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AB S TRACT

Formulae are presented for the linear growth factor D/a and its logarithmic derivative

d ln D=d ln a in expanding Friedmann±Robertson±Walker universes with arbitrary matter

and vacuum densities. The formulae permit rapid and stable numerical evaluation. A

fortran program is available at http://casa.colorado.edu/,ajsh/growl/.
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1 INTRODUCTION

The linear growth factor g ; D=a; where D is the amplitude of the growing mode and a is the cosmic scalefactor, determines the

normalization of the amplitude of fluctuations in large-scale structure (LSS) relative to those in the cosmic microwave background (CMB)

(Eisenstein, Hu & Tegmark 1999, appendix B.2.2). Its logarithmic derivative, the dimensionless linear growth rate f; dln D/dln a,

determines the amplitude of peculiar velocity flows and redshift distortions (Peebles 1980, section 14; Willick 2000; Hamilton 1998). As

such, the growth factor g and growth rate f are of basic importance in connecting theory and observations of LSS and the CMB.

In a Friedmann±Robertson±Walker (FRW) universe containing only matter and vacuum energy, with densities Vm and VL relative to

the critical density, the linear growth factor is given by1 (Heath 1977; Peebles 1980, section 10)

g�Vm;VL� ;
D

a
� 5Vm

2

�1

0

da

a3H�a�3 ; �1�

where a is the cosmic scalefactor normalized to unity at the epoch of interest, H(a) is the Hubble parameter normalized to unity at a � 1;

H�a� � �Vma
23

1Vka
22

1VL�1=2; �2�

and the curvature density Vk is defined to be the density deficit

Vk ; 12Vm 2VL; �3�

which is respectively positive, zero, and negative in open, flat, and closed Universes. The normalization factor of 5Vm=2 in equation (1)

ensures that g ! 1 as a ! 0: It follows from equation (1) that the dimensionless linear growth rate f is related to the growth factor g by

f �Vm;VL� ;
d lnD

d ln a
� 212

Vm

2
1VL 1

5Vm

2g
: �4�

The fact that the integrand on the right-hand side of equation (1) is a rational function of the square root of a cubic implies that the

integral can be written analytically in terms of elliptic functions. However, the analytic expressions are complicated, and have yet to be

implemented in any published code. Explicit analytic expressions in the special case of a flat universe, Vk � 0; have been given in terms of

the incomplete Beta function by Bildhauer, Buchert & Kasai (1992) and in terms of the hypergeometric function by Matsubara (1995).

Analytic expressions for the luminosity distance in the general non-flat case are given in terms of elliptic functions by Kantowski, Kao &

Thomas (2000).
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1Regarded as a function of cosmic scalefactor a, the growth factor evolves as

g�a� � 5Vm

2

H�a�
a

�a

0

da 0

a 03H�a 0�3 � 5Vm�a�a2H�a�3
2

�a

0

da 0

a 03H�a 0�3 ;

where Vm�a� � Vma
23=H�a�2:



Lahav et al. (1991) give a simple and widely used approximation to the growth rate2

f �Vm;VL� < V
4=7
m 1 �11Vm=2�VL=70: �5�

From this, together with relation (4), follows the approximate expression for the growth factor quoted by Carroll, Press & Turner (1992)

g�Vm;VL� <
5Vm

2�V4=7
m 2VL 1 �11Vm=2��11VL=70��

: �6�

Given the increasing precision of measurements of fluctuations in the CMB (de Bernardis et al. 2000; Hanany et al. 2000) and LSS (Gunn

& Weinberg 1995; York et al. 2000; Colless 2000) and the growing evidence favouring a cosmological constant (Gunn & Tinsley 1975;

Perlmutter et al. 1999; Riess et al. 1998; Kirshner 1999), it seems timely to present exact expressions, suitable for numerical evaluation, for the

growth factor g (hence f, through equation 4) valid for arbitrary values of the cosmological densities Vm in matter and VL in vacuum.

