rT978AJ.- - 2830

THE ASTRONOMICAL JOURNAL

VOLUME 83, NUMBER 7

JULY 1978

A COMPUTER MODEL UNIVERSE: SIMULATION OF THE NATURE OF THE GALAXY
DISTRIBUTION IN THE LICK CATALOG®

RaymMoNDp M. SoNEIRA and P. J. E. PEEBLES

Joseph Henry Laboratories, Physics Department, Princeton University, Princeton, N. J. 08540
Received 23 February 1978

ABSTRACT

We describe the development of a nondynamical computer model universe designed to match
the character of the galaxy distribution in the Lick survey. The model assigns ‘“‘galaxy”
positions in a three-dimensional clustering hierarchy, fixes absolute magnitudes, and projects
angular positions of objects brighter than m =18.9 onto the sky of an imaginary observer.
This yields a galaxy map that can be compared to that of the Lick data. In the model there
are 7.5X 10° galaxies at mean space density 0.065 h® Mpc—® (H =100 hkms~' Mpc™),

and 386 000 galaxies are visible at m <18.9 and b >40°. By adjusting parameters in the
model within the limits allowed by the correlation functions to fourth order we have arrived
at a galaxy map with a visual appearance that seems a reasonable first approximation to that

of the Lick data.

I. INTRODUCTION
a) Goal

The n-point correlation functions for the galaxy dis-
tribution (n = 2, 3, and 4; Groth and Peebles 1977, called
GP; Fry and Peebles 1978, called FP; and earlier refer-
ences therein) suggest rather a specific clustering hier-
archy pattern (Peebles and Groth 1975). An interesting
and important test of this interpretation is to reverse the
process and use the hierarchical clustering as a pre-
scription for laying down galaxy positions in a simulated
“universe,” and then use this distribution to construct
galaxy maps whose appearance can be visually compared
to the real data. We describe here the results of an ex-
periment at matching the very rich sample provided by
the Lick galaxy counts (Shane and Wirtanen, published
in condensed form in 1967; reduced and mapped by
Seldner et al. 1977 hereinafter called SSGP). Thisis a
continuation of the studies of Neyman, Scott, and Shane
(1953) and Scott, Shane and Swanson (1954) on the
simulation of the Lick data, though we use rather a dif-
ferent model for the spatial galaxy distribution.

This experiment has a peculiar problem arising from
the fact that we do not understand how the eye judges
the texture and patterns in a map of the sort we are
studying. We know the eye does tend to judge in a biased
way—for example, one readily picks out “chains” of
points in a uniform random distribution. If the statistics

‘in the model map were a close enough approximation to

the data such biases would cause no problem because
they would apply equally to model and data. However,
the statistical model adopted here is at best only a good
approximation, now exact, for it does not describe re-
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laxed objects like the Coma cluster and it does not de-
scribe the true spatial extent of the clustering of Abell
(1958) clusters. Furthermore, the statistical measures
we have do not uniquely fix the process by which the
galaxies are distributed. The clustering hierarchy picture
seems naturally indicated, but it is not the only possi-
bility. And within this model there are many choices of
parameters that equally well fit the statistics (cf. Sec. IV¢
i). The goal is to judge whether a particular method of
reproducing the statistics yield a reasonable approxi-
mation to the data map. The peculiar problem is to judge
whether the eye has been unduly influenced by either the
particulars of a distribution or by the inevitable minor
deviations from the true statistical situation.

A related point is that since we do not understand how
the eye judges texture, we do not have a prescription for
how to adjust the model parameters to make the map
more accurate. Instead we have resorted to trial and
error, and, since each model costs a considerable amount
of effort and computation, we have not been able to make
a systematic study of all the options.

Despite these problems we consider the final result
(Fig. 7 below) pleasing and useful. The visual impression
of the map is a “measure,” though hard to quantify and
certainly not complete. The n-point correlation functions
are directly quantified measures, but they also are not
complete. The combination may be expected to yield a
fuller picture than does either separately, and indeed as
will be described in Sec. V this is the case. '

b) The Organization of the Paper

In a previous paper (Soneira and Peebles 1977, called
SP) we described a computer model to compare to the
distribution of the Zwicky (1961-1968) galaxies at m
< 14. The model was designed (and adjusted) to match
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the galaxy two-point correlation function and the fre-
quency distribution of nearest neighbor distances, the
latter providing some measure of the higher order cor-
relation functions: the resulting galaxy map closely
matches the appearance of the Zwicky map (SP Fig. 11).
Our first attempt to match the Lick map simply was to
extend the magnitude limit (and the depth of space
within which the model galaxies are placed). With this
richer sample it became quite clear that the model could
be improved. In part this is a result of the Local Super-
cluster; the galaxies at m < 14 are not a fair sample of
the Lick universe. Because it is interesting to see how well
a model tuned to the data at m < 14 does when extrap-
olated to m < 19, we describe the results of this experi-
ment in Sec. IV. a below. We briefly list in this section
our attempts at improvement (Sec. IVh) and then de-
scribe the final model (Sec. IVc¢).

Though the process of improving the model involved
considerable trial and error (~150 trials in all), we did
come to realize that the appearance of the final map
depends on two apparently minor aspects of the match
to the correlation functions, the variation of the three-
point function with elongation and the roll-off of the
two-point function at large separation. In Sec. II we
explain the general method of construction of the model
and the role of these two aspects. In Sec. I1I we list a few
details of the model—the luminosity function, the ge-
ometry of the space sample, and some shortcuts in the
computation. Our main conclusions are listed in Sec.
V.

