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The authors review the equations, notational choices, and confusing terminology of the Friedmann (zero-
pressure) and Lemaitre cosmological models, retaining cgs units as far as practical and in particular retain-
ing units cm~2 for the present Gaussian curvature K of three-space. They integrate the Friedmann equa-
tion numerically, requiring solutions to match the present Hubble parameter H, and mass-density (“clo-
sure”) parameter (), at present time ¢, =0, and generate families of curves showing the scale factor R (7)
(with Rg=1) vs 7 (time in units Hg!) for fixed Q and various values of the cosmological constant A (in
units H3). These unusual graphs show the continuity of the solutions and the physical significance of A.
Families for several values of (0 exhibit known but unfamiliar features. The authors also show the family
of “standard models” (A =0) and the family satisfying the “inflationary constraint” (K;,=0). They obtain
new and simple formulas for the critical value A (H,Qq), which separates models with a big bang from
those without. Their definition of A; at fixed H, and € differs from usual practice but proves useful.
These formulas also give the quasistatic scale factor R, and redshift z; for the corresponding Eddington-
Lemaitre model, and give R; and z; approximately for the neighboring “Lemaitre coasting models,” which
have A <A;. The conventional wisdom that A=A_(1+¢) for the coasting models applies to a different
characteristic value A,. A quasistatic state in the future, with a second critical va]ue‘Asz, is possible if

Qo> 1. The parameters:Q,, A/H3, A, /H(Z), and A;,/H?3 can be used to classify the Friedmann models.
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I. INTRODUCTION

If the geometry of spacetime is Riemannian, the family
of Lemaitre universes (Lema?tre, 1927), with arbitrary
cosmological constant A, comprises all homogeneous iso-
tropic world models satisfying Einstein’s field equations
of general relativity. The Friedmann (zero-pressure)
universes (Friedmann, 1922,1924) are an important subset
of these, with application to our observed universe, which
at present probably satisfies the conditions of homogene-
ity, isotropy, and negligible pressure to a good approxima-
tion. Solutions for the scale factor R (¢) in Friedmann

models are therefore familiar in textbooks, but often ap-
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pear there in an abstract presentation which obscures the
family relationships among the various solutions and fails
to reveal to the reader the full range and continuity of the
solutions and the simple physical content of the results.

In this paper we aim to fill a gap in the literature by
displaying the Friedmann solutions R (¢) graphically in a
way that shows clearly the relationships among them, and
shows in particular the physical significance of the
cosmological constant A. These graphs are not readily
obtainable elsewhere. The reader may find them a useful
supplement to the figures more commonly found in text-
books. We approach the problem of R (¢) from the point
of view of the present epoch t, (rather than from the big
bang or from some other epoch), requiring that R (z) first
of all match present conditions. We then use the Fried-
mann differential equation to extend R (¢) into the past
and future. Proceeding from the known into the un-
known seems appropriate.

We also review briefly the basic equations of Lemaitre
and Friedmann, primarily to offer some clarifying com-
ments on the variety of terminology, notation, and con-
ventions now in use. We make choices so as to stay as
close to everyday physics as possible, and we use cgs units
for the most part. Finally we give new and simple formu-
las for the “critical values” A and A, of the cosmologi-
cal constant in terms of the present mass-density parame-
ter o and Hubble parameter H,. The critical values are
those for which the Friedmann universe reaches an
asymptotically static state in the infinite past or future.

Copyright ©1986 The American Physical Society 689
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In particular, the principal value A; corresponds to an
Eddington-LemaTtre (EL) model, quasistatic in the past,
and separates models with a big bang in the past from
those without. The intermittently popular “Lemaitre
coasting models” are often said to have A=A.(1+¢),
where O<e<<1. Our curves show that this statement
raises a paradox, resolved only by distinguishing between
A, and a second characteristic value A.. Finding the crit-
ical values A, involves a simple but interesting physical
application of the celebrated “irreducible case” of
Cardan’s method for the solution of a cubic equation.

