function of scale; polarization and correlation)
- What and how much stuff Matter densities (Ω_b, Ω_{cdm}); neutrino mass (details of peak shapes, amount of small scale damping)
- Geometry and topology global curvature Ω_{k} of universe; topology (angular size of perturbations; repeated patterns in the sky)
- Evolution
 Expansion rate as function of time; reionization
 Hubble constant H₀ dark energy evolution w = pressure/density
 (angular size of perturbations; / < 50 large scale power; polarizationr)</p>
- Astrophysics S-Z effect (clusters), foregrounds, etc.

Cosmological Parameters

osmíc Parameters

The WMAP CMB temperature power spectrum

Plot number density of samples as function of parameters Often better constraint by combining with other data

e.g. CMB+galaxy lensing +BBN prior

Contaldi, Hoekstra, Lewis: astro-ph/0302435

CMB Acoustic Peaks

Compression driven by gravity, resisted by radiation
 ≈ seismic waves in the cosmic photosphere: cos(kc_sη)

Modulating Influences

• Silk Damping:

- photons diffuse out of matter perturbations
- fluctuations with size < photon free-streaming length get suppressed
- harmonic structure beyond third peak seriously damped
- Integrated Sachs-Wolfe effect:
 - damping/boosting temperature fluctuations due to
 - decay/growth potential perturbations:
 - * Early ISW: while still radiation-dominated, potential DM fluct's grow less, suppression of temp. fluct.
 - * Late ISW: as Dark Energy takes over universe, potential wells decay (due to accelerated expansion)

If we choose to follow a crest (overdensity) after horizon entry, the first acoustic peak is its first compression...

68

Peaks and Curvature

Changing distance to z = 1100 shifts peak pattern

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - <u>curvature of Universe (e.g.</u> <u>open, flat, closed)</u>
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Changing baryon loading changes odd/even peaks

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Baryons

Courte152'ayne Hu - http://background.uchicago.ed

Changing baryon loading changes odd/even peaks

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

It is the nonbaryonic Matter that is responsible for the existence of Structure in the Universe !!!

If it had not been there: no substantial structure

Peaks and Matter

Changing dark matter density also changes peaks...

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - <u>amount of matter (e.g. dark</u> <u>matter)</u>

Peaks and Lambda

Changing dark energy (at fixed curvature) only slight change.

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - <u>dark energy (e.g. cosmological</u> <u>constant)</u>
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Dark Energy: CMB

The CMB after Last Scattering

Secondary Anisotropies from propagation and late-time effects

Gravitational Secondaries

 Due to CMB photons passing through potential fluctuations (spatial and temporal)

Includes:

- Early ISW (decay, matter-radiation transition at last scattering) Late ISW
- (decay, in open or lambda model) Rees-Sciama
- (growth, non-linear structures)
- Tensors (gravity waves)
- Lensing (spatial distortions)

Courtesy Wayne Hu - http://background.uchicago.edu

Weak lensing of the CMB

Scattering Secondaries

Due to variations in:

- Density
 - Linear = Vishniac effect
 - Clusters = thermal
 - Sunyaev-Zeldovich effect
- Velocity (Doppler)
 Clusters = kinetic SZE
- Ionization fraction
 - Coherent reionization suppression
 - "Patchy" reionization

Ostriker-Vishniac Effect

- Reionization + Structure
 - Linear regime
 - Second order (not cancelled)
 - Reionization supresses large angle fluctuations but generates small angle anisotropies

Reionization

Late reionization reprocesses CMB photons

- Suppression of primary temperature anisotropies
 - $\operatorname{as} \exp(-\tau)$
 - degenerate with amplitude and tilt of spectrum
- Enhancement of polarization
 - low & modes E & B increased
- Second-order conversion of T into secondary anisotropy
 - not shown here
 - velocity modulated effects
 - high { modes

Patchy Reionization

Sunyaev-Zel'dovich Effect

- · Compton upscattering of CMB photons by keV electrons
- · decrement in I below CMB thermal peak (increment above)
- negative extended sources (absorption against 3K CMB)
- massive clusters mK, but shallow profile $\theta^{\text{-1}} \to \text{-exp}(\text{-v})$

SZE vs. X-rays

gas density profiles:	$n_e(r) = n_{e0} \left(1 + rac{r^2}{r_0^2} ight)^{-3eta/2}$
X-ray surface brightness:	$b_X(E) = \frac{1}{4\pi(1+z)^3} \int n_e^2(r) \Lambda(E, T_e) dl$
SZE surface brightness:	$\Delta I_{ m SZE} \propto T_e \int n_e dl$
exploit different dependence on parameters:	
• use X-ray:	$b_X \propto n_{e0}^2 heta_0 D_A \left(1+rac{ heta^2}{ heta_0^2} ight)^{-3eta+1/2}$
	$D_A \sim h^{-1} n_{e0} \sim h^{1/2}$
plug into SZE:	$\Delta I_{ m SZE} \propto T_e n_{e0} heta_0 D_A \left(1+rac{ heta^2}{ heta_0^2} ight)^{-rac{3}{2}eta+rac{1}{2}}$
	$\Delta I_{SZE} \sim h^{-1/2}$

