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Abstract. Here we introduce the Delaunay Density Estimat@ampling point process. This leads to a far from optimal p
Method. Its purpose is rendering a fully volume-covering réermance in both high density and low density regions, whi
construction of a density field from a set of discrete data poirtdften is dealt with by rather artificial and ad hoc means.
sampling this field. Reconstructing density or intensity fields In particular in situations of highly non-uniform distribu-
from a set of irregularly sampled data is a recurring key issuetions conventional methods tend to conceal various intere
operations on astronomical data sets, both in an observatiangl and relevant aspects present in the data. The cosmic
context as well as in the context of numerical simulations. Oter distribution exhibits conspicuous features like filaments al
technique is based upon the stochastic geometric conceptvafls, extended along one or two directions while compact
the Delaunay tessellation generated by the point set. We shotltlg other(s). In addition, the density fields display structure
describe the method, and illustrate its virtues by means of an &arying contrasts over a large range of scales. Ideally samp
plication to an N-body simulation of cosmic structure formatiory the data points, appropriate field reconstructions should
The presented technique is a fully adaptive method: automatet solely and automatically by the point distribution itself. Th
cally it probes high density regions at maximum possible ressmmonly used methods, involving artificial filtering throug
olution, while low density regions are recovered as moderatdty instance grid size or other smoothing kernels (e.g. Gauss
varying regions devoid of the often irritating shot-noise effectslter) often fail to achieve an optimal result.
Of equal importance is its capability to sharply and undilutedly Here we describe and propagate a new fully self-adapti
recover anisotropic density features like filaments and walleethod based on the Delaunay triangulation of the given po
The prominence of such features at a range of resolution levetecess. After a short description of the fundamentals of o
within a hierarchical clustering scenario as the example of ttessellation procedure, we show its convincing performance
standard CDM scenario is shown to be impressively recoverbe result of an N-body simulation of structure formation, who
by our scheme. particle distribution is supposed to reflect the underlying co

mic density field. A detailed specification of the method, t
Key words: methods: N-body simulations — methods: numergether with an extensive quantitative and statistical evaluati
cal — methods: statistical — cosmology: large-scale structureoffits performance will be presented in a forthcoming public
Universe tion (Schaap & van de Weygaért 2000).

2. The Delaunay tessellation field estimator

1. Introduction . . .
Given a set of field values sampled at a discrete number of lo

Astronomical observations, physical experiments as well &sns along one dimension we are familiar with various prescri
computer simulations often involve discrete data sets supposieds for reconstructing the field over the full spatial domain. T
to represent a fair sample of an underlying smooth and contimest straightforward way involves the partition of space int
uous field. Conventional methods are usually plagued by doias centered on the sampling points. The field is then assu
or more artefacts. Firstly, they often involve estimates at a te-have the — constant — value equal to the one at the sampl
stricted and discrete set of locations — usually defined by a gpdint. Evidently, this yields a field with unphysical discontinu
—instead of a full volume-covering field reconstruction. A prolities at the boundaries of the bins. A first-order improveme
lem of a more fundamental nature is that the resulting estimatesmcerns the linear interpolation between the sampling poin
are implicitly mass-weighted averages, whose comparison wigiading to a fully continuous field.
often volume-weighted analytical quantities is far from trivial. In more than one dimension, the equivalent spatial int
For most practical purposes, the disadvantage of almost all ceals of the 1-D bins are well-known in stochastic geometry.
ventional methods is their insensitivity and inflexibility to thegoint process defines a Voronoi tessellation by dividing spa
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Fig. 1. A set of 20 points with their Voronoi
(left frame: solid lines) and Delaunay (right
frame: solid lines) tesselations. Left frame:
the shaded region indicates the Voronoi cell
correspondingto the pointlocated just below
the center. Right frame: the shaded region is
the “contiguous Voronoi cell” of the same
point as in the lefthand frame.