Il. LEMAITRE AND FRIEDMANN UNIVERSES

Proofs, further discussion, and history of the following
basic equations may be found in standard textbooks (Pee-
bles, 1971; Weinberg, 1972; Landsberg and Evans, 1977;
Rindler, 1977; Raychaudhuri, 1979). If spacetime has a
Riemannian metric (a fairly weak assumption) and if
three-space is homogeneous and isotropic (the cosmologi-
cal principle), then the line element d/ in any three-space
can be written '

d’=RX0)[dr*1—Kor®)~ '+ rXd6*+sin®0de?)], (1)

where R (¢) is an arbitrary function of time, usually called
the scale factor, and K is an arbitrary constant, positive,
negative, or zero. We measure d/ in cm. Equation (1) is
the Robertson-Walker metric. The angles 6 and ¢ are or-
dinary spherical coordinates, with 0 the polar angle. The
third spatial coordinate r is a radial coordinate whose in-
terpretation we will give shortly. Any fundamental parti-
cle P has fixed coordinates (r,6,¢), attached forever. The
three-space with. metric (1) has intrinsic Gaussian curva-
ture (units of cm~2) '

K(t)=KoR 1) ; 2

K is uniform over the three-space but varies in time. If
K, is positive, K 172 is called the radius of curvature or
“radius of the universe.” The universe is then closed,
having finite volume

YV =27%K~1/2)} (3)

This result (Weinberg, 1972, Secs. 6.7, 13.2, and 13.3)
holds for the usual (“spherical”) model. The coefficient is
sometimes quoted  incorrectly (Coquereaux and
Grossmann, 1982). The coefficient can also be changed
by topological identifications (Tolman, 1934, Sec. 138;
Rindler, 1977, Sec. 9.5; cf. Lema/i\tre, 1927, and de Sitter,
1930).

Thus a closed universe, by definition, is one with posi-
tive curvature K,. Closure by itself does not tell us
whether or not the universe will recollapse. In Sec. IIT we
will show that in relativistic cosmology some open models
recollapse and some closed ones do not.

Many authors use a coordinate rescaling of the form
u?=+Kyr? to transform away the K, in Eqgs. (1) and (2),
replacing it by a dimensionless “curvature index” k that
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is £1 or zero. We refrain from this because we wish to
retain physical units (cm) for r. Therefore we use this
freedom of a proportional transformation of the radial
coordinate to require instead that at the present time
to=0, a radial dl (d60=d@=0) be ~dr near the origin
(i.e., for r << | Ky | ~1/2). This makes R (¢) dimensionless
and implies that

R(0)=1 and K(0)=K, . (4)

Thus in these coordinates the arbitrary constant K is the
present Gaussian curvature of three-space. [The radial
coordinate 7 then also has a simple interpretation. By set-
ting dr =d =0 and integrating 0 from O to 27 in Eq. (1),
one sees that the coordinate r for any fundamental parti-
cle Pis (27)~! times the present circamference of a circle
through P with center at the origin 0.]' We prefer this di-
mensionless scale factor R(¢), normalized to unity at
present. Authors who need the notation R for tensors
often use the notation a(¢) for R(#). The scale factor
R (1) is sometimes called the “radius of the universe” be-
cause, if k is used instead of K, as described above, one
sees readily by analogy with Eq. (2) that R (¢) then takes
on dimensions in centimeters, and that it becomes the ra-
dius of curvature in the case of closed space (k = +1).

Universes with the metric of Eq. (1) should be called
Robertson-Walker universes. Equation (1) follows strictly
from kinematics and contains no dynamical information;
that is why R (¢) is a perfectly arbitrary function. If the
dynamics is given by general relativity, then application
of Einstein’s field equations to Eq. (1) yields two impor-
tant equations:

(R/RP?=%nGp(t)—c*KoR >+ 1A, (5)

p=—3[p(t)+p(t)c "2 IR /R . (6)

Here, the overdot is the time derivative; p(¢) is the uni-
form mass density, including the mass equivalent of any
energy present; p(t) is pressure; and A is the “cosmologi-
cal constant” added by Einstein to his field equations
(Einstein, 1917). Actually Einstein’s original A had di-
mensions in cm ™2, Our A above has dimensions in sec™2,
and A=c?A. The notation A is sometimes used today in
either sense. Note that the third term of Eq. (5) is
—c?K(1).

