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Abstract. Here we introduce the Delaunay Density Estimator
Method. Its purpose is rendering a fully volume-covering re-
construction of a density field from a set of discrete data points
sampling this field. Reconstructing density or intensity fields
from a set of irregularly sampled data is a recurring key issue in
operations on astronomical data sets, both in an observational
context as well as in the context of numerical simulations. Our
technique is based upon the stochastic geometric concept of
the Delaunay tessellation generated by the point set. We shortly
describe the method, and illustrate its virtues by means of an ap-
plication to an N-body simulation of cosmic structure formation.
The presented technique is a fully adaptive method: automati-
cally it probes high density regions at maximum possible res-
olution, while low density regions are recovered as moderately
varying regions devoid of the often irritating shot-noise effects.
Of equal importance is its capability to sharply and undilutedly
recover anisotropic density features like filaments and walls.
The prominence of such features at a range of resolution levels
within a hierarchical clustering scenario as the example of the
standard CDM scenario is shown to be impressively recovered
by our scheme.
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cal – methods: statistical – cosmology: large-scale structure of
Universe

1. Introduction

Astronomical observations, physical experiments as well as
computer simulations often involve discrete data sets supposed
to represent a fair sample of an underlying smooth and contin-
uous field. Conventional methods are usually plagued by one
or more artefacts. Firstly, they often involve estimates at a re-
stricted and discrete set of locations – usually defined by a grid
– instead of a full volume-covering field reconstruction. A prob-
lem of a more fundamental nature is that the resulting estimates
are implicitly mass-weighted averages, whose comparison with
often volume-weighted analytical quantities is far from trivial.
For most practical purposes, the disadvantage of almost all con-
ventional methods is their insensitivity and inflexibility to the

sampling point process. This leads to a far from optimal per-
formance in both high density and low density regions, which
often is dealt with by rather artificial and ad hoc means.

In particular in situations of highly non-uniform distribu-
tions conventional methods tend to conceal various interest-
ing and relevant aspects present in the data. The cosmic mat-
ter distribution exhibits conspicuous features like filaments and
walls, extended along one or two directions while compact in
the other(s). In addition, the density fields display structure of
varying contrasts over a large range of scales. Ideally sampled
by the data points, appropriate field reconstructions should be
set solely and automatically by the point distribution itself. The
commonly used methods, involving artificial filtering through
for instance grid size or other smoothing kernels (e.g. Gaussian
filter) often fail to achieve an optimal result.

Here we describe and propagate a new fully self-adaptive
method based on the Delaunay triangulation of the given point
process. After a short description of the fundamentals of our
tessellation procedure, we show its convincing performance on
the result of an N-body simulation of structure formation, whose
particle distribution is supposed to reflect the underlying cos-
mic density field. A detailed specification of the method, to-
gether with an extensive quantitative and statistical evaluation
of its performance will be presented in a forthcoming publica-
tion (Schaap & van de Weygaert 2000).

2. The Delaunay tessellation field estimator

Given a set of field values sampled at a discrete number of loca-
tions along one dimension we are familiar with various prescrip-
tions for reconstructing the field over the full spatial domain. The
most straightforward way involves the partition of space into
bins centered on the sampling points. The field is then assumed
to have the – constant – value equal to the one at the sampling
point. Evidently, this yields a field with unphysical discontinu-
ities at the boundaries of the bins. A first-order improvement
concerns the linear interpolation between the sampling points,
leading to a fully continuous field.

In more than one dimension, the equivalent spatial inter-
vals of the 1-D bins are well-known in stochastic geometry. A
point process defines a Voronoi tessellation by dividing space
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Fig. 1. A set of 20 points with their Voronoi
(left frame: solid lines) and Delaunay (right
frame: solid lines) tesselations. Left frame:
the shaded region indicates the Voronoi cell
corresponding to the point located just below
the center. Right frame: the shaded region is
the “contiguous Voronoi cell” of the same
point as in the lefthand frame.

into a unique and volume-covering network of mutually disjunct
convex polyhedral cells, each of which comprises that part of
multidimensional space closer to the defining point than to any
of the other (see van de Weygaert 1991 and references therein).
These Voronoi cells (see Fig. 1) are the multidimensional gen-
eralization of the 1-D bins in which the zeroth-order method ap-
proximates the field value to be constant. The natural extension
to a multidimensional linear interpolation interval then immedi-
ately implies the corresponding Delaunay tessellation (Delone
1934). This tessellation (Fig. 1) consists of a volume-covering
tiling of space into tetrahedra (in 3-D, triangles in 2-D, etc.)
whose vertices are formed by four specific points in the dataset.
The four points are uniquely selected such that their circum-
scribing sphere does not contain any of the other datapoints.
The Voronoi and Delaunay tessellation are intimately related,
being each others dual in that the centre of each Delaunay tetra-
hedron’s circumsphere is a vertex of the Voronoi cells of each
of the four defining points, and conversely each Voronoi cell
nucleus a Delaunay vertex (see Fig. 1). The “minimum triangu-
lation” property of the Delaunay tessellation has in fact been
well-known and abundantly applied in, amongst others, surface
rendering applications such as geographical mapping and vari-
ous computer imaging algorithms.

