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Motivation

Non-perturbative quantum gravity — (at least ... ) two alternative functional
integral approaches (analogous to path-integral quantization): —— Renate Loll

1. Discretized Regge calculus:

— (dynamically) varying link lengths
— fixed connectivities of simplicial lattices (regular or random)
— is matter part influenced by (quenched) random lattices?

2. Dynamical triangulations (DTRS):

— fixed link lengths
— (dynamically) varying graph connectivities
— how does matter part behave for frozen-in (quenched) connectivities?

Statistical physics point of view: Quenched vs annealed connectivity disorder

[1]
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Random Graphs and Lattices

Locally varying connectivity of random graphs as special case of quenched
(correlated) disorder applied to spin models.

Voronoi-Delaunay triangulations:

e drop points randomly on the plane, construct Wigner-Voronoi cells and the
corresponding dual bonds of the Delaunay triangulation

e Hausdorff dimension dj, = 2

¢> quantum gravity graphs:
e dual graphs to dynamical triangulations

e graphs decompose into a tree of baby universes, Hausdorff dimension dj, = 4

2]
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Delaunay Triangulations/Dual Voronoi Graphs

8]
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Link-Flip Moves for Dynamical Triangulations

<D - <> — A
(2,2) (1,3), (3,1)

~ZY A

Or using the Tutte algorithm

[4]
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Dynamical Triangulations/Dual Planar ¢° Graphs

[5]
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Connectivity Properties
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Coordination-number distribution P(q): Monotonic vs peaked; different tail
behaviour
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Spin Models and Phase Transitions

Ising model of ferromagnetism:

Z = exp(—Hy/kpT)
{oi}

—JZO'zO'] hZO’z : o, = =1

(i3)

with Hamiltonian

T' = temperature, h = external magnetic field, kg = Boltzmann's constant

Potts models:

HPotts:_JZdjzaj ) Uiela'”vq
(i7)

05,0; = Kronecker symbol (¢ = 2 < Ising)

[7]
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Phase Transitions

First-Order Transition Second-Order Transition

1 1 oc(1-T/T )

Am

ny C’X

jumps, finite correlation length  singularities, diverging correlation length

8]
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Critical Phenomena

Correlation length:
E=EIL-T/T| " +...

Magnetisation:
m =mo(1 —T/T.)" +... (T <T.)

Susceptibility:
X=xoll =T/T.|77+...

Specific heat:
C = Creg + C()|1 — T/TC|_Q + ...

v, 3, v, a: universal critical exponents

9]
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Table of critical exponents:

model v Q I} y
2D lIsing 1 0 (log) 1/8 7/4
3D Ising*) 0.63005(18)  0.10985  0.32648  1.23717(28)
2D g = 3 Potts 5/6 1/3 1/9 13/9
2D ¢ = 4 Potts 2/3 2/3 1/12 7/6

*) “world average” [M. Weigel, WJ, Phys. Rev. B62 (2000) 6343]

2D Potts with ¢ > 5: first-order phase transition of increasing strength (measured
by latent heat or interface tension)

[10]
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Quenched Connectivity Disorder

Static random lattices <+ quenched disorder in coordination numbers 777

If YES, one would expect:

1. Pure system (regular lattice) with a 2nd order transition. Uncorrelated
quenched disorder is for
< 0 irrelevant
a{ =0 marginal
> (0 relevant

perturbation (Harris criterion), governed for o > 0 by a “random” fixed point
characterized by a new set of critical exponents.

2. Pure system (regular lattice) exhibits 1st order transition. Uncorrelated
quenched disorder induces a

softening to 2nd order transition

Typical case verifying this scenario: random-bond Ising and Potts models

[11]
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A Possible Refinement: Disorder Correlations

Disorder

/\

Annealed

Uncorrelated
Harris criterion:

a>0

- random bond model

Quenched

Correlated
Luck criterion:
(1-a)/(2—o) < B

- QG graphs
- Voronoi/Delaunay

[12]
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The Harris-Luck Criterion

Uncorrelated disorder:

Spin model with weak quenched bond disorder: J; ; = Jo(1+¢; ;). The fluctuation
of the mean coupling induces a fluctuation of effective critical temperatures:

o(J) = (J—Jo)/Jo~E Y2~ L2
o(t) = (t—tg)/ty~t¥/?
Disorder is relevant if (Harris, 1974):

dv/2<l1lsa=2—-dv>0

Generalization for correlated disorder (B “ball” of radius R):

J(R) = Jo
Jo

with the wandering exponent (3. Disorder is relevant if (Luck, 1993)

B>0.=1—-1/dv=(1-0a)/(2—a)

o(J) = B(R)P~! ~ [~41=0)

[13]
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Wandering Exponents [

Delaunay graphs (500000 sites)
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B =0.50096(55) S 1
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1/B(R)
o correlations decay faster than 1/R?
(presumably exponentially fast)
e g =2 =0 = marginal case
q=3 a= % = should be relevant!