into a unique and volume-covering network of mutually disjunelume-weighted field reconstructions from discretely sampled
convex polyhedral cells, each of which comprises that part fidld values, they showed the superior performance of the first-
multidimensional space closer to the defining point than to aoyder Delaunay estimator in reproducing analytical predictions.
of the other (see van de Weygdert 1991 and references therein)The one factor complicating a trivial and direct implemen-
These Voronoi cells (see Fig. 1) are the multidimensional gemtion of above procedure in the case of density (intensity) field
eralization of the 1-D bins in which the zeroth-order method apstimates is the fact that the number density of data points itself
proximates the field value to be constant. The natural extensisthe measure of the underlying density field value. Unlike the
to a multidimensional linear interpolation interval then immedease of velocity fields, we therefore cannot start with directly
ately implies the corresponding Delaunay tessellation (Deloaeailable field estimates at each datapoint. Instead, we need to
[1934). This tessellation (Fig. 1) consists of a volume-coverimigfine appropriate estimates from the point set itself. Most sug-
tiling of space into tetrahedra (in 3-D, triangles in 2-D, etcgestive would be to base the estimate of the density field at the
whose vertices are formed by four specific points in the datadetationx; of each point on the inverse of the voluri,, ;
The four points are uniquely selected such that their circumfits Voronoi cell,p(x;) =m/Vys,,,;. Note that in this we take
scribing sphere does not contain any of the other datapoirggery datapoint to represent an equal amount of masthe
The Voronoi and Delaunay tessellation are intimately relate@sulting field estimates are then intended as input for the above
being each others dual in that the centre of each Delaunay teBataunay interpolation procedure. However, one can demon-
hedron’s circumsphere is a vertex of the Voronoi cells of easlrate thatintegration over the resulting density field would yield
of the four defining points, and conversely each Voronoi cell different mass than the one represented by the set of sample
nucleus a Delaunay vertex (see Fig. 1). The “minimum triangpeints (see Schaap & van de Weygaert 2000 for a more specific
lation” property of the Delaunay tessellation has in fact beemd detailed discussion). Instead, mass conservation is naturally
well-known and abundantly applied in, amongst others, surfagearanteed when the density estimate is based on the inverse of
rendering applications such as geographical mapping and vémne volumelVy,, ; of the “contiguous” Voronoi cell of each dat-
ous computer imaging algorithms. apoint, p(x;) < 1/Wvys,,,;. The “contiguous” Voronoi cell of a
Consider a set aV discrete datapoints in a finite region ofpoint is the cell consisting of the agglomerate of &lIDelau-
M-dimensional space. Having at one’s disposal the field valussy tetrahedra containing poiives one of its vertices, whose
at each of thg1+ M) Delaunay verticesg, x1, ..., xp, at - volumeWy, ; = Z;il Vbel,j is the sum of the volumégy,;
each locationx in the interior of a Delaunay/-dimensional of each of the/ Delaunay tetrahedra. Fig. 1 (righthand panel)
tetrahedron the linear interpolation field value is defined by depicts an illustration of such a cell. Properly normalizing the
mass contained in the reconstructed density field, taking into
f(x) = f(x0) + Vf(x0)lpe - (x —%0), (1) account the fact that each Delaunay tetrahedron is invoked in

. . . . . .the density estimate a1/ locations, we find at each datapoint
in which V f(x0)|p,, is the estimated constant field gradiz y at P

o . . the following density estimate,
ent within the tetrahedron. Given tha + M) field values g vy

f(xo0), f(x1),..., f(xm), the value of thell components of p(x;) = m(1+M)/Wyori )
V f(x0)|pe can be computed straightforwardly by evaluating '
Eq. (1) for each of theV pointsx,...,xy,. This multidi- Having computed these density estimates, we subsequently pro-

mensional procedure of linear interpolation was already deeed to determine the complete volume-covering density field
scribed by Bernardeau & van de Weygdert 1996 in the camconstruction through the linear interpolation procedure out-
text of defining procedures for volume-weighted estimates iified in Eq. (1).