The procedure presented in this paper is to expand the integral of equation (1) as a convergent series of incomplete Beta functions,

conventionally defined by

B�x; a; b� ;
�x

0

ta21�12 t�b21 dt: �7�

In effect, the method can be regarded as generalizing Bildhauer et al.'s (1992) formula. What makes the scheme attractive is that the Beta

functions in successive terms of the series can be evaluated recursively from each other through the recursion relations

aB�x; a; b� � xa�12 x�b 1 �a1 b�B�x; a1 1; b�; �8�
bB�x; a; b� � 2xa�12 x�b 1 �a1 b�B�x; a; b1 1�; �9�
aB�x; a; b1 1� � xa�12 x�b 1 bB�x; a1 1; b�; �10�

the last of which follows from the other two. In practice, each evaluation of the growth factor g involves from one to seven calls to an

incomplete Beta function, followed by elementary recursive operations.

The resulting numerical algorithm is fast (provided that Vm and |VL| are not huge ± see Section 3) and stable, and has been

implemented in a fortran package growl available at http://casa.colorado.edu/,ajsh/growl/. The growl package includes an updated

version of an incomplete Beta function originally written by the author a decade ago.

2 FORMULAE

Fig. 1 shows contour plots of the growth factor g�Vm;VL� and growth rate f �Vm;VL� computed from the formulae presented below, as

implemented in the code growl. The results have been checked against numerical integrations with the mathematica program.

Perhaps the most striking aspect of these plots, emphasized by Lahav et al. (1991), is that the growth rate f is sensitive mainly to Vm,

with only a weak dependence on VL.

Fig. 2 shows the ratio of the Lahav et al. (1991) growth rate f, equation (5), to the true growth rate. The figure illustrates that the Lahav

et al. approximation works well except at small Vm. The approximation (with the 4/7 exponent advocated by Lightman & Schechter 1990)

works particularly well for currently favoured cosmologies, being accurate to better than 1 per cent for flat universes with Vm � 0:2±3:9:

2.1 Limiting cases

The requirement that the Hubble parameter H(a), equation (2), be the square root of a positive quantity for all a from 0 (big bang) to 1 (now)

imposes two requirements. The first is that the matter density be positive

Vm > 0; �11�

and the second can be interpreted as a condition that the universe not be too closed

Vk > min 2
3Vm

2
;2

27V2
mVL

4

� �1=3
" #

: �12�

If either of the two conditions (11) or (12) were violated, then the Hubble parameter H(a) would go to zero at some finite cosmic scalefactor

a, indicating that the universe did not expand from a=0, but turned around from a collapsing to an expanding phase at some finite a.

The limiting values of the growth factor g and growth rate f as the matter density goes zero, Vm ! 0; are

g�Vm � 0;VL� � 0; f �Vm � 0;VL� � 0; �13�
2Lahav et al. adopt V0.6 rather than V

4/7, following Peebles (1980). The 0.6 exponent is more accurate for low Vm, but 4/7 (Lightman & Schechter 1990)

works better elsewhere, and in particular is more accurate for currently favoured cosmologies, flat universes with Vm > 0:2: The 4/7 exponent is therefore

currently favoured.
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Figure 1. Contour plots of (left) the growth factor g�Vm;VL�; and (right) the growth rate f �Vm;VL�; in expanding universes containing matter and

cosmological constant with densities Vm and VL relative to the critical density. Universes below the 458 dashed line are geometrically open, while those

above are closed. Universes to the upper left of the long-dashed line are decelerating, while those to lower right are accelerating. Universes to the left of the

almost vertical line near VL< 0 will eventually turn around, while universes to the right will expand forever. The region at the bottom right corner is

physically inaccessible to universes that expand from zero and that contain only matter and cosmological constant. The boundary between turnaround and

eternal expansion, and the boundary of the inaccessible region, together form, in the closed case, the approaching and receding parts of the loiter line. Starting

at Vm � 1; VL � 0; a universe can evolve upward and rightward along the approaching part of the loiter line to Einstein's loiter point at Vm � 2VL ! 1:

After an indefinite period of hanging around, the Universe can then either recollapse along the same loiter line, or else continue into renewed expansion

downward and leftward along the receding part of the loiter line, the boundary of the inaccessible region. The growth factor g tends to infinity at the boundary

of the inaccessible region, but only contours up to g � 5 are marked. The contour plot of g(Vm,VL) is similar tofig. 7 of Carroll et al. (1992).
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Figure 2. Contour plot of the ratio of the Lahav et al. (1991) growth rate f, equation (5), to the true growth rate. The plot illustrates that the Lahav et al.

approximation works well except for small Vm. In particular, the approximation is accurate to better than 1 per cent for currently favoured cosmologies, flat

universes (458 dashed line) with Vm > 0:2: For small Vm (and any VL) a somewhat better approximation results if the Lightman & Schechter (1990)

exponent 4/7 in equation (5) is replaced with 0.6, as in Lahav et al.'s original paper. The white region in the diagram at Vm & 0:1 and VL , 1 is where the

error in the Lahav et al. approximation (with the 4/7 exponent) exceeds 10 per cent; contours in this region are omitted to avoid confusion.
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provided also that VL , 1; in accordance with the condition Vk . 0 from equation (12). Physically, structure cannot grow in a universe

containing only vacuum.

The second condition, equation (12), is saturated when Vk ! 2�27V2
mVL=4�1=3 with Vk , 23Vm=2: This marks the boundary of the

inaccessible region to the bottom right of Fig. 1. The limiting values of the growth factor g and growth rate f in this case are

g�Vm;VL� ! 1; f �Vm;VL� � 212
Vm

2
1VL: �14�

Physically, the growth factor tends to infinity because such Universes are in renewed expansion after having spent an indefinite period of

time at Einstein's unstable loitering point, at Vm � 2VL ! 1:

2.2 Case jVk=�12Vk�j < 1

For small curvature density Vk, expand the integral in equation (1) as a power series in Vk:

g�Vm;VL� �
5Vm

2

�1

0

da

a3�Vma23 1VL�3=2
X

1

n�0

�2�n�3=2�n
n!

Vka
22

Vma23 1VL

� �n

; �15�

where �x�n ; x�x1 1�¼�x1 n2 1� is a Pochhammer symbol.

Each term of the sum on the right-hand side of equation (15) integrates to an incomplete Beta function. The cases of positive and

negative cosmological constant must be distinguished. For positive cosmological constant, VL . 0;

g�Vm;VL� �
5V1=3

m

6V
5=6
L

X

1

n�0

�2�n�3=2�n
n!

Vk

V
2=3
m V

1=3
L

 !n

B
VL

Vm 1VL

;
5

6
1

n

3
;
2

3
1

2n

3

� �

; �16�

while for negative cosmological constant, VL , 0;

g�Vm;VL� �
5V1=3

m

6jVLj5=6
X

1

n�0

�2�n�3=2�n
n!

Vk

V
2=3
m jVLj1=3

 !n

B
jVLj
Vm

;
5

6
1

n

3
;2

1

2
2 n

� �

: �17�

In each of formulae (16) and (17), incomplete Beta functions must be evaluated for three terms, and then the remaining Beta functions can

be evaluated recursively from these three, through the recursion relations (8)±(10). In equation (16) �VL . 0�; the recursion is stable from

n � 0 upward, or from large n downward, according to whether the argument VL=�Vm 1VL� is greater than or less than3 1/3. In equation

(17) �VL , 0�; the recursion is stable from n=0 upward or large n downward as the argument jVLj=Vm is greater or less than 11 �3=2� �
��
���

2
p

2 1�1=3 2 �
���

2
p

2 1�21=3� � 0:106:

How fast do the expansions (16) and (17) converge? Convergence is determined essentially by the convergence of the parent

expression (15) at the place where the expansion variable Vka
22=�Vma

23
1VL� attains its largest absolute magnitude over the integration

range a [ �0; 1�: For VL.0, the expansion variable attains its largest magnitude at a � min{1; �Vm=�2VL��1=3}; while for VL , 0; the

expansion variable is always largest at a � 1: Physically, the extremum at Vma
23 � 2VL occurs where the universe transitions from

decelerating to accelerating. It follows that if Vm > 2VL (decelerating), then successive terms of the expansions (16) and (17) decrease by