[I. NATURE OF THE MODEL
a) General Method of Construction

We review here the method of laying down the model
galaxy distribution. For further details see SP and Pe-
ebles (1978).

The model commences with a clump of galaxies con-
structed as follows. Within a sphere of radius R (R 2 10
h=! Mpc, H = 100 h km s~! Mpc™!) one places 7
spheres, each of radius R/\; within each of these one
places n spheres of radius R/A?; and so on through L
levels to 7L positions in n£~1! spheres each of radius

ro = R/AL™L. (1)

A galaxy is placed at each of these positions. These
clumps are distributed uniformly at random in the model
universe space. The galaxies are assigned absolute
magnitudes drawn at random from a luminosity func-
tion, and then the angular positions of the galaxies
brighter than m in the sky of an imaginary observer are
used to make a map.

In the SP model, m < 14, the n subsphere centers are
placed at random within the spheres at each level, and
7 is a random variable (Part d below). In the final model
adopted here 7 is fixed at n = 2, the number of levels L
in the clump is a random variable (Part e below), and the
computation is streamlined (and the map perhaps

slightly improved) by placing the two subspheres at fixed
separation, R/\", in a random orientation, and centered
on the sphere.

One way to picture the space distribution of galaxies
in the model is to imagine viewing it with resolution r (rg
<r < R, where rg is defined in Eq. (1), and also r S
typical distance between clumps), so that the structure
scales < r is washed out. One would see that galaxies are
concentrated in clusters of size ~r. These clusters cor-
respond roughly to the /th level of the clump (counting
from the smallest scale), where

e~ rok, &)
so each contains
Ni~ (3)
galaxies. The mean density within the clusters is then
Ry ~ plr=3 ~ ylog(r/ro)/loghp=3

o« rTA ro<<r <R,

A = 171/3_7_ (4)

That is, the density varies as a power of the cluster size,
with index vy determined by A. If  is a random variable,
in the last of Egs. (4) n is replaced with (n) (cf. Appendix
A).

This distribution is a clustering hierarchy very similar
to that discussed by de Vaucouleurs (1970). One case
discussed by de Vaucouleurs is equivalent to a single
clump infinite in extent (R = «) with a characteristic
density run given by Eq. (4), so there does not exist a
mean galaxy number density. To match the Lick sample
we need many rather sharply truncated clumps (cf. f
below) randomly distributed in the survey region.

The above construction reproduces the features of the
n-point correlation functions. The two-point function is
defined by the probability of finding a galaxy centered
in the volume element dV at distance r from a randomly
chosen galaxy,

dP = (n) [1 + &(r)]dV. %)

The term (n) dV is matched by the chance of finding a
neighbor from another randomly placed clump, (n)
being the mean galaxy density. Thus £ is determined by
the density within the clump [Eq. (4)],

(n) E(ry~n, <r™,  ro<Kr«R.  (6)

This reproduces the observed power law behavior of £.

The three-point correlation function {(ry,r,,r3) is
defined by the chance of finding two galaxies separated
by r3 and at distances ry and r, from a randomly chosen
galaxy, all in the same clump (Peebles and Groth 1975)
soif ri K< ra,

(l’l> 2§‘~ Ny Npy,
§~ &k (7N
(For further details see Peebles 1978.) The model thus
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at least roughly matches the observation that { is given
to good accuracy by the expression (GP),

§(rirars) = Q [£(r1)é(ry)
+ £(r2) £(r3) + £(r3)E(r1)],
0~125. (8)

(The value of Q depends on the assumed luminosity
function and cosmological model. We adjust the model
map to fit the observed angular three-point function.
With the luminosity function and cosmological model
adopted here this makes the spatial Q larger, ~1.6.)

b) Adjustment to N and w(0)

Having chosen 5 one can adjust X to fit the wanted
power law index v of the two-point correlation function
[Egs. (4) and (6)]. There remain as free parameters the
mean number of clumps per unit volume and the mean
and rms number of galaxies per clump, which can be
adjusted to fit the wanted mean density of galaxies (n)
and the amplitude of £. In practice, (n) is fixed at the
density of galaxies brighter than some absolute magni-
tude cutoff M, chosen to exclude from the computation
the very faint galaxies that are abundant in space but not
in a catalog selected by apparent magnitude. If M, were
then adjusted to double the mean number of galaxies per
clump. Provided 7, [eq. (1)] is smaller than the resolu-
tion in the map, this has negligible effect on the results
(cf. See. IVH below).

The parameter M, provides a convenient way to make
fine adjustments in the amplitude of the two-point cor-
relation function. If, in a given model, M, is changed, it
changes the number of visible galaxies from W to fN,
say, but it leaves £ unchanged, and (when M. is faint
enough that few of the observed galaxies are at M ~ M)
it leaves w unchanged. To bring the density of visible
galaxies back to its original value, one must change the
number of randomly placed clumps by the factor f~1,
and this changes £ and w to f£ and fw.

