
Generating Spatial Point Processes

March 7, 2007

1 Introduction

Any stochastic process may be described by a probability distribution, and
may be thought of as the mapping of a sequence of random variables to a
new set of states. Examples of systems that may be modelled by a stochastic
process, are stock markets, images, brownian motion, landscapes, galaxies
and cosmological density fields. Although the term process first brings to
mind a time series it can be generalized to any suitable parameter space.
When the space is a spatial volume we refer to its as a spatial random field.

A point process is a form of stochastic or random process. It may be
thought of as a set of random points in a space, with a certain probability
defined over the same space (Formally it should be called a point field, but
let us just use both names as stochastic variation on the theme). We restrict
ourselves to point processes in <3, and to the bounded region in which a point
field is located; the window. Our window here will the unit cube. Many other
common windows are being used, for example the observationally defined
pie slices. In general we can broadly distinguish two kinds of point process,
homogeneous and inhomogeneous process. If the intensity is not a function
of location x, then we speak of a homogeneous poisson process.

For astronomy point processes are very relevant, many observables may be
modelled by them. For example the spatial distribution of stars and galaxies
can be thought of as a point process. Also X-ray observations generate a
point process: they consist of a discrete number of highly energetic photons.
They define a limited and discrete set of spatially distributed points at the
locations of incidence.
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1.1 Poisson Field

One of the simplest and fundamental point processes is the spatial Poisson
point process. The points are stochastically independent and the probabil-
ity of the number of points N(A) in a region A, is given by the Poisson
distribution:

P (N(A) = k) =
(λV (A))k

k!
e−λV (A) (1)

Here λ is the intensity of the point distribution, which is the mean of the
distribution. Note: In general the mean of the distribution is definded as
the average value at a certain point in space over many realizations. Only
if one assumes Ergodicity, the spatial mean is equal to the average of the
probability distribution. Ergodicity is of utmost importance to cosmology as
our Universe is the only one sample we have.

Generating a Poisson field is straightforward. For a realization in a win-
dow A, determine with a random poisson deviate, the number of points lying
in A. Distribute these points randomly over the window. This can be done
by using a uniform random number generator. In the Cartesian system each
coordinate is just one random deviate, though in other coordinate system
this might require a volume preserving mapping. Remember that for distri-
butions we have the following rule for coordinate transformations.

p(y1, y2, ...)dy1dy2... = p(x1, x2, ...)
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Note that if we had fixed the total of number of points in A a priori, then
strictly speaking we would be generating a binomial point field. In practice,
for large N, this will be approximately the same.

1.2 General Poisson Field

The previous process may be generalized by letting λ be a function of x.
This is also called the inhomogeneous poisson point process. The probability
of finding N(A) points is again given by equation (1), with the substition of
λV (A) by;

Λ(A) =

∫

A

λ(x)dx (3)
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1.3 Intermezzo: Galaxies as a Poisson Process

We may node make the connection between a cosmological density field and
the discrete spatial distribution of galaxies. Imagine that the density field
takes the role as intensity function for an inhomogeneous point process. Then
the points are considered to be the galaxies.

λ(x) = n̄[1 + δ((x))] (4)

In cosmology this is called the Poisson model. It is a doubly stochastic
process both the density field and the following point process are random
processess.

1.4 Segment Cox Process

Another example of a double stochastic random field are the Cox processes.
The segment process is a very simple version of a Cox process. Here nee-
dles are radomly thrown over space, with random positions and orientations.
Subsequently we sample points on each segment, see Fig. 1a . So this process
of two poisson process one for the needle and the other for the points on the
needle. The generator consists of three steps.

1. First draw a random position,

2. Then choose a random orientation

3. and lastly populate the segment with random points.

Note that all of these steps can be done by using uniform number generators.

1.5 Matern Process

The Matern process is much like segment Cox process. Instead of randomly
distributed segments, spheres of fixed size R are generated. Each sphere is
subsampled with a Poisson point distribution, with mean µ, see Figure 1b.
The Matern processes can be easily modified be changing the spatial point
distribution of each cluster. For example we could also have used a normal
distribution at each position (Thomas process).

3



a b

Figure 1: An illustration of the generation of a segment cox process (a) and
a matern process (b).