Equations (5) and (6), together with some equation of
state p =p (p), determine the behavior of R (¢) in a homo-
geneous isotropic relativistic universe (Harrison, 1967).
Equations (5) and (6) were derived by Lemaitre (1927),
who pointed out their relevance to the Hubble expansion.
They should be called the Lemaitre equations, and the re-
sulting family of models should be called Lemaitre
models (Peebles, 1971). Lemaitre models with A =0 may
be called *‘standard models.”

The behavior of the equation of state p(p) in the very
early universe, the question of whether Egs. (5) and (6) re-

10f course r is not equal to the distance OP unless K=0. OP
is obtained by integrating Eq. (1) from O to r with d6=d¢p=0.
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quire any modification, and the possibility that a “natural
value” of A might be identified by studying the physics of
that epoch are topics of discussion in the modern infla-
tionary cosmologies (Linde, 1984; Brandenberger, 1985).
Obviously radiation pressure is important in the early hot
universe. Observation suggests, however, that p(¢) is
negligible now (Weinberg, 1972, Sec. 15.2)? and remains
negligible for a long time into the past and future. If
p=0 (more precisely, if p <<pc?), Eq. (6) has the solution
p(t)=po/R3. Putting this into Eq. (5) gives

(R/R®=CR3—c?K,R™2++A, ‘ @)
where the constant C is 7Gpy. This simple case of Eq.

(5) was derived by Friedmann (1922) before Lemaitre.
Friedmann thereby saw the possibility of a' homologous
expansion before it was observed by Hubble—a remark-
able achievement. His two classic papers have recently
been translated (Bernstein and Feinberg, 1986, pp.
49—65). Equation (7) is called the Friedmann equation,
and its solutions, i.e., the Lemaitre models with zero pres-
sure, are called Friedmann models (Robertson, 1933).

This classical terminology is clear enough. Unfor-
tunately a variety of confusing terminology has been in-
troduced recently. Equation (5), one of the Lemaitre
equations, is sometimes called the Einstein equation, al-
though Einstein (1917), who was looking for static solu-
tions, did not derive it. Many authors use the term
“Lemaitre model” to denote a famous special case, name-
ly, the “Lemaitre coasting model” with a quasistatic
phase. We shall see examples in the graphs. Some au-
thors narrow the term “Friedmann model” by using it to
imply Eq. (7) with A=0—an injustice to Friedmann, who
included A. Others expand the term to include all the
Lemaitre models, that is, those with p=£0, satisfying Eqgs.
(5) and (6)—an injustice to Lemaitre. The standard
models, those with A=0 and p =p(p), are often called
Friedmann-Robertson-Walker (FRW) models. This term
is particularly bad, being both too specific and too dif-
fuse: Models with p+£0 are not Friedmann models;
Friedmann did not assume A=0; and the Robertson-
Walker models, which prescribe no dynamics, include all
the Lemaitre (relativistic) models, with or without A, and
an infinity of other homogeneous isotropic models be-
sides.

By definition, R /R on the left-hand side of Eq. (5) is
the Hubble parameter H(t), with units sec™! (or
kmsec™!Mpc~!). At any time, Eq. (5) reads

XK ()=37Gp(t)+ +A—HX1) . (8)

This pleasant equation, valid for all Lemaitre models,
shows what endows three-space with Gaussian curvature
K: The mass density p (>0) and the cosmological con-
stant A (if positive) give positive curvature; motion (H)
gives negative curvature. The sign of the motion (expan-

2This opinion is not unanimous, and models with large p (0)
are sometimes discussed (Turner, 1985).
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sion or contraction of the universe) does not matter, for H
enters only as H?.