¢) The Parameter Q

In the simplest model all clumps are constructed in the
same way, using the same parameters and different
random numbers, and using a fixed number 5 = 2 sub-
clusters in each cluster. Here Q [Eq. (8)] is very nearly
constant at the value 0.5, which is too small by a factor
of about 3. To increase Q, one must arrange to increase
the dispersion in the values of the mean density seen
within the clusters at resolution r, for that increases the
triplets counts. The need for this also is apparent as a lack
of highlights in a map constructed from this simplest
model (Groth et al. 1977, called GPSS). Indeed, it is
clear that a considerable dispersion is wanted, for one
knows there is considerable spread in mean densities
within groups and clusters of size ~ 1 h~! Mpc, say. We
discuss next two ways to increase this dispersion in the
model.
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F1G. 1. Estimates of Q from ensembles of clumps constructed in
two different ways. The closed symbols correspond to a simple model
with # = 2, the open symbols to a model where 7 is a random variable
drawn from a strongly skewed distribution P,. In the first case Q is
nearly constant, in the second the variation is well outside the bounds
of the observations. The circles correspond to v < 0.5, the squares to
v>0.5.

d) Dispersion in the Number of Subclusters
Per Cluster

SP increased the dispersion in cluster density by taking
7, the number of subspheres placed in each sphere, to be
a random variable drawn from a universal distribution
P,. As is described in the Appendix, Q [defined by Eq.
(8)] at ry ~ ry ~ ry varies roughly as (n3) /(n2)2 when
(n) is fixed. Thus, if P, has strong skewness, Q is in-
creased. However, as is discussed in Sec. IVa, this does
not yield a very pleasing map because with a strongly
skew P, there are occasional large values of n and these
show up as prominent isolated spots. Only after observing
this did we recognize the connection to a relatively minor
but significant discrepancy with the observed three-point
function {. The occasional large values of n produce large
triplets counts at r; ~ r, ~ r3, hence increasing Q, but
they do not so strongly increase the count or the effective
value of Q at r, > ry. The model thus conflicts with the
observation that Q is very nearly constant. The effect is
illustrated in Fig. 1. We have arranged the arguments
of {so

r < ra < rs, (9)
and then defined the new variables
r=ry, u=ryfry, v=(ry—ry)/r. (10)

0 is estimated from ensembles of clumps (100 clumps
for the case n = 2, 400 clumps for the model with variable
n where the scatter from clump to clump is larger), each
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with 10 levels, by the method described by Peebles
(1978). In the model the minimum cluster radius is rg
~0.005, the maximum is R ~ 1, and the Q estimates are
for 0.014 < r <0.020. The circles correspond tov < 0.5,
the squares to v > 0.5. The closed symbols refer to the
simple model n = 2. The open symbols refer to a model
where n = 1 with probability 0.13, n = 2 with P, = 0.86,
and n = 15 with P = 0.01. In the first case Q is nearly
constant, and the drop at u 2 6 is at least partly because
the triangle approaches the boundaries of the clump. In
the second case the variation with « and v is well outside
the bounds of the observations (GP). Thus the SP
method of increasing Q is not satisfactory.

e) Dispersion in the Number of Levels

The adopted method of increasing Q is to let the
number of levels L vary from clump to clump while
holding fixed the maximum radius R and fixing the
number of subclusters per cluster at n = 2. The effect on
the two-, three- and four-point correlation functions is
computed as follows. Let &, ¢o and ug be the functions
in a model with fixed n, A, R and L, with Ny >> 1 galaxies
per clump. Now suppose L is changed to a random
variable but , A, and R are unchanged. The abundance
of galaxy pairs, both in the same clump, at separation r,
varies as (N 2), where Ny >> 1 is the number of galaxies
in a clump, Therefore the new two-point function is

£(r) = &o(r) (NL2)/(NL)?, r>»re. (11)

The shape of £ is unchanged (r >> rg) because the num-

- ber of correlated pairs at each separation changes by the

same factor. Since { is proportional to the probability of
finding two neighbors of a randomly chosen galaxy, all
from the same clump (cf. Peebles 1978, Appendix), one
finds

§=S$o{NL3)/(NL)3,
whence by Egs. (8) and (11)

0 = Qo(NL>)(NL)/{NL?)2. (12)

As before this applies independent of the arguments r,
u, and v, if r 3> ro, so Q agrees with the observations in
being very nearly independent of # and v. Finally, the
four-point function u varies as

w/E = (no/E)(NLY(NLYY(NL2)3.  (13)

In the Lick data the correlation functions are known
so these relations fix the moments (/V;2)), (IN.3), and
(NL*) in terms of the other parameters in the model.

/) Introduction of a Sharp Break in the Two-Point
Function

In the model with fixed A, £(r) rather gently falls away
from the power law at r ~ R, and the angular two-point
correlation function w(6) falls away from the power law

even more slowly because at fixed apparent magnitude
m one sees clumps at a considerable range of distances.
To make w approximate a power law at 6 < 2° as well
as it does in the Lick data we at first simply chose a large
clump radius, R ~ 30 h—! Mpc, so that the break appears
at rather a large angle, § ~ 10°, and at a very small value
of w. We at first thought the presence or absence of this
extended tail at very small w would have negligible effect
on the appearance of the map. That proved wrong, ap-
parently because the tail makes the integral of w large,
meaning there are many galaxies per clump, hence rel-
atively few independent clumps. The result is that the
map has too many low density “uninteresting” patches.
The adopted remedy is to reduce the clump radius to r
~ 5h~! Mpc, then eliminate the slow roll-off in w(6) by
reducing A in the first sub-clustering level, thereby in-
creasing the number of pairs at separations ~ 10 h~!
Mpc.

