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The Cosmic Structure

Matter clustered on large scales — large voids (50 I\/Ipc/h In Bootes)

CfA2
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Structure displayed by old and “Cosmic Web” produced by

new galaxy surveys . . .
J y Y N-body cosmological simulation
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Fractal voids

Mandelbrot introduced tremas = fractal holes

® Morphology related to void structure — lacunarity

B Same dimension fractals can have different void structure

Simple in one dimension:

(@)

Three Cantor type fractals and — —  —
0 T (b)

theirgaps .o cee memas
I (c)
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® Mandelbrot: number of length U > w voids fulfill
N(U > u) < u™ P & Zipf's law

¥ General Zipf's law: size o< rank™ .
® N(U > u)is the rank: u o< rank ™/

W Zipf’'s law is equivalent to the probability of finding a given size be a

power law.
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¥ Mandelbrot and Falconer’s “cut-out sets”: obtained from an open

Interval by removing an infinite sequence of disjoint open intervals.
¥ The box-counting dimension depends only on the void set.
® Every one-dimensional fractal is a cut-out set.
® Theorem: £/, with a sequence of ordered void intervals

lp (k=1,2,...),suchthat Y -, {x = |E], has

dimp F = —1/ lim (log ¢,/ log k) .

k— 00

Equivalent to Zipf's law £;. ~ k_l/D, D =dimg E.
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Example: Cantor set

Cantor set obtained by removing the sequence of (disjoint) open

middle-third intervals.

B Length (;, = (1/3)%7 on—1 <k<o" = logly __

log k
nlog(1/3) : _ log?2
(n—1)log 2 = dimp I = log 3 -

B |n this case, dimg FF = dimpg F, but this does not hold in

general. Take the set £/ =
{1/3,1/3+1/9,1/3+1/941/9,1/34+1/9+1/94+1/27,...}.

It has dimy £ = 0, since it is countable.

¥ In general, arrangement of voids matters.
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Fractal voids in more than one dimension

B Voids in d > 1 can have different shapes; but dimpg E' still

depends only on the sequence of sizes.

® Ind > 1, cut-out sets must have topological codimension one:

Apollonian packing of disks Limit set of a Kleinian group
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Voids In arbitrary fractals

¥ Gaite & Manrubia, 2002, MNRAS: Voids of constant shape: discs,

squares, etc.
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Random Cantor fractal, its voids, and Zipf’s law

® Drawback: Constructed cut-out set can have larger dimension.

With discs, we need dim gfractal > dim gcut-out set (1.31).

Solutions: ¢ Voids must touch the fractal.
¢ Voids of arbitrary shape — void finders.
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General cut-out sets

Voids of arbitrary shape can have fractal boundary = too general.

® Simple restriction: convex voids (as in, e.g., the “Voronoi foam” of

Icke & van de Weygaert, 1987).

® Theorem (Gaite, 2006, Physica D): Cut-out set £/ € R with
d —1 < dimp E < d and convex non-degenerate voids fulfill
Zipf's law with exponent d/ dimp F.

Non-degenerate (in d = 3): shape-coefficient a%/v,% IS bounded.

¥ Furthermore: for a statistically self-similar cut-out set,

dimyg £ = dimpg E almost surely.

The Hierarchy of Cosmic Voids — p.10/25



Void finder based on discrete geometry

Computational problem: in a finite set of points, find filling voids of
variable shape — criterium for separation.
Methods of discrete stochastic geometry: Delaunay and Voronoi

tessellations

.
12, 5|
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Consider a set of points .
(in the plane): J
2.5/

o

O 2 4 6 8 10 12 14
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Void finder based on discrete geometry

Delaunay

Convex hull . .
triangulation Voronol tesselation

® The circle circunscribed to each Delaunay triangle does not
contain more points of the set.

® The Delaunay triangulation maximizes the minimum angles.