Formally, the Friedmann equation (7) is a first-order
differential equation, so the solution R (z) is determined
uniquely by one boundary condition if the constants C,
Ky, and A are known. But our choice of coordinate 7 in
Eq. (1) guaranteed that R (0)=1. Therefore the constants
C, Ky, and A determine R (¢) completely. We may apply
Eq. (8) at =0 to replace any one of these three free pa-
rameters by the present Hubble parameter H,, which is
not completely free in our universe, having been measured
to within about a factor of 2 (Aaronson and Mould, 1983;
Buta and de Vaucouleurs, 1983; Branch et al., 1983;
Sandage and Tammann, 1984; Bartel et al., 1985).> Go-
ing further, and straying from cgs units a little, we may
introduce a dimensionless time

T=H,t 9

(time measured in units of the “Hubble time” Hy!). We
also introduce a dimensionless density

QUt)=37Gp(t)H ~Xt)=Cp(t)pg 'H~X1) . (10)

[This is often called the closure parameter, because Eq. (8)
shows that the universe is closed (K>0) if
Q>1—5A/H% Note that, unlike some current authors,
we do not absorb a A term into our definitions of Q, P>
and p.] Use of 7 and Q and Eq. (8) reduces the Fried-
mann equation (7) to the form
2

2
—Q R°—1

RZ

1

RZ

dR

dr

1-R | 1
+—5+

1| A
R3> " R? 3

Hj

(11

Once again we have R(7)=1 at 7=0, so the solutions
R (7) for the dimensionless scale factor as a function of
the dimensionless time 7 are unique and are a two-
parameter family of curves, with dimensionless parame-
ters Qo=0(0) and A/H3. ,
Some authors, particularly in older papers, prefer to
describe Friedmann models in terms of the density pa-
rameter oo=+, and the deceleration parameter

go= —(RR /R ?), rather than in terms of Qpand A. (The
deceleration parameter in particular has wide application
in more general models.) For ease of comparison with
other authors, we give here the relationship (Rindler,
1977, Sec. 9.11)

go=00—TA/Hi=5Q0—FA/H}, (12)

valid in any Friedmann (zero-pressure) model.

. GRAPHS OF FRIEDMANN SCALE FACTORS R (7)

The best way to reveal to the reader the physical con-
tent of the Friedmann equation (11) is to graph its solu-

3H, is roughly 50—100 kmsec Mpc~!, and the Hubble time
Hg'is (10—20)%10° yr.
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tions. We have done this by computer, setting R (7)=1 at
the present epoch 7=0 and solving Eq. (11) numerically
to push R (7) into the past and future. It is not mandato-
ry to integrate the Friedmann equation by computer; the
solutions are expressible in terms of tabulated (elliptic) in-
tegrals (Rindler, 1977, Sec. 9.10). However, the expres-
sions (Agnese, La Camera, and Wataghin, 1970; Edwards,
1972) are cumbersome and necessarily contain errors, usu-
ally discovered only through computation (Campusano,
Heidmann, and Nieto, 1975).

The numerical integration of Eq. (11) is straightfor-
ward (Rindler, 1977, Sec. 9.10). Starting at the boundary
Ry =1 (the present time 7=0), the scale factor R, at time
step n can be approximated by the Taylor expansion

R,=R,_+(dR /d7),_ AT+ +(d?R /d 1), _(AT)* .
(13)

The coefficient of A7 is given by Eq. (11), and the coeffi-
cient of (A7)?> may be obtained by differentiating Eq. (11).
This is important because without it Eq. (13) would not
carry the integration correctly through a value of R,
where dR /dt is small or zero. Higher-order terms, how-
ever, are not needed; further differentiation shows that
they are negligible for small Ar.

We ran the program in each direction of time from
7=0 to =5 Hubble times, or until R=0 (a big bang or big
crunch) was encountered. Experimentation showed that a
step size A7=0.0025 (400 steps per Hubble time) is small
enough. We can verify certain critical values of A/H?3
(see Sec. IV) to seven significant figures. In cases where a
big bang is encountered in the past, the 7 intercept
represents the model age in Hubble times, so that pub-
lished age calculations provide another check of the pro-
gram (Glanfield, 1966; Stabell and Refsdal, 1966; Refsdal,
Stabell, and de Lange, 1967; Agnese, La Camera, and
Wataghin, 1970; Campusano, Heidmann, and Nieto,
1975). (Readers wishing more accurate ages, or ages for
models not shown on our graphs, should consult these pa-
pers, which also contain a variety of useful graphs and
tables for the Friedmann models.)

