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\N Important issue In geometric computir

- .

How topology and geometry of objects
behave under approximation?

o

?

R —

Given a data set K that approximates a geometric object S,
what can we tell about the geometry/topology of S from K?
— robustness of geometry/topology

o -

The World a Jigsaw: Tessellations in the Sciences, Lorentz Center, March 2006 — p.



Motivations

-

#® Robust geometric/topologic computing:
— necessary to design of robust algorithms.
— allows discretization of geometric objects.

o Certified geometric computing:
— critical issue in some applications.

# “geometric data analysis”:

— Glven a data set K, does there exist relevant
geometric information associated to K?

# Geometric approximation theory.

o -
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Aim of the talk

- .

# lllustrate the stability problems with two examples:
» medial axis approximation,
s distance functions and non smooth surface
reconstruction.

# Show how one can put stability problems in a rigourous
mathematical framework to solve them.

o -
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Approximation and Hausdorff distance

# r-thickening A" of aset A= A& B(0,r) = union of balls of
radius r and center in A.

® Hausdorff distance:

L dg(S,K)=inf{r >0: 5 C (K) and K C S"}. J
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Example 1

Medial axis approximation
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Medial axis

- .

Let S C R™ be a compact set.

[(z) ={y € S:d(z,y) = d(z,5)}

Medial axis of S

M(S)={z e R":|['(x) |> 2}

#® “Medial axis = continuous version of Voronoi diagram”

# The medial axis “encodes” the topology of R" \ S (they
are homotopy equivalent).

o -
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Applications of medial axis

=

°

Sampling conditions in reverse engineering (— N.
Amenta and T. Dey’s talks),

Motion planning,
Image analysis,

shape recognition,

e o o o

= Big amount of literature on medial axis computation...

o -
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Unstability of medial axis
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Main drawback of medial axis: it is unstable under Hausdorff

perturbations:

dg(M(S), M(S")) 4~ 0when dg(S,S5") — 0

= pb to compute/approximate the medial axis.

-
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How to remove Unstability

- .
O1GR%

Unstable parts of the medial axis correspond to spheres that
meet S In points that are very near from each other.

— Filter medial axis by removing the points = such that I'(x)
Lis contained in a ball of small radius. J
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The A\-medial axis
=

For any x € R", F(z) = radius of
the smallest ball that contains I'(z).

A-medial axis: given A\ > 0,
MH(S) ={x e M(S) : F(x) > A}

o -
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A-medial axis and Voronoi diagrams

- .

If K is a finite set of points, M, (K) is an easy to compute
subcomplex of Vor(K): the function F is constant on each
cell of Vor(K).

o -
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Stability of A-medial axis

Thm: Let S € R* and )y > 0 be s.t. A — M, (.5) is continuous

at \o. If K, is a sequence of compact sets s.t. dy (S, K,) — 0
then dy (M, (S), My, (K,)) — 0.

Rmk: Moreover, if S is smooth then M, (K,) is homotopy
Lequivalent to M,,(5) as soon as dy (S, K,) is “small enough”. J
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Example 2

Stabllity of “wave fronts”

Let S, K C R™. Usually, even if dy (.S, K) is very small, they
have very different topologies.

What about the offsets 5" = {z : d(z,S) = r}
L and K7 = {z : d(z, K) = 1} ? o
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Critical points of distance function

- .

Def : Rg(x) = d(, S) Wﬁj
N

[(z) ={y € 5 :d(z,y) = Rs(z)}

® Ry is not differentiable on M (S)

# “Critical point = equilibrium position™. = € R" Is a critical
point for Ry iff it is contained in the convex hull of T'(x).

o r> O IS a critical value Iff there exists a critical point z s.t. J

o
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Critical points of distance function

- .

When K is a finite set of points, critical points of Ry =
intersection points of Delaunay simplices of Del( K') whith
their dual Voronoi cells.

o -
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Properties of distance functions

- .

#® |f r Is not a critical value of Rg, the level sets
Ry (r) = {z € R": Rg(x) = r} are manifolds.

# the topology of the level sets of R change only at critical

L points. J
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The gradient of Rg
B o

Let x € R™ and let O¢(x)
be the center of the small-
est ball enclosing I'(z).
Gradient vector field of Rg
at x:

r — Og(x)

Vsl =" p

Rmk: Vg(x) = 0 iff x is a critical point of Rg.
[Vs(@)? =1- 25

Rg(x)? J
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u~-critical points

-

Critical points of Ry are not stable under perturbation but...

S K
m m
Os(z) == :

Vs (-SL‘) =0

Vi is'never 0

Def: x is a p-critical point of Rg if |Vs(z)| < p.

Thm (stability of u-critical points): if dg (S, K) < ¢, for any
p-critical point = of S, there is a (24/¢/Rs(x) + p)-critical point
Lof K at distance at most 21/cRg(z) from . J
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The critical function

S = 3D-square of edge length 50, K= a sampling of S

The critical function of S: xg : (0,400) — R, defined by

vs(d) = inf [|Vs|
Ry (d)

Lstability of u-critical points = stability of critical functions J
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An example of critical function

1.0

A sampled gearshift and its critical function.

L -
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Topological stability of offsets
B o

Let S C R’ be a compact - non necessarily smooth - surface,
let0 < p < 1andletr, bes.t. xs > pontheinterval (0,7,).

Thm: let x > 0 be such that

102

<
"S5t 12

If K is a compact set such that dy (S5, K) < xr,, then the
components of R;'(«) are surfaces isotopic to .S provided that

Ady (K, S
(27 ) §@<Tu—3dH(K,S)
H
Rmk: Similar results exist in any dimension and more general setting.
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Informal conclusion
f.o Idea: “if the critical function of .S remains greater than T
some 1 > 0 on a sufficiently large interval, then the
offsets of any sufficiently near approximation K of S have
the same topology as the ones of S

# [n another way: “given a compact K, large intervals
where y Is sufficiently big are good candidates to
represent a “stable topology” of the offsets of K at some

scale level...”

# Analogy with a wave-front propagating from a compact.

o -
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For precise statements and results

=

f.o F. Chazal, A. Lieutier, The A-medial axis, in Graphical
Models, Volume 67, Issue 4 , July 2005, Pages 304-331.

# F Chazal, D. Cohen-Steiner, A. Lieutier, A Sampling
Theory for Compacts in Euclidean Spaces, to appear in
SoCG’06.

o -
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