cosmic velocity fields. While they explicitly demonstrated that

the zeroth-order Voronoi estimator is the asymptotic limit for
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Fig. 2. A 9-frame mosaic com-
paring the performance of the
Delaunay density estimating
technique with a conventional
grid-based TSC method in
analyzing a cosmological N-
body simulation. Left column:
the particle distribution in a
10h~'Mpc wide central slice
through the simulation box.
Central column: the correspond-
ing Delaunay density field re-
construction. Right column: the
TSC rendered density field re-
construction. The colour scale
of the density fields is logarith-
mic, ranging fromép/p = 0 —

X (™" Mpc) X (h™" Mpo) X (n™" Mpe) 2400.

3. Analysis of a cosmological N-body simulation ure depicts a0h~'Mpc slice through the center of the box. Th

efthand column shows the particle distribution in a sequence

Cosmological N-body simulations provide an ideal templ"".h;"ames at increasingly fine resolution. Specifically we zoom

for |Ilustrat|_ng the V|rt_ues of our mEthOd' They tend_ to Contallrll] on the richest cluster in the region. The righthand colu
a large variety of objects, with diverse morphologies, a lar

» : ows the corresponding density field reconstruction on the
rgach B densme_s, spanning over a vas_t range - scgles. Tsf'asyof the grid-based Triangular-Shaped Clouds (TSC) meth
display low density regions, sparsely filled with particles, Fere evaluated on 5182 grid. For the TSC method, one of

well as highly d'ense and compactclgmps, _represe_nted t.)y al ¥ most frequently applied algorithms, we refer to the descri
number of particles. Moderate density regions typically inclu g in Hockney & Eastwool 1981. A comparison with othe
strongly anisotropic structures such as filaments and walls. ‘

. L more elaborate methods which have been developed to deal
Each of these features have their own individual charactﬁq-e various aspects that we mentioned, of which Adaptive G

istics, and often these may only be sufficiently highlighted bﬁéethods and SPH based methods have already acquired s

some specifically designed analysis tool. Conventional methag . . : jaert
are usually only tuned for uncovering one or a few aspects of t?éndmg, will be presented in Schaap & van de Wey 20

full array of properties. Instead of artificial tailor-made metP\- A comparison of the lefthand and righthand columns wit

d . " A Pe central column, i.e. the Delaunay estimated density fiel
ods, which may be insensitive to unsuspected but intrinsica I
reveals the striking improvement rendered by our new pro

important structural elements, our Delaunay method is unique Ve Going down from the top to the bottom in the centr
defined and fully self-adaptive. Its outstanding performance '8Iur.nn we observe seemingly comparable levels of resolv

g:?naurllzt:!%S;rfaéfistigabffngggime;g;nzg?(;yéegw?gl_::n tail. The self-adaptive skills of the Delaunay reconstructi
eQ/identIy succeed in outlining the full hierarchy of structur

(=1, Hy=50 km/s/Mpc). It shows the resulting distribution . . L d
of 128% particles in a cubic simulation volume of 190" Mpc present in the particle distribution, at every spatial scale rep

