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The Cosmic Structure

Matter clustered on large scales → large voids (50 Mpc/h in Boötes)

Structure displayed by old and

new galaxy surveys
“Cosmic Web” produced by

N-body cosmological simulation
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Fractal voids

Mandelbrot introduced tremas = fractal holes

� Morphology related to void structure → lacunarity

� Same dimension fractals can have different void structure

Simple in one dimension:

Three Cantor type fractals and

their gaps

(a)

(b)

(c)
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Zipf’s law

� Mandelbrot: number of length U > u voids fulfill

N(U > u) ∝ u−D ⇔ Zipf’s law

� General Zipf’s law: size ∝ rank−α.

� N(U > u) is the rank: u ∝ rank−1/D.

� Zipf’s law is equivalent to the probability of finding a given size be a

power law.
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Cut-out sets

� Mandelbrot and Falconer’s “cut-out sets”: obtained from an open

interval by removing an infinite sequence of disjoint open intervals.

� The box-counting dimension depends only on the void set.

� Every one-dimensional fractal is a cut-out set.

� Theorem: E, with a sequence of ordered void intervals

ℓk (k = 1, 2, . . .), such that
∑∞

k=1 ℓk = |E|, has

dimB E = −1/ lim
k→∞

(log ℓk/ log k) .

Equivalent to Zipf’s law ℓk ∼ k−1/D, D = dimB E.
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Example: Cantor set

� Cantor set obtained by removing the sequence of (disjoint) open

middle-third intervals.

� Length ℓk = (1/3)n, 2n−1 ≤ k < 2n ⇒ log ℓk

log k =
n log(1/3)
(n−1) log 2 ⇒ dimB E = log 2

log 3 .

� In this case, dimB E = dimH E, but this does not hold in

general. Take the set E =

{1/3, 1/3+1/9, 1/3+1/9+1/9, 1/3+1/9+1/9+1/27, . . .}.

It has dimH E = 0, since it is countable.

� In general, arrangement of voids matters.
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Fractal voids in more than one dimension

� Voids in d > 1 can have different shapes; but dimB E still

depends only on the sequence of sizes.

� In d > 1, cut-out sets must have topological codimension one:

curves in d = 2, surfaces in d = 3, etc.

Apollonian packing of disks Limit set of a Kleinian group
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Voids in arbitrary fractals

� Gaite & Manrubia, 2002, MNRAS: Voids of constant shape: discs,

squares, etc.
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Random Cantor fractal, its voids, and Zipf’s law

� Drawback: Constructed cut-out set can have larger dimension.

With discs, we need dimB fractal > dimBcut-out set (1.31).

Solutions: � Voids must touch the fractal.
� Voids of arbitrary shape → void finders.
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General cut-out sets

� Voids of arbitrary shape can have fractal boundary ⇒ too general.

� Simple restriction: convex voids (as in, e.g., the “Voronoi foam” of

Icke & van de Weygaert, 1987).

� Theorem (Gaite, 2006, Physica D): Cut-out set E ∈ R
d with

d − 1 ≤ dimB E < d and convex non-degenerate voids fulfill

Zipf’s law with exponent d/dimB E.

Non-degenerate (in d = 3): shape-coefficient a3
k/v

2
k is bounded.

� Furthermore: for a statistically self-similar cut-out set,

dimH E = dimB E almost surely.
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Void finder based on discrete geometry

Computational problem: in a finite set of points, find filling voids of

variable shape → criterium for separation.

Methods of discrete stochastic geometry: Delaunay and Voronoi

tessellations

Consider a set of points

(in the plane):
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Void finder based on discrete geometry
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Voronoi tesselation

� The circle circunscribed to each Delaunay triangle does not

contain more points of the set.

� The Delaunay triangulation maximizes the minimum angles.

Delaunay triangulation ↔ Voronoi tesselation.
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Void finder method

One criterium to join basic voids (Gaite, 2005, EPJB):

Circles circumscribed to two

adjacent triangles, with the

segment linking their centers

and the radius of the smaller

circle → overlap parameter f

is a bound to the ratio of both

lengths.
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Application to self-similar fractal

1 10 100 1000 10000
R1. · 10-6

0.00001

0.0001

0.001

0.01

0.1

Area f = 0.7

1 10 100 1000 10000
R1. · 10-6

0.00001

0.0001

0.001

0.01

0.1

Area f = 1.2

The Hierarchy of Cosmic Voids – p.14/25



Random fractal: Example 1

Random Cantor fractal

(12 288 points) with

D = 1 and transition to

homogeneity.
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Random fractal: Example 1

Delaunay triangulation

of the fractal set:
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Random fractal: Example 1

Largest 500 voids with

f = 0.3 overlap:
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Random fractal: Example 1
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Compare:

� Scaling ranges of N(r) and Λ(R).

� Transition to homogeneity.
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Random fractal: Example 2

Random fractal (9 216 points) with D = 1.26

2.5 5 7.5 10 12.5 15 17.5
19 + Log r

5

10

15

20

25

Log NHrL

N(r) and fit D = 1.26

1 10 100 1000 10000
R1. ´ 10-6

0.00001

0.0001

0.001

0.01

L f = 0.3

Zipf’s law with slope −2/1.26

� Topological dimension 0 ⇒ voids ill-defined.

� Cut-out set = Fractal + boundary of voids.

� Minimum value of D is 1 (boundary of voids).
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Transition to homogeneity

If the fractal becomes homogeneous (D = 3) on large scales ⇒

flattening of Zipf’s law in the rank-ordering of voids.

Transition to homogeneity in Example 1:

Flattening of the Zipf law and

voids of a random distribution

of points (dashed line) having

small-rank voids of the same

size (f = 0.3 for both).
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Fractal measures

Basic measure is the number-radius relation N(r) = B rD,

r < r0 (scale of transition to homogeneity D → 3).

� Gamma function (two-point correlation):

Γ(r) =
1

4πr2

dN(r)

dr
=

BD

4π
rD−3.

One defines γ = 3 − D > 0.

� Gamma-star function:

Γ∗(r) =
N(r)

4πr3/3
=

3B

4π
rD−3.
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Scaling of galaxy clusters and voids

Γ(r) of SDSS VL sample.

r0 ≃ 15 Mpc (Tikhonov).

Slope γ → D ≃ 2

The Zipf law for a 2dF VL

sample (Tikhonov). Slope

z ⇒ D ≃ 2
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Scaling of galaxy clusters and voids

Rank ordering of local “minivoids” (Tikhonov & Karechentsev, 2006,

ApJ):

Slope γ ⇒ D ≃ 2. No

transition to homogeneity

Six largest minivoids within the

sphere of radius 7.5 Mpc
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Voids in a multifractal

Full dark-matter distribution is multifractal (Gaite, 2007, ApJ) ⇒

various (halo) populations with different clustering and fractal

dimension.

Two halos populations in the

GIF2 simulation (massive in red

and light in blue). More clustered

massive halos leave larger voids.

� Faint galaxies in voids ↔ galaxy formation (Peebles, 2001).

� Distribution of dark matter inside voids (Gottlöber et al, 2003).
The Hierarchy of Cosmic Voids – p.24/25



SUMMARY and CONCLUSIONS

� Clustering ⇒ hierarchy of voids. Scaling voids ↔ Zipf’s law.

� Rigorous definition of fractal voids → cut-out sets, with topological

codimension 1.

� Zipf’s law flattening for largest voids → transition to homogeneity.

� Void finders → voids in fractals with topological codimension ≥ 1

(addition of boundaries).

� Recent analysis: large voids which fulfill Zipf’s law but yield

minimum D = 2.
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