The interpretation of the two-point correlation func-
tion in the Lick data is somewhat uncertain. In the direct
estimates w() has a kink at § ~ 25, and a long positive
tail at larger 6. It has been interpreted as a rather sharp
dimunition in clustering at # ~ 2°5, D ~ 10 h~! Mpc,
together with a component that varies on scales ~ 40°
(GP). This agrees with what seems to be needed for a
pleasing map. The large-scale component, whether due
to obscuration or to true large-scale clustering, would not
affect the appearance of the map because the eye is quite
insensitive to slow gradients in density.

III. SOME DETAILS OF THE MODEL

a) Luminosity Function

The adopted differential luminosity function is (SP
Eq. 7)

AN/AM =0, M > M,
= BC dex 8M, M. > M > M*,
= aC dex aM, M* =2 <M < M*:

=0, M<M*-2
8=025  M*=-18.6+ 5logh.
(14)

a=0.75,

The Hubble parameter h scales out of the model.

The faint end cutoff is M, ~ M* + 3. This causes all
galaxies closer than D, ~ 75 h™! MPC to be visible,
which is comfortably small compared to the typical
distance, ~230 h~! Mpc, in the model. Then with the
chosen geometry one galaxy is visible for every ~188
placed in space. If M, were increased to «, with fixed
slope 8 and fixed amplitude C, the number of visible
galaxies would increase by 3%.

The adopted expression for the distance modulus is

m— M= 5logD + 25+ (3 +5/In10)HD/c. (15)

D is the distance in megaparsecs, computed in the flat
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FI1G. 3. Galaxy map for the Lick data with 511 > 4
Shane-Wirtanen cell, in which the grey tone represents the galaxy count in the nearest cell. The grey scale shows the steps for successive

increases of one galaxy commencing with black for zero.
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static space of the model. The K-correction, followed
Pence (1976), is 3Z for all galaxies. The last term is an
approximate correction for the effect of expansion.

In the model absolute magnitudes are assigned at
random from Eq. (14), and the galaxies in the map are
those with m < 18.9. The maximum distance of a visible
galaxy is then D = 524 h—! Mpc.

b) Spatial Boundaries

The model catalog is designed to be complete for the
area of the sky b = 40°. We place clump centers at
random in a cone of opening angle 100° truncated by a
sphere with center at the apex. The point of observation
is on the axis within the cone. The distance from this
point to the apex, and the sphere radius, are chosen large
enough that the boundary has negligible effect on the
catalog—the perpendicular distance between the 100°
cone of the observer and this full cone is almost as large
as the maximum distance of a galaxy from the center of
its clump.

¢) Shortcuts in the Computation

We introduce some shortcuts to speed up the com-
putation. We take the distance moduli for all galaxies
in a clump to be equal to the distance modulus at the
clump center. This is a good approximation because the
typical distance of a clump is ~230 h~! Mpc, the radius
of a clump 5 10 h=! Mpc. (This approximation is not
used in computing the angular position of each visible
galaxy.) The distance modulus with Eq. (14) fixes the
mean number of galaxies visible in a clump, and for
distances greater than about 350 Mpc we simply select
this number of galaxies at random from the clump. This
ignores the fluctuations that would be present if the M
were randomly drawn from the distribution. Also, the
same galaxy occasionally is drawn more than once, but
this causes no problems because the probability for du-
plication never exceeds 3% (of the small number visible
at those large distances) and the positions are measured
only to within the 10" by 10’ cells. The mean number of
duplicates expected is 0.18%, 700 galaxies in a total of
386 000.

Where the wanted number of clumps with the same
parameters (but different random numbers) is greater
than about 400, we build a small number of patterns and
use each more than once, with separate random drawings
of the wanted numbers of visible galaxies. For example,
in the final model there are 24 000 clumps with seven
levels, and we build 240 patterns.

IV. MODEL RESULTS
a) Extrapolation of the m < 14 Model

This model was tuned to match in some detail the

SONEIRA AND PEEBLES: COMPUTER MODEL UNIVERSE
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statistics of the galaxy distribution at m < 14 (with b =
40°,6 = 0°).

The distribution of 5, the number of subclusters in a
cluster, is

P =9.124; P,=Aexp—n/4, 2<75=20.

(16)

A is the normalizing constant, and (n) = 2. The sphere
radius at the largest level is r; = 22 h~! Mpc, and the
ratio of sphere radii at successive levels is A [Eq. (4)] with
v = 1.77. The n subsphere centers are distributed uni-
formly at random in the sphere.

In the extrapolation from m < 14 to 18.9 we simply
adjust the m limit and increase the depth of space in the
model. There are L = 6 levels (two less than in SP to
reduce computation time). The result has 1.5 times the
galaxy density in the Lick sample. (The density at m <
14 apparently is high because of the Local Supercluster;
the discrepancy may be due in part also to the uncer-
tainty in the relative limiting magnitudes in the two
catalogs.) To reduce the density, we accept each galaxy
at m < 18.9 into the map with probability P ~ 2/3, in-
dependently decided for each galaxy. This leaves all the
correlation functions unchanged.