Consider a set ofN discrete datapoints in a finite region of
M -dimensional space. Having at one’s disposal the field values
at each of the(1+M) Delaunay verticesx0,x1, . . . ,xM , at
each locationx in the interior of a DelaunayM -dimensional
tetrahedron the linear interpolation field value is defined by

f(x) = f(x0) + ∇f(x0)|Del · (x − x0) , (1)

in which ∇f(x0)|Del is the estimated constant field gradi-
ent within the tetrahedron. Given the(1 + M) field values
f(x0), f(x1), . . . , f(xM ), the value of theM components of
∇f(x0)|Del can be computed straightforwardly by evaluating
Eq. (1) for each of theM points x1, . . . ,xM . This multidi-
mensional procedure of linear interpolation was already de-
scribed by Bernardeau & van de Weygaert 1996 in the con-
text of defining procedures for volume-weighted estimates of
cosmic velocity fields. While they explicitly demonstrated that
the zeroth-order Voronoi estimator is the asymptotic limit for

volume-weighted field reconstructions from discretely sampled
field values, they showed the superior performance of the first-
order Delaunay estimator in reproducing analytical predictions.

The one factor complicating a trivial and direct implemen-
tation of above procedure in the case of density (intensity) field
estimates is the fact that the number density of data points itself
is the measure of the underlying density field value. Unlike the
case of velocity fields, we therefore cannot start with directly
available field estimates at each datapoint. Instead, we need to
define appropriate estimates from the point set itself. Most sug-
gestive would be to base the estimate of the density field at the
locationxi of each point on the inverse of the volumeVVor,i
of its Voronoi cell,ρ(xi)=m/VVor,i. Note that in this we take
every datapoint to represent an equal amount of massm. The
resulting field estimates are then intended as input for the above
Delaunay interpolation procedure. However, one can demon-
strate that integration over the resulting density field would yield
a different mass than the one represented by the set of sample
points (see Schaap & van de Weygaert 2000 for a more specific
and detailed discussion). Instead, mass conservation is naturally
guaranteed when the density estimate is based on the inverse of
the volumeWVor,i of the “contiguous” Voronoi cell of each dat-
apoint,ρ(xi) ∝ 1/WVor,i. The “contiguous” Voronoi cell of a
point is the cell consisting of the agglomerate of allK Delau-
nay tetrahedra containing pointi as one of its vertices, whose
volumeWVol,i =

∑K
j=1 VDel,j is the sum of the volumesVDel,j

of each of theK Delaunay tetrahedra. Fig. 1 (righthand panel)
depicts an illustration of such a cell. Properly normalizing the
mass contained in the reconstructed density field, taking into
account the fact that each Delaunay tetrahedron is invoked in
the density estimate at1+M locations, we find at each datapoint
the following density estimate,

ρ(xi) = m (1+M)/WVor,i (2)

Having computed these density estimates, we subsequently pro-
ceed to determine the complete volume-covering density field
reconstruction through the linear interpolation procedure out-
lined in Eq. (1).
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Fig. 2. A 9-frame mosaic com-
paring the performance of the
Delaunay density estimating
technique with a conventional
grid-based TSC method in
analyzing a cosmological N-
body simulation. Left column:
the particle distribution in a
10h−1Mpc wide central slice
through the simulation box.
Central column: the correspond-
ing Delaunay density field re-
construction. Right column: the
TSC rendered density field re-
construction. The colour scale
of the density fields is logarith-
mic, ranging fromδρ/ρ = 0 −
2400.

3. Analysis of a cosmological N-body simulation

Cosmological N-body simulations provide an ideal template
for illustrating the virtues of our method. They tend to contain
a large variety of objects, with diverse morphologies, a large
reach of densities, spanning over a vast range of scales. They
display low density regions, sparsely filled with particles, as
well as highly dense and compact clumps, represented by a large
number of particles. Moderate density regions typically include
strongly anisotropic structures such as filaments and walls.