<Vk=�Vm 1VL�; whereas if Vm < 2VL (accelerating), then successive terms decrease by <22=3Vk=�3V2=3
m V

1=3
L

�: Thus n terms of the

expansions (16) and (17) will yield a precision of <�Vk=�Vm 1VL��n if Vm > 2VL; or a precision of <�22=3Vk=�3V2=3
m V

1=3
L

��n if

Vm < 2VL:

2.3 Case jVL=�12VL�j < 1

For small cosmological constant VL, expand the integral in equation (1) as a power series in VL:

g�Vm;VL� �
5Vm

2

�1

0

da

a3�Vma23 1Vka22�3=2
X

1

n�0

�2�n�3=2�n
n!

VL

Vma23 1Vka22

� �n

: �18�

Again, each term of the sum on the right-hand side of equation (18) integrates to an incomplete Beta function. The cases of positive

and negative curvature density Vk must be distinguished. For an open universe, Vk . 0;

g�Vm;VL� �
5V2

m

2V
5=2
k

X

1

n�0

�2�n�3=2�n
n!

V
2
mVL

V
3
k

 !n

B
Vk

Vm 1Vk

;
5

2
1 3n;212 2n

� �

; �19�

3A somewhat lengthy calculation, confirmed by numerical experiment, shows that the asymptotic (i.e. after many iterations) point of neutral stability of the

recurrence B�x; a; b� ! B�x; a�m; a� n�; where m and n are positive or negative integers, occurs at that unique point x [ �0; 1� satisfying

xm�12 x�n � ^
mmnn

�m� n�m�n :
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while for a closed universe, Vk , 0;

g�Vm;VL� �
5V2

m

2 jVkj5=2
X

1

n�0

�2�n�3=2�n
n!

V
2
mVL

jVkj3
� �n

B
jVkj
Vm

;
5

2
1 3n;2

1

2
2 n

� �

: �20�

Here the Beta functions in successive terms can be computed recursively from a single Beta function. In equation (19) �Vk . 0�; the
recursion is stable from n � 0 upward or large n downward as the argument Vk=�Vm 1Vk� is greater than or less than 3/4. In equation (20)

�Vk , 0�; the recursion is stable from n=0 upward or large n downward as the argument jVkj=Vm is greater than or less than �3=2� �
��
���

2
p

1 1�1=3 2 �
���

2
p

1 1�21=3� � 0:894:

The convergence of the expansions (19) and (20) is determined by the convergence of the parent expansion (18) at the place where the

expansion variable VL=�Vma
23 1Vka

22� attains its largest magnitude over the integration range a [ �0; 1�; which occurs at a � 1 for both

positive and negative Vk. It follows that successive terms of the expansions (19) and (20) decrease by <VL=�Vm 1Vk�; and n terms will

yield a precision of <�VL=�Vm 1Vk��n:

2.4 Case jVm=�12Vm�j < 1

For small matter density Vm, a power-series expansion of the integral in equation (1) is again possible, but the integral must be split into two

parts to ensure convergence of the integrand over the full range a [ �0; 1� of the integration variable. Define the cosmic scale factor aeq at

matter±curvature `equality' to be where jVma
23
eq =�Vka

22
eq 1VL�j � jVka

22
eq =�Vma

23
eq 1VL�j; and similarly that at matter±vacuum

`equality' to be where jVma
23
eq =�Vka

22
eq 1VL�j � jVL=�Vma

23
eq 1Vka

22
eq �j: These conditions reduce to Vma

23
eq � Vka

22
eq if Vk . 0; and

Vma
23
eq � VL if VL . 0: A good procedure is to use one of the methods of the previous two subsections, Sections 2.2 or 2.3, to integrate up

to the cosmic scalefactor aeq at matter±curvature or matter±vacuum `equality', whichever is later (larger aeq) since the later epoch yields a

more convergent Vm series, and then to complete the integral using the small Vm expansion:

g�Vm;VL� � G�aeq�1
5Vm

2

�1

aeq

da

a3�Vka22 1VL�3=2
X

1

n�0

�2�n�3=2�n
n!

