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Cosmological Principle



A crucial aspect of any particular configuration is the geometry of 
spacetime:  because Einstein’s General Relativity is a metric 
theory, knowledge of the geometry is essential.

Einstein Field Equations are notoriously complex,  essentially 
10 equations.  Solving them for general situations is almost 
impossible. 

However, there are some special circumstances that do allow a 
full solution. The simplest one is also the one that describes 
our Universe.  It is encapsulated in the

Cosmological  Principle 
On the basis of this principle,  we can constrain the geometry 
of the Universe and hence find its dynamical evolution.



“God is an infinite sphere whose centre is 
everywhere and its circumference nowhere”

Empedocles, 5th cent BC

”all places in the Universe are alike’’
Einstein, 1931

● Homogeneous                 
● Isotropic 

● Universality         
● Uniformly Expanding 

Cosmological Principle:
Describes the symmetries in global appearance of the Universe:

The Universe is the same everywhere:
- physical quantities     (density, T,p,…)

The Universe looks the same in every direction

Physical Laws same everywhere 

The Universe “grows” with same rate in 
- every direction
- at every location



uniform=
homogeneous & isotropic
(cosmological principle)

Fundamental Tenet 

of (Non-Euclidian = Riemannian) Geometry

There exist no more than THREE uniform spaces: 
1)       Euclidian (flat) Geometry                 Euclides

2)       Hyperbolic Geometry                        Gauß, Lobachevski, Bolyai

3)       Spherical Geometry                           Riemann





Curvature of the Universe:

Robertson-Walker Metric



Spherical Surface Distances 
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Spherical Surface Distances:
alternative – geodetic distance x 
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Spherical Space Distances 
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Spherical surface is a 2-D section through 
an isotropic curved 3D space: 
generalization to 3D solid angle (θ,φ) 



Spherical Space Distances
alternative: geodetic distance 
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Minkowski Metric
spherically isotropic 3D space 
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Distances in  a uniformly  curved  spacetime is specified in terms of the 
Robertson-Walker metric.  The spacetime distance of a point at coordinate 
(r,θ,φ) is:

where  the  function  Sk(r/Rc) 
specifies the effect of curvature
on the distances between 
points in spacetime





Conformal Time
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Observational Cosmology
in

FRW Universe



Redshift





Cosmic Time Dilation



In an (expanding)  space  with Robertson-Walker metric, 

In a RW metric,  light travels with

Cosmic Time Dilation:    
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In Evidence Cosmic Time Dilation:

light curves supernovae (exploding stars):

characteristic time interval over which 
the supernova rises and then dims:

systematic shift with redshift (depth)



Hubble Expansion



• Einstein, de Sitter, Friedmann and Lemaitre all realized that in 
General Relativity, there cannot be a stable and static Universe:

• The Universe either expands, or it contracts … 

• Expansion Universe encapsulated in a 

GLOBAL expansion factor a(t)
• All distances/dimensions of objects 

uniformly increase by a(t): 

at time t, the distance between 
two objects i and j has increased to

( ),0 ,0( )i j i jr r a t r r− = −
   

• Note:   by definition we chose a(t0)=1,   
i.e. the present-day expansion factor 



• Cosmic  Expansion  manifests itself  in the 
in a recession velocity which linearly increases with distance

• this is the same for  any galaxy within the Universe !

• There is no centre of the Universe:
would be in conflict with the Cosmological Principle 



 Cosmic  Expansion  is  a  uniform expansion of space

 Objects do not move themselves:
they  are  like beacons tied to a uniformly expanding sheet:
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 Cosmic  Expansion  is  a  uniform expansion of space

 Objects do not move themselves:
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Comoving  Position

Comoving  PositionHubble  Parameter:

Hubble  “constant”:
H0H(t=t0)



 For a long time, the correct value of the Hubble constant H0

was a major unsettled issue:

H0 = 50  km s-1 Mpc-1 H0 = 100  km s-1 Mpc-1

 This meant distances and timescales in the Universe had to 
deal with uncertainties of a factor 2 !!!

 Following major programs,  such as Hubble Key Project,  the 
Supernova key projects  and  the WMAP  CMB  measurements,
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Hubble Expansion

v = H  r

Hubble Expansion

Edwin Hubble   

(1889-1953)



 For a long time, the correct value of the Hubble constant H0

was a major unsettled issue:

H0 = 50  km s-1 Mpc-1 H0 = 100  km s-1 Mpc-1

 This meant distances and timescales in the Universe had to 
deal with uncertainties of a factor 2 !!!

