

... Spacetime becomes a dynamic continuum,
integral part of the structure of the cosmos ...
curved spacetime becomes force of gravity
$$R^{\alpha\beta} - \frac{1}{2}g^{\alpha\beta}R = -\frac{8\pi G}{c^4}T^{\alpha\beta}$$
... Its geometry rules the world,
the world-rules its geometry...

$$\ddot{R} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2}\right) R + \frac{\Lambda}{3} R$$
$$\dot{R}^2 = \frac{8\pi G}{3} \rho R^2 + \frac{\Lambda}{3} R^2 - kc^2$$

	emic En	ardu	Inve	ant
		cigy	Juve	
		$\mathcal{O}\mathcal{O}$		
		Sector and the sector se		
1	dark sector		0.70 ± 0.02	0.954 ± 0.003
1.1	dark energy dark matter		0.72 ± 0.03 0.92 ± 0.03	
1.9	primeral gravitational waves		< 10-10	
	primeval gravitational waves		~ 10	
2	primeval thermal remnants			0.0010 ± 0.000
2.1	electromagnetic radiation		$10^{-4.3\pm0.0}$	
2.2	neutrinos		$10^{-2.9\pm0.1}$	
2.3	prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
3	baryon rest mass			0.045 ± 0.00
3.1	warm intergalactic plasma		0.040 ± 0.003	
3.1a	virialized regions of galaxies	0.024 ± 0.005		
3.1b	intergalactic	0.016 ± 0.005		
3.2	intracluster plasma		0.0018 ± 0.0007	
3.3	main sequence stars	spheroids and bulges	0.0015 ± 0.0004	
3.4		disks and irregulars	0.00055 ± 0.00014	
3.5	white dwarfs		0.00036 ± 0.00008	
3.6	neutron stars		0.00005 ± 0.00002	
3.7	black noies		0.00007 ± 0.00002	
3.0	HI + Hel		0.00014 ± 0.00007	
3.10	molecular gas		0.00016 ± 0.00016	
3.11	nlanets		10-6	C 11
3.19	condensed matter		$10^{-5.6\pm0.3}$	
3.13	sequestered in massive black holes		$10^{-5.4}(1 + \epsilon_n)$	
4	primeval gravitational hinding energy			$-10^{-6.1\pm0.}$
4.1	virialized halos of galaxies		$-10^{-7.2}$	
4.9	clusters		$-10^{-6.9}$	
	The second se			

Concordance Para	meter Value	Description		
Concordance	Basic parameters			
«Vanilla» Ho	$70.9^{+2.4}_{-3.2}$ km s ⁻¹ Mp	c ⁻¹ Hubble parameter		
$\Omega_{\rm b}$	$0.0444^{+0.0042}_{-0.0035}$	Baryon density		
Cosmology Ω_m	$0.266\substack{+0.025\\-0.040}$	Total matter density (baryons + dark matter)		
τ	$0.079^{+0.029}_{-0.032}$	Optical depth to reionization		
A _s	$0.813^{+0.042}_{-0.052}$	Scalar fluctuation amplitude		
n _s	$0.948^{+0.015}_{-0.018}$	Scalar spectral index		
	Derived parameters			
(WMAP3 P0	$0.94^{+0.06}_{-0.09} imes 10^{-26}_{ m kg/m^3}$	Critical density		
parameters) Ω_{Λ}	$0.732^{+0.040}_{-0.025}$	Dark energy density		
Zion	$10.5^{+2.6}_{-2.9}$	Reionization red-shift		
σ_8	$0.772^{+0.036}_{-0.048}$	Galaxy fluctuation amplitude		
to	$\frac{13.73^{+0.13}_{-0.17}\times10^9}{_{years}}$	Age of the universe		

Adiabatic Expansion
From the Friedmann equations, it is straightforward to appreciate
that cosmic expansion is an adiabatic process:

$$\dot{\rho} + 3\left(\rho + \frac{p}{c^2}\right)\dot{a} = 0$$

 \downarrow
 $dU = -\mu dV \iff \begin{cases} U = \rho c^2 V & \text{internal energy} \\ V \propto a^3 & \text{cosmic volume} \end{cases}$
In other words, there is no ``external power'' responsible for
"pumping" the tube ...

Adiabatic Expansion

$$p \propto \rho^{\gamma} \implies TV^{\gamma-1} = cst.$$

 $\begin{cases} \gamma = \frac{5}{3} \implies T_b \propto V^{-2/3} \propto a^{-2} \\ \gamma = \frac{4}{3} \implies T_{rad} \propto V^{-1/3} \propto a^{-1} \end{cases}$
Cosmic expansion is Adiabatic: Temperature History
Hot Big Bang

Episodes Thermal History						
<u>Planck Epoch</u>	AN PAR	t < 10 ⁻⁴³ sec				
Phase Transition <u>F</u> ra	GUT transition electroweak transition quark-hadron transition	10 ⁻¹³ sec < t < 10 ⁵ sec				
<u>Hadron Era</u>	1 5 5	t~10 ⁻⁵ sec				
<u>Lepton Era</u>	muon annihilation neutrino decoupling electron-positron annihilation primordial nucleosynthesis	10 ⁻⁵ sec < t < 1 min				
<u>Radiation Era</u>	radiation-matter equivalence recombination & decoupling	1 min < t <379,000 yrs				
Post-Recombination Era	Structure & Galaxy formation Dark Ages Reionization Matter-Dark Energy transition	t > 379,000 yrs				

Harmonic Signature

- Identify structure and composition of the Universe
 through detailed examination of the pattern of overtones on the fundamental frequency
 - much like using them for a music instrument
- Observed frequency spectrum consistent with inflationary origin:
 spectrum of cosmic sound has harmonics at integer ratios of fundamental
- Without inflation, fluctuations should have been generated at intermediate times
- This would have destroyed the harmonic structure of the peaks (like drilling holes in an organ pipe)

It is the nonbaryonic Matter that is responsible for the existence of Structure in the Universe !!!

If it had not been there: no substantial structure