Each of these features have their own individual character-
istics, and often these may only be sufficiently highlighted by
some specifically designed analysis tool. Conventional methods
are usually only tuned for uncovering one or a few aspects of the
full array of properties. Instead of artificial tailor-made meth-
ods, which may be insensitive to unsuspected but intrinsically
important structural elements, our Delaunay method is uniquely
defined and fully self-adaptive. Its outstanding performance is
clearly illustrated by Fig. 2. Here we have analyzed an N-body
simulation of structure formation in a standard CDM scenario
(Ω0 = 1,H0 = 50 km/s/Mpc). It shows the resulting distribution
of 1283 particles in a cubic simulation volume of 100h−1 Mpc,
at a cosmic epoch at whichσ(RTH = 8h−1Mpc) = 1. The fig-

ure depicts a10h−1Mpc slice through the center of the box. The
lefthand column shows the particle distribution in a sequence of
frames at increasingly fine resolution. Specifically we zoomed
in on the richest cluster in the region. The righthand column
shows the corresponding density field reconstruction on the ba-
sis of the grid-based Triangular-Shaped Clouds (TSC) method,
here evaluated on a5182 grid. For the TSC method, one of
the most frequently applied algorithms, we refer to the descrip-
tion in Hockney & Eastwood 1981. A comparison with other,
more elaborate methods which have been developed to deal with
the various aspects that we mentioned, of which Adaptive Grid
methods and SPH based methods have already acquired some
standing, will be presented in Schaap & van de Weygaert 2000.

A comparison of the lefthand and righthand columns with
the central column, i.e. the Delaunay estimated density fields,
reveals the striking improvement rendered by our new proce-
dure. Going down from the top to the bottom in the central
column, we observe seemingly comparable levels of resolved
detail. The self-adaptive skills of the Delaunay reconstruction
evidently succeed in outlining the full hierarchy of structure
present in the particle distribution, at every spatial scale repre-
sented in the simulation. The contrast with the achievements of
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the fixed grid TSC method in the righthand column is striking,
in particular when focus tunes in on the finer structures. The
central cluster appears to be a mere featureless blob! In addi-
tion, low density regions are rendered as slowly varying regions
at moderately low values. This realistic conduct should be set
off against the erratic behaviour of the TSC reconstructions,
plagued by annoying shot-noise effects.

Fig. 2 also bears witness to another virtue of the Delaunay
technique. It evidently succeeds in reproducing sharp, edgy and
clumpy filamentary and wall-like features. Automatically it re-
solves the fine details of their anisotropic geometry, seemlessly
coupling sharp contrasts along one or two compact directions
with the mildy varying density values along the extended direc-
tion(s). Moreover, it also manages to deal succesfully with the
substructures residing within these structures. The well-known
poor operation of e.g. the TSC method is clearly borne out by
the central righthand frame. Its fixed and inflexible “filtering”
characteristics tend to blur the finer aspects of such anisotropic
structures. Such methods are therefore unsuited for an objec-
tive and unbiased scrutiny of the foamlike geometry which so
pre-eminently figures in both the observed galaxy distribution
as well as in the matter distribution in most viable models of
structure formation.

Not only qualitatively, but also quantitatively our method
turns out to compare favourably with respect to conventional
methods. We are in the process of carefully scrutinizing our
method by means of an array of quantitative tests. A full discus-
sion will be presented in Schaap & van de Weygaert 2000. Here
we mention the fact that the method recovers the density distri-
bution function over many orders of magnitude. The grid-based
methods, on the other hand, only managed to approach the
appropriate distribution in an asymptotic fashion and yielded
reliable estimates of the distribution function over a mere re-
stricted range of density values. Very importantly, on the basis
of the continuous density field reconstruction of our Delaunay
method, we obtained an estimate of the density autocorrelation
function that closely adheres to the (discrete) two-point corre-
lation function directly determined from the point distribution.
Further assessments on the basis of well-known measures like
the Kullback-Leibler divergence (Kullbach & Leibler 1951),
an objective statistic for quantifying the difference between
two continuous fields, will also be presented in Schaap & van
de Weygaert (2000). Finally, we may also note that in addition
to its statistical accomplishments, we should also consider the
computational requirements of the various methods. Given a
particle distribution, the basic action of computing the corre-
sponding Delaunay tessellation, itself anO(N) routine (van de

Weygaert 1991), the subsequent interpolation steps, at any de-
sired resolution, are considerably less CPU intensive than the
TSC method (both alsoO(N)). In the case of Fig. 2 the De-
launay method is about a factor of 10 faster. In the present im-
plementation, the bottleneck is Delaunay’s substantial memory
requirement (≈ 10× the TSC operation), but a more efficient
algorithm will be available in short order. These issues will be
treated extensively in our upcoming publication.

The preceding is ample testimony of the promise of
tessellation methods for the aim of continuous field recon-
struction. The presented method, following up on earlier work
by Bernardeau & van de Weygaert (1996), may be seen as
a first step towards yet more advanced tessellation methods.
One suggested improvement will be a second-order method
rendering a continuously differentiable field reconstruction,
which would dispose of the rather conspicuous triangular
patches that form an inherent property of the linear procedure
with discontinous gradients. In particular, we may refer to
similar attempts to deal with related problems, along the
lines of natural neighbour interpolation (Sibson 1981), such
as implemented in the field of geophysics (Sambridge et al.
1995; Braun & Sambridge 1995) and in engineering mechanics
(Sukumar 1998). As multidimensional discrete data sets are
a major source of astrophysical information, we wish to
promote such tessellation methods as a natural instrument for
astronomical data analysis.
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