Vma
23

Vka22 1VL

� �n

: �21�

The first term on the right-hand side of equation (21) is the integral up to aeq, evaluated by one of the methods of the previous two

subsections:

G�aeq� ;
5Vm

2

�aeq

0

da

a3�Vma23 1Vka22 1VL�3=2
� aeq

H�aeq�
g�Vm�aeq�;VL�aeq��; �22�

with Vm�a� � Vma
23=H�a�2; Vk�a� � Vka

22=H�a�2; VL�a� � VL=H�a�2; and H(a) given by equation (2).

As in the previous two subsections, each term of the sum in the second term on the right-hand side of equation (21) integrates to an

incomplete Beta function. The cases of positive and negative curvature and vacuum densities must be distinguished. For an open universe

with a positive cosmological constant, Vk . 0 and VL . 0;

g�Vm;VL� � G�aeq�1
5Vm

4VkV
1=2
L

X

1

n�0

�2�n�3=2�n
n!

VmV
1=2
L

V
3=2
k

 !n

B
Vka

22

Vka22 1VL

; 11
3n

2
;
1

2
2

n

2

� �� �1

a�aeq

; �23�

while for an open universe with a negative cosmological constant, Vk . 0 and VL , 0;

g�Vm;VL� � G�aeq�1
5Vm

4VkjVLj1=2
X

1

n�0

�2�n�3=2�n
n!

VmjVLj1=2

V
3=2
k

 !n

B
jVLj
Vka22

;
1

2
2

n

2
;2

1

2
2 n

� �� �1

a�aeq

: �24�

The expression for a closed universe with positive cosmological constant, Vk , 0 and VL . 0; turns out never to be useful, but for

reference it is

g�Vm;VL� � G�aeq�1
5Vm

4 jVkjV1=2
L

X

1

n�0

�2�n�3=2�n
n!

VmV
1=2
L

jVkj3=2

 !n

B
jVkja22

VL

; 11
3n

2
;2

1

2
2 n

� �� �1

a�aeq

: �25�

The fourth option, a closed universe with negative cosmological constant, Vk , 0 and VL , 0; does not yield a convergent expansion in

Vm. The small Vm expressions (23)±(25) are more complicated than the small Vk and small VL expressions obtained in the previous two

subsections, since equations (23)±(25) each involve a sum of not one but three expansions, one to evaluate the first term on the right hand

side, one to evaluate the second term at a � aeq; and a third to evaluate the second term at a � 1:

It will now be argued that a small Vm expansion is advantageous only in the case where matter±vacuum equality occurs after matter±

curvature equality. In particular, this has the consequence that the expansion (25) is never useful. Suppose that matter±curvature equality,

jVma
23
eq =�Vka

22
eq 1VL�j � jVka

22
eq =�Vma

23
eq 1VL�j; occurs after matter±vacuum equality. Then the first term in equation (21), G(aeq),

would be evaluated by the small Vk method, equation (16) or (17). However, if matter±curvature equality occurs after matter±vacuum

equality, then it is also true that matter±curvature equality occurs after (larger cosmic scalefactor a) the transition, atVma
23 � 2VL; from a
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decelerating to an accelerating universe. As discussed in the last paragraph of Section 2.2, the convergence of the small Vk expansions (16)

and (17) are then determined by the convergence of the parent equation (15) at the deceleration±acceleration transition, not by its

convergence at a later epoch. Thus, if matter±curvature equality occurs after matter±vacuum equality, then there is no point in splitting the

integral at aeq as in equation (21); one might as well use the small Vk expressions (16) or (17) all the way to a � 1; since they converge

just as fast at a � 1 as at a � aeq: In fact the small Vk expressions (16) and (17) are computationally faster than the small Vm expansions

(23)±(25), because the former involve a single sum whereas the latter involve three.