M. Weigel, WJ, Phys. Rev. B69 (2004) 144208

¢ graphs (250000 sites)
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e strong, algebraically decaying correlations
between co-ordination numbers

o Ifaa>a. = (1-28)/(1—-70) =
—1.5149 = should be always relevant

[14]
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Potts Models on ¢’ Graphs

Annealed gravity graphs:

e exact large-N matrix model solutions

e continuum CFT predictions via KPZ formula (c¢: central charge)

V1—c+24A —+/1—c
V25 —c—+v1—c

A: bare conformal weight, A: gravitationally dressed conformal weight

A =

C~t ™™  m~th, t=|1-T/T,
1 -2A, A,
“=TTA PTICOA
Ising (c=1/2) | Ac | A, | « 6] v | 6
Onsager 1/2 | 1/16 0|1/8|7/4]| 15
KPZ 2/3|1/6 | —1|1/2| 2 | 5
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Quenched gravity graphs (replica trick):

(Flay = —[In Z]ay = [lim (2" — 1)/nlay = lim ([Z™]aw — 1)/

n—0 n—0

with

n—

[Zn]av — ZGZM Cij8iS;j _ Z Z Z SR 12 (i) Cijs Ek) (k)
|\ {s}

geometries {8(1) } {S(n) }

- av

= annealed ensemble of n matter copies with total central charge ¢ — nc in
KPZ formula. Replica limit n — 0O:

A:¢1+244A—1

Effective “dressing” due to quenched connectivity disorder
D.A. Johnston, WJ, Phys. Lett. B460 (1999) 271

[16]



Quenched Connectivity Disorder Wolfhard Janke

Theoretical Predictions: ¢-State Potts Model on Quenched ¢° Graphs

KPZ + replica trick predictions

0.7 , , , , , 0.76
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0.2 ‘ ‘ ‘ ‘ ‘ 0.68
1 2 3 4 1 2 3 4

[17]
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Monte Carlo (MC) Simulations

Example: Finite-size scaling study of the 3-state Potts model on 256 random
graph realizations with N = 500, 1000, 2000, 5000, and 10000 lattice sites.

Compute, e.g., average susceptibility [x]ay and
perform fits to

Xav = NV f (2)[1+ .. ]

400

350

with fractal dimension d, =4 and (6=1/T)

= (8= BN/

At maxima locations & = const., i.e.,

ﬁmax(N) — ﬁc + afN_l/th

[18]
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Recall the dynamical triangulations with d; =4

[19]
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Results for q = 3 [A. Wernecke, WJ, in preparation]

1/vdy, ~v/vdp, (1 —03)/vdy
regular 0.6 0.8666. . . 0.5333. ..
replica theory 0.4360. . . 0.6937. . . 0.2829. ..

MC max [O]a, || 0.4027(25) | 0.7395(53) | 0.2861(42)
MC [maxOl., || 0.407(12) | 0.7536(76) | 0.3022(82)
MC std 0.439(39) | 0.724(78) | 0.387(38)

e clear effect of quenched connectivity disorder
e but MC results do not quite fit KPZ + replica trick

e last two lines show results of alternative procedure: Find for each realization
the maxima and then average these maxima = distribution of maxima, i.e.,
also their standard deviation (std) = check of non-self-averaging properties!

e qualitatively similar to ¢ = 2 and 4 results [D.A. Johnston, WJ, Nucl. Phys. B578
[FS] (2000) 681]

w/o disorder: 2nd order 1st order
q =2 q=3 q=4 q = 10
1/vd, || 0.34(3) | 0.4027(25) | 0.42(2) || 0.58(2)
~/vdy, || 0.79(1) | 0.7395(53) | 0.75(1) | 0.71(1)

[20]
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Theoretical Predictions: ¢-State Potts Model on Quenched ¢° Graphs