The resulting map of the 386 000 visible galaxies at

"b = 40° is shown in Fig. 2. It can be compared to the

Lick data in Fig. 3. Each map is an array of 556 by 603
picture elements, representing counts binned in 10 by
10’ cells, the grey tone in each cell representing the gal-
axy count. The Lick map differs slightly from that of
SSGP because the number of picture elements here ap-
proximates the number of cells in the counts of Shane
and Wirtanen. We have not introduced a correction for
absorption in the galaxy.

Though this model produces maps that look very much
like the real data at m < 14 (SP), the map at m < 18.9
certainly is disappointing. The Lick map has a crisp fil-
amentary appearance, while the model map can only be
described as “mushy.”

Figure 4 shows that the two-point angular correlation
functions of the model and the Lick data agree fairly
well. At 6 < 0.3° the model w tips slightly down. This is
because the smallest sphere radius in the model is 1.3 h™!
Mpc (about comparable to the cell size at the typical
clump distance) so there are too few close pairs. At in-
termediate angles the model w falls with logarithmic
slope 0.77 but has a slightly greater amplitude than the
data. The amplitude has not been adjusted from its initial
calibration at 14th mag. For 6 2 1.5° the model w begins
a gentle roll-off due to the finite clump radius (Sec. IIf)
but at § 2 5° it is much greater than the “corrected” w
for the Lick sample.

The frequency distributions of galaxy counts in the 10
by 10’ cells are compared in Fig. 5. The SP model and
the Lick frequencies are quite similar at n < 5 galaxies
per cell, but the model fails to match the extended tail
at n 2 10. The discrepancy in a sense is quite small, for
it involves only the ~ 3% of the cells at # 2 6, but it is
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FIG. 4. The two-point angular correlation function, w(6), for the
Lick data (open circles), the extrapolated m < 14 model (crosses), and
the final model (closed circles).

very important. To see this, we observe that both distri-
butions at small n closely match a Poisson distribution
with the same (n) (dotted line in Fig. 5). For example,
the frequencies f; for the Lick data and the Poisson dis-
tribution differ by <30% at i = 0 through 4 galaxies per
cell. Despite this close numerical agreement the map of
a Poisson distribution of galaxies looks quite different
from the other maps in GPSS (pp. 96-97).

Because the tail of the frequency distribution deter-
mines the higher order correlation functions integrated
over the 10’ cell, another way to state the discrepancy in
Fig. 5 is that the higher order functions in the model are
too small at § ~ 10’. Thus it is clear that part of the
problem with the SP model is that it does not produce
enough extreme concentrations. The eye takes particular
notice of these occasional extremes of density, the un-
usual knots of galaxies. These will typically have many
cells with large counts grouped closely together. Such
configurations almost completely determine the high nth
order correlation functions because the contributions to
them go as the product of the cell counts taken n at a
time. Hence the eye is very sensitive to the higher order
correlation functions and it is at least partly the lack of
strong high order correlations that accounts for the
“mushy” appearance of the model.

b) Steps Toward the Final Model

Having realized that the extrapolated model is un-
satisfactory at least in part because Q is too small, we

entered on a long series of trials of remedies. (Many of
the ~150 models we tried produced the distribution at
b = 70°. This restricted sample is much less expensive
to produce, but we found that it gives a much less useful
visual impression than does the b = 40° sample.)

The first approach was to adjust P, [Eq. (16)]. By
making this distribution strongly skew we can improve
the frequency distribution of galaxy counts per cell.
However, the result is that there are occasionally very
large n, so that many or all clumps are rich at some level;
Sec. I1d contains a simple example of such a distribution.
These large values of n show up as isolated spots or
blotches on the map. We have found this to be true for
a broad variety of forms for P,,.

We have found the same problems if (n) is reduced
to a value well below (n) = 2, so that the clustering de-
velops more slowly, over many more levels.

The minimum cluster size in the original model is ~1
h~! Mpc. Therefore we match the correlation between
counts in neighboring cells but not the rms fluctuations
in counts per cell, for that is determined by an integral
over wat 6 < 10/, 0D < 0.7 h—! Mpc. One can remedy
this by increasing the number of levels. This increases
somewhat the dispersion in counts per cell, but does not
significantly improve the picture.

To suppress the tendency of the model to produce
isolated dense spots, we tried placing the clumps in
groups, and we tried varying by a moderate amount the

0 5 10
Galaxies/cell

FI1G. 5. The frequency distributions of galaxy counts in 10" by 10

cells for the Lick data (solid lines), a Poisson distribution (dots), the

extrapolated m < 14 model (mixed dots and dashes), and the final

model (dashes). All have 386 000 galaxies in 265 000 cells. A zero
count is plotted the same distance below one that one is below two.
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number of levels in each clump in the group (with 7 still
a random variable). However, the construction seemed
awkward and the results not very pleasing.

The method finally adopted increases Q by intro-
ducing a large dispersion in L rather than n (Sec. Ile).
Only after we had seen that this yields more pleasing
maps did we realize that it also gives a better fit to the
shape of the three-point function.

The second important point in the development of the
model was the realization that the appearance of the map
is improved if the clump size is reduced so there are more
clumps and the sizes of the random holes in the map are
reduced. This was first demonstrated by cutting a model
map into ~3° by 3° squares and gluing the squares back
together in random order.