Delaunay triangulation <— Voronol tesselation.
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Void finder method

One criterium to join basic voids (Gaite, 2005, EPJB):
Circles circumscribed to two
q\
adjacent triangles, with the ‘r"
segment linking their centers | Vi

and the radius of the smaller

circle — overlap parameter f
IS a bound to the ratio of both

lengths.
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Application to self-similar fractal
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Random fractal: Example 1
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Random fractal: Example 1
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Delaunay triangulation

of the fractal set:




Random fractal: Example 1

Largest 500 voids with
f = 0.3 overlap:
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Random fractal: Example 1

AN
251 0.01 | -
20!
0. 0001 |
15|
10!
1. x10°% |
5,
5 10 15 50 23 +Logr 1 10 100 1000 10000

N(T) and fit D = 1 Zipf's law with slope —2/D

Compare:
® Scaling ranges of N (r) and A(R).

¥ Transition to homogeneity.
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Random fractal: Example 2

Random fractal (9 216 points) with D = 1.26

A f - 0.3
Log N(r ) oL
25| 0.01 | R,
20 0.001 |
15|
0. 0001 |
10!
0. 00001 |
5,
19 + Logr 1. x107° L

25 5 7.5 10 12.5 15 17.5 1 10 100 1000 10000 1

N(r)andfit D = 1.26 Zipf’s law with slope —2/1.26
® Topological dimension 0 = voids ill-defined.
¥ Cut-out set = Fractal + boundary of voids.

® Minimum value of D is 1 (boundary of voids).
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Transition to homogeneity

If the fractal becomes homogeneous ([J = 3) on large scales =

flattening of Zipf’s law in the rank-ordering of voids.

Transition to homogeneity in Example 1:

Flattening of the Zipf law and

voids of a random distribution

0.01 ;

of points (dashed line) having o. o001
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Fractal measures

Basic measure is the number-radius relation N (r) = B P,

r < ro (scale of transition to homogeneity 1) — 3).

® Gamma function (two-point correlation):

1 dN(r) BD ,_,
D(r) = _ 27 ,p-3,
() Amr?  dr A "

One definesy =3 — D > 0.

B Gamma-star function:

N(T) 35 D—3
— = —7 .
drr3 /3 4w

= (r)
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Scaling of galaxy clusters and voids
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F(T) of SDSS VL sample. The Zipf law for a 2dF VL
ro ~ 15 Mpc (Tikhonov). sample (Tikhonov). Slope

Slope v — D ~ 2 2= D ~72
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Scaling of galaxy clusters and voids

Rank ordering of local “minivoids” (Tikhonov & Karechentsev, 2006,

ApJd):
1 Lgcal Volume 355 galaxies with distances < 7.5Mpc
mé }“.‘5.\ z=144  D=2.08
CON \
S S
Slope v = D ~ 2. No Six largest minivoids within the
transition to homogeneity sphere of radius 7.5 Mpc
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Voids in a multifractal

Full dark-matter distribution is multifractal (Gaite, 2007, ApJ) =

various (halo) populations with different clustering and fractal
dimension.

Two halos populations in the a-a-f. ' |
GIF2 simulation (massive Iin red S NI
and light in blue). More clustered R 5 LERRR g

massive halos leave larger voids. Lo B
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.. .". R ..
L + .

s b .
HEON 8 s

¥ Faint galaxies in voids < galaxy formation (Peebles, 2001).

¥ Distribution of dark matter inside voids (Gottlober et al, 2003).
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SUMMARY and CONCLUSIONS

Clustering = hierarchy of voids. Scaling voids <« Zipf’s law.

¥ Rigorous definition of fractal voids — cut-out sets, with topological

codimension 1.
W Zipf’'s law flattening for largest voids — transition to homogeneity.

® Void finders — voids in fractals with topological codimension > 1

(addition of boundaries).

¥ Recent analysis: large voids which fulfill Zipf’s law but yield

minimum D = 2.
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