
Tutorial VI.
The Inflationary Universe

Question 1. Horizons

The particle horizon of the Universe is the distance over which light can
have travelled since the Big Bang. We will be exploring some of its proper-
ties.

a) Show, on the basis of the RW metric, that the expression for the
horizon scale is

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
. (1)

b) Given that the conformal time η(t) is given by

η(t) =

∫ t

0

c dt′

a(t′)
. (2)

show that the horizon grows linearly in terms of conformal time η(t).
Make a sketch of the evolution of the horizonscale as function of con-
formal time η(t).

c) Show that the horizon scale Rh(t) for an Einstein-de Sitter Universe
is

RH(t) = 3ct =
2c

H(t)
. (3)

d) Equivalently, infer the horizon scale RH(t) for a radiation-dominated
Universe.

e) Show that for a single-component flat Universe with dark energy with
equation of state

p = wρc2 , (4)

which yields an expansion scale

a(t) ∝ t
2

3+3w , (5)

that the hoirzon scale R(t) evolves as
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RH(t) ∝ t
1+3w
3+3w (6)

Discuss the difference between the particle horizon RH(t) for dark
energy with w < −1/3 and for a cosmology in which the dark energy
has equation of state w > −1/3.

f) The event horizon is the distance over which light/radiation can prop-
agate when emitted at a particular time t. In other words, it specifies
with which part of the universe you would be able to communicate,

ReH(t) = a(t)

∫ ∞
t

c dt′

a(t′)
. (7)

Infer the value of the event horizon ReH(t) for cosmologies with dark
energy whose equation of state is p = wρc2. Discuss the outcome
between w < −1/3 and w > −1/3. What does this mean for dark
energy cosmologies with w < −1/3.
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Question 2. Horizon at Recombination

Let us consider a major problem in standard cosmology, the horizon problem.
We will get to talk in detail about the CMB later during the course. Here we
do some simple calculation in preparation for that. We’ll work out the angu-
lar size of the particle horizon of the Universe at recombination/decoupling.
In order to keep things manageable we make the simplifying assumption that
we life in a matter-dominated Universe. The horizon scale at recombination
is given by:

Rrec = 3ctrec (8)

a) Show that in the limit z � 1 the angular diameter distance DA(z) can
be approximated as:

DA ≈
2c

Ω0H0

1

z
(9)

b) Now combine eq. 8 and eq. 9 to determine the angular size θrec of a
patch on the sky of the size of the horizon at recombination. Your
expression should depend on Hrec, zrec, Ω0 and H0.

c) Show that in the limit z � 1 the Hubble parameter can be approxi-
mated as:

H2(z) ≈ Ω0H
2
0z

3 (10)

d) Finally put everything together to find:

θrec ≈ 1.74◦Ω
1/2
0

(
zdec

1089

)−1/2

(11)

e) Given the high degree of isotropy in the CMB sky, what conclusion do
you have to draw?
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Question 3. Flatness problem

In this exercise we are going to look at what is called the flatness prob-
lem or finetuning problem. It was one of the main reasons for introducing
the inflation mechanism. Let’s see if we can understand this.

a) Starting from the FRWL equations, show that the evolution of Ω(z)
in a matter-dominated Universe is given by the following equivalent
expressions: (

1

Ω
− 1

)
=

1

z + 1

(
1

Ω0
− 1

)
Ω(z) =

Ω0(z + 1)

1 + Ω0z
(12)

b) Create plots of Ω versus a for some different values of Ω0 between 0.1
and 10.0. Make sure to include Ω0 = 1. How does the behaviour
depend on the value of Ω0?

c) Within (relatively small) measurement errors, WMAP and Planck
have shown us that Ω0 = 1. Can you explain in your own words
what we mean by the flatness problem?

d) Inflation was suggested as a possible solution to the flatness problem.
Let’s see how that could work. Take a general single component Uni-
verse with p = wρc2 and ignore the curvature contribution. Show:

a(t) ∝ t
2

3+3w (13)

1. Then derive:

|Ω(t)− 1| ∝ t
2(1+3w)
3+3w (14)

Hint: in the previous set you already derived an expression for (Ω−1).

e) Find an expression for |Ω(t) − 1| for w = −1. Note that the general
result is not valid in this case!

f) What happens for different values of w? What are the restrictions on
w for inflation to work?

g) We define N ≡
√

ΩH2∆t, with ∆t the duration of inflation. Use the
following Universe model:
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- the Universe starts out radiation dominated
- prior to inflation the Universe is curved: |Ω− 1| = 1.0
- inflation starts at ti= tGUT = 10−36 s and ends at tf =10−34 s. Inflation

is exponential.
- after inflation the Universe is radiation-dominated until radiation-matter

equality at trm = 4.7·104 yr.
- the Universe is matter dominated until matter-Λ equality at tmΛ =

9.8Gyr
- the dark energy has w = −1
- we are now at t0 = 13.8Gyr.

We demand a Universe that is flat within 10%:

|Ω0 − 1| ≤ 0.1 (15)

How many e-foldings N do you need during the epoch of inflation in
order to satisfy this demand? Note that the data tells us |Ω−1| � 0.1,
so the actual number will be larger than the one you find!
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