¢) The Final Model

i) Dumbbell Method of Construction

For the adopted model there are n = 2 subspheres in
each sphere. The sub-sphere centers are placed at fixed
separation d;, in a randomly chosen orientation in three
dimensions, with the pair centered on the sphere center.
The separation at the largest level is

dy=1135h~1 Mpc. a7

The separation of the centers on the next level is d,
with

d\/d> = 1.10, (18)

Thereafter the ratio of separations on successive levels
is

dn/dn+1 = A, A =1.76. (19)

The reduced ratio (18) increases the number of pairs at
separations ~ 10 h~! Mpc, thereby sharpening the
roll-off of w(f). One advantage of the dumbbell method
of placing the subclusters is that clustering scales are less
mixed than in the original method, so that it is easier to
adjust radii on successive levels to get the wanted shape
of w(6).

ii) Distribution in Number of Levels

We match four parameters, the mean density N of
visible galaxies, the amplitude A of the angular two-point
correlation function, w = 4 §'~7, and the amplitudes of
the angular three-point z and four-point u functions (GP,
FP),

K = z/(wiwy + wows + wawy) = 1.56,
R = u/w3 ~ 60,

where the four-point function u is evaluated only for
square configuration with w(0) evaluated at 8 equal to
the side of the square. In the model these four parameters
are adjusted by varying the mean space number density
of clumps, M, [Eq. (14)], and the first four moments of

(20)

Ny, the number of galaxies in a clump [Egs. (11)-
(13)].

We take the distribution P; in the number of levels
in a clump to be different from zero in the range L; < L
< L,, and then seek by trial and error a P; that matches
the wanted three moment relations. The solution for P,
is not unique because not all moments are known, and
even the first four moments are not uniquely known be-
cause there is an extra free parameter. The minimum
number of levels L, is determined from the visual ap-
pearance of the map: a large number of galaxies from too
small L makes the map appear too flat and Poisson-like.
The upper value L, is strongly limited by required size
of the third and fourth moments as V; enters to a high
power in egs. (12) and (13). Using the condition that P,
ought to decrease in a reasonably smooth way with in-
creasing L, we rather quickly settled on the distribution
listed in column 4 of Table I. Column 2 lists the number
of galaxies in each clump with L levels, the column 3 lists
the separation between galaxy pairs at the final (small-
est) level in the clump.

It is an amusing coincidence that the frequency dis-
tribution of the V. turns out to be well approximated by
the power law

P; « NL_1'835, (21)
close to the form of £, though P; was not chosen with this
in mind.

The final complication is the statistical fluctuations
in the model. There are only 40 clumps at L = 12, and
it is the nearest few of these that make the dominant
contributions to z and u. The result is that there can be
substantial fluctuations in these statistics from model to
model. We do not know whether there would be similar
fluctuations in different samples of the real universe—for
example, if these massive systems were required to be
well spaced, as might be reasonable because of the large
mass needed to make them, it would reduce the fluctu-
ations. In any case, to make the model statistics agree
with the data we required that the total number of visible
galaxies from all the clumps of given L be within 10% of
the model ensemble average value. This number of gal-
axies seen is almost completely determined by the dis-
tribution of positions assigned to the centers of the
clumps.

After 5 random trial placings of the 40 clumps with
L = 12 we found one in which the number of galaxies
visible from these clumps is within 10% of the ensemble
average value. This is the adopted placing. The contri-
butions from each of the other levels matched the en-
semble averages within 10% on the first trial. To remove
the remaining minor discrepancies in the four observed
parameters we made slight adjustments to the numbers
of clumps at L < 12. The final numbers in the full cone
(Sec. IIIb) are listed in column (5) of Table I. The
numbers of galaxies at m < 18.9 contributed by the
clumps of each sort are listed in column (6).

As a last step we have repeated the procedure with
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FIG. 6. The two-point spatial correlation function £(r) for the model,
determined by direct estimates in the known three-dimensional dis-
tribution. A smooth curve has been drawn through the points. The
dashed line is a power law of slope y = 1.77 and describes the asymp-
totic behavior of £(r). To match the sharp roll-off of w(§) we arranged

that £(r) gently rise above the power law before sharply falling beyond
15 h~! Mpc.
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different random numbers. Similar adjustments were
required, and the final results were quite similar.

iif) Statistical Measures of the Final Model

The angular two-point correlation function w for the
model is compared to the GP estimate in Fig. 4. The
spatial two-point function £ found by direct estimates
from the known three-dimensional distribution is shown

as the dots in Fig. 6. The solid line is a smooth curve
connecting the dots. To match the sharp roll-off of w(8)
we had to arrange that £ rises above the power law
(dashed line in the figure) at » ~ 10 h—! Mpc, then falls
rather sharply below the power law (Davis, Groth, and
Peebles 1977; Fall and Tremaine 1977).

The amplitude K of the three-point angular correla-
tion function agrees with the GP estimate [Eq. (20)] to
1% accuracy. The amplitude of the four-point function
is R =40 £ 5, 0.7 times the observed value [Eq. (20)],
and within the uncertainty of the estimate. If there had
been no dispersion in L, K, and R would have been
smaller than the observed values by the factors 3.2 and
18.5.

Columns 8-10 in Table I give the fractional contri-
butions to the two-, three- and four-point correlation
functions « PN, * n = 2, 3, and 4 [Egs. (11)-(13)].
The two-point function is produced about equally by
clumps of all richness, while the four-point function is
almost entirely due to the 2% of the galaxies in the richest
clumps.