at a cosmic epoch at whicH Rrx = 8h~Mpc) = 1. The fig- sented in the simulation. The contrast with the achievements|
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the fixed grid TSC method in the righthand column is strikingVeygaerf 1991), the subsequent interpolation steps, at any de-
in particular when focus tunes in on the finer structures. T&ed resolution, are considerably less CPU intensive than the
central cluster appears to be a mere featureless blob! In addC method (both als®(V)). In the case of Fig. 2 the De-
tion, low density regions are rendered as slowly varying regiolainay method is about a factor of 10 faster. In the present im-
at moderately low values. This realistic conduct should be sgémentation, the bottleneck is Delaunay’s substantial memory
off against the erratic behaviour of the TSC reconstructiomgequirement{ 10x the TSC operation), but a more efficient
plagued by annoying shot-noise effects. algorithm will be available in short order. These issues will be
Fig. 2 also bears witness to another virtue of the Delaunargated extensively in our upcoming publication.
technique. It evidently succeeds in reproducing sharp, edgy andThe preceding is ample testimony of the promise of
clumpy filamentary and wall-like features. Automatically it retessellation methods for the aim of continuous field recon-
solves the fine details of their anisotropic geometry, seemlesstyuction. The presented method, following up on earlier work
coupling sharp contrasts along one or two compact directiomg Bernardeau & van de Weygaert (1996), may be seen as
with the mildy varying density values along the extended direa-first step towards yet more advanced tessellation methods.
tion(s). Moreover, it also manages to deal succesfully with tl@ne suggested improvement will be a second-order method
substructures residing within these structures. The well-knowgndering a continuously differentiable field reconstruction,
poor operation of e.g. the TSC method is clearly borne out lshich would dispose of the rather conspicuous triangular
the central righthand frame. Its fixed and inflexible “filtering’patches that form an inherent property of the linear procedure
characteristics tend to blur the finer aspects of such anisotrogith discontinous gradients. In particular, we may refer to
structures. Such methods are therefore unsuited for an objgimilar attempts to deal with related problems, along the
tive and unbiased scrutiny of the foamlike geometry which dimes of natural neighbour interpolation (Sibson 1981), such
pre-eminently figures in both the observed galaxy distributi@s implemented in the field of geophysics (Sambridge et al.
as well as in the matter distribution in most viable models d@095; Braun & Sambridde 1995) and in engineering mechanics
structure formation. (Sukumar_1998). As multidimensional discrete data sets are
Not only qualitatively, but also quantitatively our method major source of astrophysical information, we wish to
turns out to compare favourably with respect to conventionalomote such tessellation methods as a natural instrument for
methods. We are in the process of carefully scrutinizing oastronomical data analysis.
method by means of an array of quantitative tests. A full discus-
sion will be presented in Schaap & van de Weydaert 2000. Her i .
we mentionrzthe fact that the meF:hod recoversxthnsity dis@%mw'edgememwe thar.]k E. quam.)'ﬁz for substantial contri-
. . . . tions, F. Bernardeau for instigating this line of research, and V. Icke
bution function over many orders of magnitude. The grid-basgf g jones for useful discussions.
methods, on the other hand, only managed to approach the
appropriate distribution in an asymptotic fashion and yielded
reliable estimates of the distribution function over a mere rBeferences
stricted range of density values. Very importantly, on the bagigmardeau F., van de Weygaert R., 1996, Mon. Not. R., Astron. Soc.
of the continuous density field reconstruction of our Delaunay 279, 693
method, we obtained an estimate of the density autocorrelat®aun J., Sambridge M., 1995, Nature 376, 655
function that closely adheres to the (discrete) two-point correelone B.N., 1934, Bull. Acad. Sci. USSR: Classe Sci. Mat 7, 793
lation function directly determined from the point distributiontHockney R., Eastwood J., 1981, Computer Simulations Using Particles,
Further assessments on the basis of well-known measures likeMcGraw-Hill
the Kullback-Leibler divergence (Kullbach & Leibler 1951)Kullback S., Leibler R., 1951, Ann. Math. Stat. 22, 79
an objective statistic for quantifying the difference betweepfmPridge M., Braun J., McQueen H., 1995, Geophys. J. Int. 122, 837
two continuous fields, will also be presented in Schaap & var, haap W.E., van de Weygaert R., 2000, in prep.

. . ... Sibson R., 1981, In: Barnet V. (ed.) Interpreting Multi-variate Data, p.
de Weygaer{(2000). Finally, we may also note that in addition 21, Wiley, Chichester

to its statistical accomplishments, we should also consider r:ﬁ‘&umar N., 1998, Ph.D. thesis, Northwestern University, Evanston
computational requirements of the various methods. Given a | ysa

particle distribution, the basic action of computing the corrgan de WeygaertR., 1991, Ph.D. thesis, Leiden University, Leiden, The
sponding Delaunay tessellation, itself@QV) routine (van de Netherlands
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