1.6 Soneira-Peebles Fractal

The Soneira-Peebles model is a fractal-like pont distribution involving hierar-
chically embedded levels of ever larger point density, see Figure (2)a. It was
introduced by Soneira and Peebles to model the galaxy distribution obey-
ing various clustering measures. A realization is generated in the following
manner.

1. The starting point is a level-0 sphere of radius R.

2. In this sphere η level-1 spheres are placed with radius R/λ and λ> 1.
The new spheres are placed at a random position inside the level-0
circle, such that their centers fall inside the original level-0 sphere.

3. Within each of these η level-1 spheres, one places η level-2 spheres of
radius R/λ2.

4. This process is repeated until one ends up with in total ηL level-L
spheres of radius R/λL. At the center of each of these level-L spheres
a point is placed.

One therefore ends up with in total ηL points, which in the Soneira-Peebles
model represent galaxies. This procedure is illustrated in the top panel of
Figure 2.
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(a) The Soneira-Peeblesmodel. Inside a level-0sphere η

level-1circlesare placedwitha radiuswhichissmaller

bya fixedfactor. Thisprocessisrepeateduntilone ends

upwithηL level-L circles. Atthe centerof these level-

L circlesηL pointsare placed, whichformthe resulting

Soneira-Peeblespointdistribution.

η=2: η=4 :

L=4:L=2:

λ =2: λ =4 :

(b) Thephysicalmeaningofthethree definingparameters

η, L andλ of the Soneira-Peeblesmodel. The upperrow

showsthe effectof varyingη, thenumberofcircleswhich

isplacedineachcircle. The centralrow showsthe effect

of varyingL, the totalnumberof levels. The bottomrow

showsthe effectof varyingλ, the ratioof the radiusof

eachcircle withthe radiusof subsequentcirclesof one

levelhigher.

Figure 2: Definition and Parameters of the Soneira-Peebles model

The Soneira-Peebles model is controlled through three parameters, η,
L and λ. The effect of varying these parameters on the resulting point
distribution is illustrated in the 2nd to 4th row of Figure 2. For a given
number of points, η determines the dynamic range of the resulting point
distribution. For a small value of η, many levels are needed to reach a fixed
number of points, while a large value of η results in a smaller number of
levels. A small value of η also results in a smaller filling fraction of space
with spheres than a high value of η (2nd row in Figure 2). L denotes the total
number of levels and therefore determines the range of densities and scales
in the resulting point distribution. For a fixed value of η, L also determines
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the total number of points (third row in Figure 2). Finally, for given values
of η and L, λ determines the range of spatial scales. A value of λ close
to 1 means that subsequent spheres of higher levels are of comparable size.
Values of λ much larger than one mean that each subsequent level consists
of spheres which are significantly smaller than the spheres in the preceding
level (bottom row in Figure 2).

An important property of the Soneira-Peebles model is that it is one of
the few analytic self-similar models of the galaxy distribution for which the
two-point correlation function can be analytically evaluated.
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2 Tasks

The intention of this computer task is that you learn to generate a couple of
random point processes on the computer. In upcoming computer tutorials we
will ask you to analyze these data sets. And compare your ’measurements’
with the theoretical predicted results.

• Make a program that generates a homogeneous Poisson Point Process
in the unit cube with intensity λ (you may assume that N is large).
Produce a xy scatter plot for λ = 100000.

• Write a program that generates a random deviate drawn from a poisson
process, with mean µ. (Hint: you may want to consult chapter 7 of
numerical recipes). For µ = 6 draw 1000 deviates and make a plot of
the histogram and overplot the theoretical distribution.

• Write a program that generates random points on the surface of a
sphere, and in a sphere. For a sphere of unit diameter and 10000 point
create an xy scatter plot and a yz scatter plot. Show with the radial
distribution that you have produced a uniform distribution.

• Make a program that produces; the segment Cox process, the Matern
point distribution and the Soneira-Peebles fractal.

• Plot for the following parameters xy scatter plots that illustrates the
above point sets.

– Segment: λs = 1000, l = 0.1 µ = 12

– Matern : λc = 1000, r = 0.05 N = 12
Matern : λs = 1000, r = 0.05 N = 100

– Soneira-Peebles: λ = 6, η = 3 L = 6
Soneira-Peebles: λ = 3, η = 1.7 L = 10
Soneira-Peebles: λ = 4, η = 1.9 L = 8
Soneira-Peebles: λ = 2, η = 1.5 L = 15
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