In the model there is a very broad spread in clump
richness Ny. The very rich clumps are needed to fit the
higher order correlation functions. One should not con-
clude, however, that the clustering in the very poor
clumps is negligible. One measure of this is that if all
galaxies were in clumps with 7 levels, all other parame-
ters in the model being unchanged, £ at » << R would
have the power law form B(hr)~ with B = 4 compared
to B = 15 (r in Mpc) for the full distribution in L. Col-
umn (11) lists, for each L, the value of B that would have
been obtained if all clumps had had that richness.

The frequency distribution of galaxy counts in 10’ by
10’ cells is shown as the dashed line in Fig. 5. the distri-
bution closely matches the Lick data over a range of
more than four orders of magnitude in the frequency.
This might be expected since we have adjusted the model
to match fairly well the first four moments. (The ad-
justment is not exact because (a) the angular correlation
functions we match exclude the large-scale gradients in
the Lick counts, and (b) the poorest clumps have mini-
mum clustering scale, column (3) in Table 1, X the
counting cell size.)

A final interesting statistic is the degree to which the
clumps fill space. On the average, 75% of the galaxy pairs
in a clump are at separations < 15 h~! Mpc, 90% are at
distances < 18 h~! Mpc. In the model the total number

TABLE I. Distribution of cluster richness.

Minimum No. of
clustering No. of visible Fractional Contributions
L Ny diameter Py clumps galaxies (n) I3 ¢ M B
(1) (2) (3) 4) (5) (6) (7) (8) %) (10) (11)
7 128 612 h~! kpc 0.68 24002 158030 0.41 0.11 0.01 0.0004 4
8 256 348 0.23 8214 106647 0.28 0.15 0.025 0.0023 8
9 512 198 0.061 2160 459459 0.15 0.16 0.052 0.0095 16
10 1024 113 0.015 534 30175 0.074 0.16 0.10 0.037 32
11 2048 64 0.0059 207 21597 0.057 0.24 0.32 0.23 63
12 4096 37 0.0011 40 9620 0.022 0.19 0.49 0.72 127
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density of clumps is n¢ = 3.1 X 1074 h3 Mpc—3 so the
mean distance between clumps is ng~1/3 = 15 h~! Mpc.
Thus the clumps just about fill space with rather little
overlap.

iv) The Model Map

The map of the model catalog is shown in Fig. 7.
Though one can distinguish it from the Lick map we feel
that is is a reasonable and pleasing approximation. The
texture of the highlights is well reproduced. One sees
holes between the highlights, and the abundance of the
holes, their typical size, and the texture of the galaxy
distribution within them all are reasonably well repro-
duced. Some interesting chains and filaments in the
highlights can be made out in the model though it may
be that such features are more common in the data. One
cannot find objects like the Coma cluster (at the center
of the Lick map), for the model was designed not to
produce such apparently relaxed systems.

As was mentioned in Part ii) above we repeated the
final prescription with a different set of random numbers,
and obtained a similar-looking map.

v) Remarks on the Method of Construction

While the method for obtaining the model certainly
has physical significance it also involves a number of
artificial constructional devices—and after the building
is completed such scaffolding should not be apparent. In
the model the hierarchy is discrete, with n = 2 sub-
clusters in each cluster on each level. The accidental
overlaps from the random orientations have removed this
discreteness from statistics such as £(r) and from the
appearance of clusters in the map. Another artificial
device is the assignment of separate and independent
clumps each with a definite number of levels. However,
with a few exceptions, one cannot make out in the map
the boundaries of any particular clump. (With other
prescriptions, involving P, the boundaries were more
apparent, and gave the map a mottled appearance.

One could think of many ways to place the sub-clus-
ters in a cluster. We adopted a fixed separation because
it is simple and it simplifies the adjustment of the roll-off
of w(6). We subsequently found that if the separation
is a random variable, which would seem less artificial,
the map is not quite as pleasing. Conceivably further
experiments with the P, would improve this, or perhaps
the fixed separation really makes better looking fila-
ments. Another choice presents itself in the method of
producing the rather sharp roll-off in w(6), which seems
to be important to the appearance of the map (Sec. ILf).
An alternative to the adopted approach of shrinking the
cluster radius on the first level is to increase the mean
number of sub-clusters on this level only. Maps produced
by the latter method seem inferior. Yet another way is
to make the clump positions anticorrelated. We have
made only limited trials of this approach. The higher

order correlation functions could provide a way to choose
among methods, but we do not have useful estimates of
these functions at large enough separations.

V. SUMMARY

We consider the following to be the main important
points that have emerged from this study.

1. The known n-point correlation functions (1-4) do
not give so detailed a description of the galaxy distri-
bution that they alone can be used as the guide to how
to construct a visually appealing model map at m < 19.
This experiment has improved our understanding of the
nature of the galaxy distribution. The final model is a
good statistical and visual match to the Lick data. This
seems to indicate that the hierarchical clustering picture
must be a reasonably good approximation to reality.

2. The first model we tried had been adjusted to fit
several statistical measures of the galaxy distribution at
m < 14. When this model is extrapolated to m < 19 it
is not very satisfactory. This is due in part to the limited
statistics in such a small sample of galaxies, and it must
also be a result of the Local Supercluster not being a fair
sample of the Lick survey. We plan to report on 14t mag
versions of the adopted model elsewhere.