Figures 1(a)—1(c) show three sample families of solu-
tions* for three fixed values of the present closure (densi-
ty) parameter Q, The free parameter is A/H3. Figure
1(a) shows “low-density” models with Qy=0.1, typical of
models based on astronomical data. These data suggest
that 0.01 <Q,<0.3 (Peebles, 1984; Felten, 1985). The
family relationships among the curves of Fig. 1(a) make
clear the physics of R(¢#) and the significance of A.
Several points are noteworthy. All curves pass through
the point (0,1) with slope unity, so all are tangent there,
but no two curves ever cross one another. Positive A acts

4The only similar figure we have found in the literature is a
sketch by Silk (1980).

Rev. Mod. Phys., Vol. 58, No. 3, July 1986

5 3
LW
' A '
! 0 /7-\\ -
i A
- AHZz N
Cl: -05\ 7
oc \]
o
[ —
g
w
3 ]
O
w —
]
° -4 -2 0 2 4
COSMIC TIME 7 (UNITS Hg™)
z
o
o
(o]
[
Q
s
w
-
<
O
(2]
C
o
S
[
Q
&
w
-
<
(]
[2]

COSMIC TIME t (UNITS Hg™")

FIG. 1. Solutioms of the Friedmann equation. Three families
of scale factors R (7) for Friedmann (zero-pressure) universes,
with three fixed values of the present density parameter Qg: (a)
Q=0.1; (b) Qp=1; (c) Qo=3. The free parameter, shown on
the curves, is the cosmological constant A in units of H3, where
H, is the present Hubble parameter. The time 7 is measured in
units of the Hubble time H ' and is taken =0 at present. The
scale factor R (7) is normalized to unity at present: Ro=1. For
further discussion see the text.
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like a repulsive force (Petrosian, 1974; Rindler, 1977,
Secs. 9.2 and 9.9), so when we go from one curve to a
neighbor with, say, a slightly larger A, the second curve is
more concave upward at every 7, and the two curves can
never Cross.

Looking first at negative A, we see that for A <0 all
models recollapse. The attractive force produced by nega-
tive A is constant in time. Unlike gravity, it is not diluted
by expansion and does not drop off as R(t) grows.
Therefore even a small negative A slows the universe and
turns it around eventually. One sees from Eq. (8) that
these models with Qp< 1 and A <0 all have K <0, illus-
trating that, with A <O, open (infinite) universes recol-
lapse. The model with A=0 (and Q,< 1) is, of course, a
member of the family of “standard models”; it has Ky <0
and expands forever. The models with A>0 and Qp<1
also expand forever. Considering positive A, and letting
A increase, we see that the universe starts to develop a
“hernia” in the past. (See A/H3=3 and 4.) Equation (8)
shows that, for A/H% >3(1—Qy)=~3, the universe is
closed (finite), so the curves illustrate that some closed
models expand forever.

The case A/H3=4 is an example of a “Lemaitre coast-
ing model,” with a quasistatic epoch, and the cases
A/H3=4.04 and 4.048 are more extreme examples. They
rise from a big bang, “coast” for a time at a quasistatic
value of R, then rise again. These models enjoy populari-
ty from time to time when data seem to require them
(Kardashev, 1967; Petrosian, Salpeter, and Szekeres, 1967,
Shklovsky, 1967; Petrosian and Salpeter, 1968; Rowan-
Robinson, 1968; Brecher and Silk, 1969; Petrosian, 1969;
Petrosian, 1974; Gunn and Tinsley, 1975; Tinsley, 1977;
Zel’dovich and Syunyaev, 1980). The main advantage of
coasting models is that the age of the universe, given by
the 7 intercept, can be several Hubble times or more, in
fact as large as needed. In such cases, objects of great
age, e.g., globular clusters, can be accommodated (Sand-
age, 1982; Janes and Demarque, 1983; Thielemann, Metz-
inger, and Klapdor, 1983; VandenBerg, 1983; Sandage
and Tammann, 1984; Klapdor and Grotz, 1986). These
models do dive to a big bang somewhere on the negative 7

axis. But if we increase A/H % further, to a critical value’