KPZ + replica trick predictions
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3-State Potts Model on Voronoi Spheres

Previous studies:

No qualitative effects of connectivity disorder seen for:

e 2D Ising (a =0, i.e. marginal)

[M. Katoot, R. Villanova, WJ, Phys. Lett. B315 (1993) 412; Phys. Rev. B49 (1994) 9644]
e 2D 8-state Potts (first-order transition)

[R. Villanova, WJ, Phys. Lett. A209 (1995) 179]

Recent finite-size scaling study for 2D 3-state Potts:

e spins living on trivalent vertices of Voronoi tessellation
e N = 1k, bk, 10k, 20k, 40k, 60k, and 80k triangles

e 100 realizations per lattice size

e T =5 x 10* independent measurements each

e state-of-the-art histogram scaling analysis

[22]
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Results

FSS determination of v (A, N1/2V)

1000:— ' o ' T =
- e
i ° Inm ]
i o lnm
L \ A U
g 100:— B\S\S\E o _
5 - o °
: : A\A\A\A
< - 5
I R .
10F E
1 1 1 1 1 1 1 I| 1 1 1 1 1 1 1 I| :
107 107 10~

I/N

Fits yield v = 0.8335(26), in perfect agreement with the exact regular lattice
value of v = 5/6 = 0.8333 = no influence of quenched connectivity disorder
detectable (. . . at least up to size N = 80000).

[23]
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Similarly:

Fits yield again agreement with the exact regular lattice values

a/2v = 0.2201(27) ~ 1/5=0.2,
B/2v = 0.0617(14) ~ 1/15 = 0.0666,
~/2v = 0.8718(12) ~ 13/15 = 0.8666

M. Weigel, WJ, Acta Physica Polonica B34 (2003) 4891; and in preparation

[24]
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Ising Model on 3D Voronoi/Delaunay Tessellations

Delaunay random lattices with NV = 2000 up to 128 000 sites, 96 realisations

10°
0.10 | oo N =128000 S
58 N= 64000 102 |
G S s
o = 10
0.05 c—o N =128000
== N= 64000
10°
(a) (b)
0.00 et : : Bee08500060 107 : ‘ : ‘ ‘ ‘
10 20 30 40 0 10 20 30
coordination number g coordination number q

N = 128000: g = 15.5349(5) ~ 2 + 4872/35 = 15.5354. ..

[25]
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Critical Exponent v

9 T T T T T T T T
O (d In m¥dK),,
O (dIn m/dK),..
< (dU/dK),..,
A (dU/dK), .,
7 L 4
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O
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5 L 4
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InL

4 x 7 = 28 fits (goodness Q > 0.15):

1/v = 1.5875(12)
v = 0.6299(5)

"World average” for regular lattices:
v = 0.63005(18)

4.5

0.075 , , ,

O Cmax
(dm/dK)

max

0.074

0.072 |
1/v=1.5875
0.071 : ‘ : ‘ : ‘
0.000 0.005 0.010 0.015

L
Combined fit results:

K, = 0.0724 249(40)

0.020

[26]



Quenched Connectivity Disorder

Wolfhard Janke

Critical Exponents «/v and ~/v
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a/v=0.1750

bk dh otk
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C' = const. + aN*/3" + ...

Assuming hyperscaling: a/v =2/v—d

Similar FSS  analyses of the
susceptibility (x oc N7/3¥) give:

v/v =1.9576(13)

"World average” for regular lattices:
v/v = 1.9636(10)

Also here, no indication of relevance
of quenched connectivity disorder

R. Villanova, WJ, Phys. Rev. B66 (2002)
134208

[27]
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Summary and Outlook
e Quantitative analysis of correlations in random graphs and lattices (wandering
exponent)

e Quenched connectivity disorder is relevant for planar ¢3 gravity graphs but
apparently not for Voronoi-Delaunay (Poissonian) random lattices

e Analytical predictions for ¢> graphs based on KPZ formula + replica trick
match only approximately

Todo list:
o Further analytical work for ¢ gravity graphs (CFT, matrix models,. . . )

e Generalize Voronoi-Delaunay case to link-length dependent interactions (—
Goetz Kahler)

e Study of simpler (and tunable) correlated disorder

Work supported by EU-Network ENRAGE — Random Geometry and Random
Matrices: From Quantum Gravity to Econophysics under Grant No. MRTN-CT-
2004-005616
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Summary and Outlook
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