3. Inthe Lick map the highlights have a striking fil-
amentary appearance. In the model map one certainly
can pick out equally striking filaments, even though the
orientation of each subcluster pair is random so we are
not building in linear structure. It may well be that the
filaments in the Lick map are more common and finer,
perhaps indicating a true filamentary character in the
space distribution, though it has been difficult to find
objective evidence of this. In any case the model map
shows that many of these filaments will prove to be ac-
cidents in a clumpy distribution that are picked out be-
cause the eye is so adept at finding linear structures.

4. To fit the higher order correlation functions in the
hierarchical clustering model, we need a very broad
distribution in cluster richness—and this is pleasing
because it is known from observation that there is a broad
range in richness. We have tried two methods of intro-
ducing this spread, increasing the richness within ran-
domly chosen clusters in randomly chosen levels, and
increasing the richness within whole clumps. Though
presumably both effects occur in nature, the indication,
from the shape of the three-point correlation function
(Sec. I1d) and from the appearance of the maps, is that
the latter dominates. That is, the neighbors of a rich
cluster tend to be rich.

5. Along with the indicated spread in clump richness
is the fact that the amplitudes of the angular three- and
four-point functions are quite sensitive to how far away
are the nearest several of the richest clumps. The shapes
of the functions (manner of the variation with the
arguments) are much less sensitive because each clump
tends to produce the same functional form. It is not clear
whether fluctuations in samples of the real universe at

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978AJ.....83&amp;db_key=AST

rT978AJ.- - 2830

860

m =< 19 would be as large as they are in the model—
possibly the fluctuations are suppressed by strong anti-
correlation of the richest clumps.

6. Direct estimates of w(#) for the Lick sample give
tentative evidence of a dimunition in clustering at 6 ~
275, r ~ 10 h~! Mpc (GP). In the model a clump size of
about this amount seems to be wanted—if the clump is
much larger too many galaxies are tied up in each clump
and so the map shows excessive gaps between the high-
lights. This is evidence in support of the GP interpreta-
tion of the break in £.

On much larger scales there is insufficient super-
clustering in the model. While one of the ~ 15 h=! Mpc
clumps can contain many 1.5 h=! Mpc Abell clusters
grouped within it, by construction £ is identically zero
at r = 35 h=! Mpc. It is known that there are small
correlations on scales greater than or at least comparable
to this (Abell 1958; Bogart and Wagoner 1973; Hauser
and Peebles 1973; Seldner and Peebles 1977). Such
large-scale effects are not very well explored. It could be,
for example that although £ is close to zero at r ~ 30 h~!
Mpc there is strong clustering among rich clumps, bal-
anced, in £, by some degree of anticorrelation among
lesser clumps.

7. In the model the clump size is just comparable to
the mean distance between clumps. This says there is a
fairly continuous sea of clustering, with no substantial
gaps between clumps. On the other hand, since the
subclusters occupy only a small fraction of the clump
volume, there are holes in the galaxy distribution of the
sort found by Chincarini and Rood (1976) and Tift and
Gregory (1976) (Soneira and Peebles 1978).

We thank Ed Groth for help with the model catalog,
Mike Seldner for help with the Lick catalog, and both
for helpful discussions and opinions. The maps were
made on the Princeton film scanner (Zucchino and
Lowrance 1971; Heiles and Jenkins 1976). We are
grateful to Paul Zucchino, John Opperman, and Eden
Steiger for their help and cooperation in producing the
maps and to the Princeton Astrophysical Sciences De-
partment for the use of the film scanner.

APPENDIX A

We discuss here the behavior of the correlation
functions when the number 7 of subclusters placed in a
cluster is a random variable.

Let N; be the number of galaxies in a particular
cluster at the /th level of the hierarchy (/ counted from
the smallest scale). We can write this as a sum over the
number of galaxies in each of the n subclusters on the
next smaller level,
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Ni= 3 N 0.

=17

(A1)

Since 7 is drawn at random from P,, the mean value of
this equation is

(N1} = (n){(Ni-1), (A2)
whence
(N1 = (m)". (A3)
The mean square count is
(N2) = () (Ni=12) + ((n?) = (m)(n)> 72, (Ad)

where the second term has been reduced using eq. (A3).
For [ > 1 the solution to this equation is

(n?) — (n)
2y = 27 M7 21, AS
(N2 = = ) (A35)
Similarly one finds that the third moment is
(n®) +b
3y = 3/ A =——
(N3) = A(n)3!, )3 — (n)
3((n2) = ()
= —3(n? T2 (A6
b =—=3(n*) + 2(n) = () (A6)

The two-point correlation function £ at r ~ R; = ro\
is proportional to the ratio of the mean density within a
cluster at level / to the overall mean density (n). The
former density must be weighted by the change of
choosing a galaxy in a particular cluster « N so

£~ (N?)
(n)(N)R/?
The last expression follows from Egs. (A3) and (AS). It

agrees with the first of Eq. (4) if # is replaced with
(n).

The three-point function { at ry ~ ry ~ r3 ~ Rjis
proportional to the square of the density, weighted by
Ny,

« (n)/R;~>. (AT)

¢~ ANPY/((nY(NI)R/5),
so Q varies with the moments of P, as
(NPYND)
RRTYEIE
_ () +b [(17)2 - <n>]2
()3 =<n) Ln?) = (my 4~

If the dispersion and skewness of P, are large this reduces
to

(A8)

(A9)

0 = (n¥) /(9?2 (A10)

at fixed (7).
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