The conclusion from the previous paragraph is that a small Vm expansion is advantageous only in the case where matter±vacuum

equality occurs after matter±curvature equality. Examination of evolution in the Vm±VL plane reveals that matter±vacuum equality

happens after matter±curvature equality only if Vk . 0 (conversely, matter±curvature equality happens after matter±vacuum equality only

if VL . 0�: Thus, in the cases where the small Vm expansion is useful, the relevant expressions to use are (23) or (24) with the first term,

G(aeq), being evaluated by the small VL expansion (19) with Vk . 0:

The Beta functions in successive terms of the expansions in the second term on the right-hand sides of equations (23)±(25) can be

computed recursively from two Beta functions. In equation (23) �Vk . 0 and VL . 0�; the recursion is stable from n � 0 upward or large n

downward as the argument Vka
22=�Vka

22 1VL� (with a � aeq or 1) is greater than or less than �3=2���
���

2
p

1 1�1=3 2 �
���

2
p

1 1�21=3� �
0:894; the same as for equation (20). In equation (24) �Vk . 0 and VL , 0�; the recursion is stable from n � 0 upward in all cases. In

equation (25) �Vk , 0 and VL . 0�; the recursion is stable from n � 0 upward or large n downward as the argument jVkja22=VL is greater

than or less than 3/4, the same as for equation (19).

The convergence of the expansions (23)±(25) is determined by the convergence of the parent expansion (21) at the place where the

expansion variable Vma
23=�Vka

22 1VL� attains its largest magnitude over the integration range a [ �aeq; 1�; which occurs at a � aeq in

all cases. It follows that successive terms in the expansions (23)±(25) decrease by < Vma
23
eq =�Vka

22
eq 1VL�; and n terms will yield a

precision of < �Vma
23
eq =�Vka

22
eq 1VL��n:

2.5 Which formula to use?

The various formulae (16), (17), (19), (20), and (23)±(25) converge over overlapping ranges of Vm and VL. A sensible strategy would be to

choose the expression that converges most rapidly.

If Vk < 0 (closed universe), then use the small Vk (Section 2.2) or small VL (Section 2.3) methods as jVk=�12Vk�j or

|VL=�12VL�| is smallest.

If Vk . 0 (open universe), then use the small Vk (Section 2.2), small VL (Section 2.3), or small Vm (Section 2.4) methods as

jVk=�12Vk�j; jVL=�12VL�j; or jVm=�12Vm�j is smallest. If jVm=�12Vm�j is smallest, then determine which occurs later (larger aeq),

matter±curvature equality jVma
23
eq =�Vka

22
eq 1VL�j � jVka

22
eq =�Vma

23
eq 1VL�j; or matter±vacuum equality jVma

23
eq =�Vka

22
eq 1VL�j �

jVL=�Vma
23
eq 1Vka

22
eq �j: If the former, then revert to using the small Vk method, Section 2.2. If the latter, then use one of the small Vm

expressions (23) or (24) with the first term, G(aeq), equation (22), evaluated by the small VL expression (19).

3 COLLAPS ING UNIVERSE

The procedure proposed in this paper fails for universes that are collapsing rather than expanding. As a universe approaches turnaround, the

Hubble parameter, and consequently the critical density, approaches zero, causing one or more of Vm, Vk, and VL to tend to ^1. In such

cases the expansions presented herein converge ever more slowly.

It is not clear how to adapt the method to deal with universes near turnaround and thereafter, or indeed whether this is possible.

4 SUMMARY

Formulae suitable for numerical evaluation have been presented for the linear growth factor g�Vm;VL� ; D=a and its logarithmic

derivative f �Vm;VL� ; d lnD=d ln a in expanding FRW universes with arbitrary matter and vacuum densities Vm and VL. A fortran

package growl implementing these formulae is available at http://casa.colorado.edu/,ajsh/growl/.
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