 Following major programs,  such as Hubble Key Project,  the 
Supernova key projects  and  the WMAP  CMB  measurements,
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Hubble  Expansion
Space expands:

displacement  - distance                                               Hubble law:  velocity - distance           

v H r=















Nonlinear Descriptions
Deformation 

Cosmic Volume Element

1
3H v= ∇⋅

The evolution of a fluid element on its 
path through space may be specified 
by its velocity gradient:

in which 
θ:   velocity divergence

contraction/expansion

σ:   velocity shear
deformation

ω:   vorticity 
rotation of element  



Nonlinear Descriptions
Deformation

Cosmic Volume Element
Global Anisotropic 

expansion/contraction

Anisotropic Relativistic Universe Models:
Bianchi I-IX Universe models 

• expand anisotropically
•  have to be characterized by at least 

3 Hubble parameters (expansion rate 
different in 
different directions

• Only marginal claims indicate the 
possibility on the basis of 
CMB  anisotropies



Nonlinear Descriptions
Deformation

Cosmic Volume Element

Local Anisotropic  Flows:
“fatal” attractions

•  In our local neighbourhood the 
cosmic flow field has a significant shear

•   This shear is a manifestation of 
- infall of our Local Group into 

the Local Supercluster
- motion towards the Great Attractor 
- possibly motion towards even larger 
mass entities:  Shapley concentration

Horologium supercluster 



Nonlinear Descriptions
Deformation

Cosmic Volume Element
Global Hubble Expansion
Observations over large regions
of the sky, out to large cosmic depth:

• the Hubble expansion offers a very good 
description of the actual Universe

• the Hubble expansion is the same 
in whatever direction you look: isotropic

Hubble flow:

Pure expansion/contraction

1
3H v= ∇⋅



Cosmic Distances



In an (expanding)  space  with Robertson-Walker metric, 

radial comoving distance r
travelled by radiation 

in a RW space:
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Distance Measure



In an (expanding)  space  with Robertson-Walker metric, 

there are several definitions for distance, dependent on how you measure it. 

They all involve the central distance function, the RW Distance Measure,
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Light propagation in a RW metric (curved space):

Note:    - light propagation is along radial lines

- the “-” sign is an expression for the fact that the 
light ray propagating towards you moves in 
opposite direction of radial coordinate r

After some simplification and reordering, we find
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Observing in a FRW Universe, we locate galaxies in terms of their redshift z. To 
connect this to their true physical distance, we need to know what the coordinate 
distance r of an object with redshift z,  

In a FRW Universe, the dependence of the Hubble expansion rate H(z) at any 
redshift z depends on the content of matter, dark energy and radiation, as well 
ss its curvature. This leads to the following explicit expression for the 
redshift-distance relation,
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Observing in a FRW Universe, we locate galaxies in terms of their redshift z. To 
connect this to their true physical distance, we need to know what the coordinate 
distance r of an object with redshift z,  

In a FRW Universe, the dependence of the Hubble expansion rate H(z) at any 
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in a matter-dominated Universe, the redshift-distance relation is

from which one may find that  



The integral expression

can be evaluated by using the substitution:

This leads to Mattig’s formula:

This is one of the very most important and most useful equations
in observational cosmology.   
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In a low-density Universe, it is better to use the following version:

For a Universe with a cosmological constant, there is not an easily
tractable analytical expression (a Mattig’s formula). The comoving 
Distance r has to be found through a numerical evaluation of the 
fundamental dr/dz expression. 
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For all general FRW Universe, the 
second-order distance-redshift relation is identical, 
only depending on the deceleration parameter q0: 

q0 can be related to Ω0 once the equation of state is known. 
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Angular Diameter Distance

Luminosity Distance



Imagine an object of proper size d, at redshift z, its angular size  is given by
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Angular Diameter distance:



Imagine an object of luminosity L(νe), at redshift z, its flux density at observed 
frequency νo is 
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The relation between the Luminosity and the Angular Diameter distance of 
an object at redshift z is sometimes indicated as 

Reciprocity Theorem

The difference between these 2 fundamental cosmological measures stems from 
the fact that they involve “radial paths” measured in opposite directions along 
the lightcone, and thus are

forward     - luminosity distance
backward - angular diameter distance

wrt. expansion of the Universe 
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In a matter-dominated Universe, the angular diameter distance as function of 
redshift is given by:
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In a matter-dominated Universe, the angular diameter distance as function of 
redshift is given by:
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The angular size (z) of an object of physical 
size  at a redshift z displays an interesting 
behaviour. In most FRW universes is has a 
minimum at  a medium range redshift –
z=1.25 in an Ωm=1 EdS universe – and increases 
again at higher redshifts.
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In a matter-dominated Universe, the luminosity distance as function of redshift is 
given by:
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Cosmological Distances:

Comparison





Cosmology:

the search for 2 numbers



Sandage, ARAA 1970 : 

Cosmology is the “Search for 2 numbers”:           
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How to measure the values of H0 and q0, without any prior assumption on 
the dynamics, ie. of the particular FRWL cosmological model ? Ie. how to
infer these numbers from observables:

- redshift - luminosity - angular size

• Establish relation expansion factor a(t) up to 2nd order (Taylor series):



• The corresponding redshift z of the source that emitted its radiation
at time te:

• whose inversion translates into the expression of the emission time te
for a given redshift z:
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• Coordinate distance dP(t0) of source
whose radiation is emitted at te, and reached us at t0:

• Using the relation between (t0-te) and redshift z, establishes the relation
between coordinate distance dP(t0) of source and z:
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• Luminosity Distance

• In terms of an object at redshift z, with absolute bolometric magnitude 
Mbol, we may infer the acceleration parameter q0 from:
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Cosmic Curvature 
Measured



Cosmic Microwave Background

Map of the Universe at Recombination Epoch  (Planck, 2013):
 379,000 years after Big Bang
 Subhorizon perturbations:    primordial sound waves 
 ∆T/T   <  10-5



Measuring the Geometry of the Universe:

•   Object with known physical size, 
at large cosmological distance

● Measure angular extent on sky

● Comparison yields light path,
and from this the curvature of space   

Measuring  Curvature

W. Hu
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FRW  Universe:
lightpaths described by Robertson-Walker metric

Here:  angular diameter distance DA:  

Geometry  of  Space

ADλ α=
AD

ADλ α=



In a matter-dominated Universe, the angular diameter distance as function of 
redshift is given by:
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The angular size (z) of an object of physical 
size  at a redshift z displays an interesting 
behaviour. In most FRW universes is has a 
minimum at  a medium range redshift –
z=1.25 in an Ωm=1 EdS universe – and increases 
again at higher redshifts.
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Measuring  Curvature

W. Hu
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FRW  Universe:
lightpaths described by Robertson-Walker metric

Here:  angular diameter distance DA:  

ADλ α=
AD

ADλ α=

•  Object with known physical size, 
at large cosmological distance:

•   Sound Waves in the Early Universe !!!!

Temperature Fluctuations
CMB



Fluctuations-Origin



● small ripples in 
primordial matter & photon   distribution 

● gravity:   
- compression primordial photon gas  
- photon pressure resists

● compressions and rarefactions 
in photon gas:   sound waves 

● sound waves not heard, but seen:
- compressions:    (photon) T  higher
- rarefactions:                              lower

● fundamental mode sound spectrum
- size of “instrument”:         
- (sound) horizon size last scattering

● Observed, angular size:            θ~1º
- exact scale maximum compression, the
“cosmic fundamental mode of music”

Music of the Spheres

W. Hu



COBE measured fluctuations:                              > 7o

Size Horizon at Recombination spans angle   ~ 1o

COBE proved that superhorizon fluctuations do exist:                prediction Inflation !!!!! 

Size Horizon Recombination



Flat universe from CMB
• First peak:  flat universe

Closed: 
hot spots 
appear larger

Flat: 
appear as big 
as they are 

Open: 
spots appear 
smaller

We know the redshift and the time 
it took for the light to reach us: 

from this we know the    
- length of the legs of the   

triangle 
- the angle at which we are 

measuring the sound horizon.



The Cosmic Microwave Background Temperature Anisotropies:
Universe is almost perfectly FLAT !!!!

The Cosmic Tonal Ladder

The WMAP CMB temperature
power  spectrum

Cosmic sound horizon



Planck CMB Temperature Fluctuations



The WMAP CMB temperature
power 

spectrum

, 1( )sound horizon A rec CMB st peakD zλ θ=



FRW Universe:  Curvature
There is a 1-1 relation between the total energy content 
of the Universe  and its curvature. From FRW equations: 

2 2

2 ( 1)H Rk
c

= Ω− rad m ΛΩ = Ω +Ω +Ω

1 1

1 0

1 1

k Hyperbolic Open Universe

k Flat Critical Universe

k Spherical Close Universe

Ω < = −

Ω = =

Ω > = +



SCP  Union2  constraints  (2010)

on values of  matter density Ωm
dark energy density ΩΛ

2
mq Λ

Ω
≈ −Ω

2 2

2 ( 1)m
H Rk

c Λ= Ω +Ω −

Cosmic Curvature
& 

Cosmic Density
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