CBI

- 13 90-cm Cassegrain antennas
 78 baselines
- 6-meter platform
 - Baselines 1m 5.51m
- 10 1 GHz channels 26-36 GHz
 - HEMT amplifiers (NRAO)
 - Cryogenic 6K, Tsys 20 K
- Single polarization (R or L)
 - Polarizers from U. Chicago
- Analog correlators

•

- 780 complex correlators
 Field-of-view 44 arcmin
 - Image noise 4 mJy/bm 900s
- Resolution 4.5 10 arcmin

Sample from 60 OVRO/BIMA imaged clusters, 0.07 < z < 1.03

Sunyaev-Zeldovich Effect (SZE)

- Spectral distortion of CMB ٠
- Dominated by massive halos • (galaxy clusters)
- Low-z clusters: ~ 20'-30' • z=1:~1'→ •
- expected dominant signal in CMB on small angular scales
- Amplitude highly sensitive to σ_8 •

P. Zhang, U. Pen, & B. Wang (astro-ph/0201375)

Secondary Effects

- Sunyaev-Zel'dovich Effect
- Gravitational Lensing CMB
 - Reionization: polarization
- Integrated Sachs-Wolfe Effect
 - •Rees-Sciama Effect
 - •Vishniac Effect •....

Why measure CMB Polarization?

- scalar, vector & tensor fields carry more information than the temperature anisotropies alone.
- gives us more information about the acoustic peaks
- → measure cosmo parameters better

- measure the reionization epoch, which produces a large degeneracy in the Temp spectrum
- measure gravity wave amplitude... the smoking gun of inflationary models.

CMB Polarization

Generated during last scattering (and reionization) by Thomson scattering of anisotropic photon distribution

Thomson Scattering & Polarization

 Incoming polarized light emerges polarized.
 (a) Radiation primarily scattered along this axis
 (b) Radiation primarily scattered along this axis
 (c) Radiation primarily scattered along this axis

Thomson Scattering & Polarization

- A plane wave undergoing Thomson scattering produces polarized light too.
- but if equal amounts of light coming from all directions, there is no net polarization.

Thomson Scattering & Polarization

- but if different intensities of quadrupole (unpolarized) light arrive from different directions, the net result is polarization. (10% of ΔT)
- Incoming polarized light emerges polarized.
- A plane wave undergoing Thomson scattering produces polarized light too.
- if we have equal amounts of light coming from all directions, there is no net polarization

Thomson Scattering & Polarization

- Incoming polarized light emerges polarized.
- A plane wave undergoing Thomson scattering produces polarized light too.
- but if we have equal amounts of light coming from all directions, there is no net polarization.
- but if different intensities of quadrupole (unpolarized) light arrive from different directions, the net result is polarization. (10% of ΔT)

E and **B** polarization

E and B harmonics

- Expand scalar P_E and P_B in spherical harmonics
- Expand P_{ab} in tensor spherical harmonics

$$\mathcal{P}_{ab} = \frac{1}{\sqrt{2}} \sum_{lm} \left(E_{lm} Y^G_{(lm)ab} + B_{lm} Y^C_{(lm)ab} \right)$$
$$E_{lm} = \sqrt{2} \int_{4\pi} dS Y^G_{(lm)} \mathcal{P}_{ab} \qquad B_{lm} = \sqrt{2} \int_{4\pi} dS Y^G_{(lm)} \mathcal{P}_{ab}$$

Harmonics are orthogonal over the full sky:

E/B decomposition is exact and lossless on the full sky

Zaldarriaga, Seljak: astro-ph/9609170 Kamionkowski, Kosowsky, Stebbins: astro-ph/9611125

CMB Polarization Signals

- · E polarization from scalar, vector and tensor modes
- B polarization only from vector and tensor modes (curl grad = 0) + non-linear scalars

Average over possible realizations (statistically isotropic):

$$\langle E_{l'm'}^* E_{lm} \rangle = \delta_{l'l} \delta_{m'm} C_l^{EE} \qquad \langle B_{l'm'}^* B_{lm} \rangle = \delta_{l'l} \delta_{m'm} C_l^{BE}$$
Parity symmetric ensemble: $\langle E_{l'm'}^* B_{lm} \rangle = 0$

Power spectra contain all the useful information if the field is Gaussian

Scalar adiabatic mode

E polarization only

correlation to temperature T-E