Ay /H2, equal to 4.050000 in the present case Q,=0.1,
the universe loses this big bang in the past, and we obtain
an Eddington-Lema/i\tre (EL) model, asymptotic to
Einstein’s static model in the infinite past. This critical
A, separates models with a big bang in the past (A < Ay)
from those without (A >A;). Thus, for example, if
Qy=0.1 and Hy=100k kmsecMpc~!, a Friedmann
model with a big bang must have A <4.05H3
=4.25X10"%h? sec—2. The critical A,/H3 for a given
value of Q, may easily be evaluated by computer trials,
but in Sec. IV we shall derive analytical formulas for it.
For A> A we obtain models that collapse from infini-
ty, reach a minimum value of R(#), and then expand
again. Rindler (1977) calls these the “catenary universes,”
although we can see that the curves are not true
catenaries. These are seldom spoken of today, because the
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2.7-K background radiation seems to require a big bang in
the past.’

Readers should note that the catenary universes, like
the recollapsing models with large negative A, are time
symmetric about their extrema in R, where dR /dT=0.
This is expected, because the Friedmann equation (11) is
manifestly time symmetric; if R (7) is a solution, R (—7)
is also. If we reflect the curves of Fig. 1, reversing left
and right about the vertical line 7=0, we preserve the
boundary condition R (0)=1, and we obtain a whole new
set of solutions. These solutions have (dR /dT)y= —1 in-
stead of + 1 and might be thought of as universes collaps-
ing at present. [Strictly speaking, however, they are mere-
ly unphysical, because we mandated (dR /d71)y=+1 as a
convention when we defined r=H,t; expanding or col-
lapsing universes ( H, 2 0) automatically have the positive
sign.] The situation exemplifies a broken symmetry: Eq.
(11) is time symmetric, but the symmetry is broken by the
boundary condition R(0)=1 and the convention
(dR /d7)y=+1.

The coasting models have A=A (1—e¢), where
O<e<<1l. Some readers may be puzzled by this, for in
the extensive literature on coasting models (Kardashev,
1967; Petrosian and Salpeter, 1968; Rowan-Robinson,
1968; Brecher and Silk, 1969; Petrosian, 1969; Petrosian,
1974) it is repeatedly stated that A=A_.(1+¢). By the
discussion above, our result clearly is physically correct.
We shall resolve this paradox in Sec. V by showing that
the A, defined above is not the same as A, defined in ear-
lier papers.

Figure 1(b), which shows “critical-density” models
(Qp=1), has the same qualitative features as Fig. 1(a).
For critical density, R (z) still escapes (barely) to infinity
if A=0, but it recollapses if A <0. The critical A,/H2
has increased to 7.794 229.

In Fig. 1(c), for =3, an interesting new feature ap-
pears: There is the possibility of a model that becomes
quasistatic in the future, with a second critical value,
which we may call A;,/H %———0.502 977 in this case. One
sees that this behavior is physically correct for models
with Qp>1. Such a model will recollapse if A=0.
Therefore a small positive A=A,, (repulsive force) can
provide equilibrium and prevent recollapse. This model
with a quasistatic state in the future may be no more than
a curiosity, for no feature of the observed universe seems
to require it. In Fig. 1(c), only models with A/H3 < —6
have negative curvature. This underscores the point that,
for high density, the curvature is positive for a wide range
of models, both escaping and recollapsing.

Figure 2 shows the family of models satisfying the “in-
flationary constraint” (Peebles, 1984). In the modern in-
flationary theories (Linde, 1984; Brandenberger, 1985),
the three-space curvature K (¢) should be zero at present,
essentially because the exponential increase in R at very

S5For a contrary view, see Segal (1983).
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FIG. 2. “Inflationary” Friedmann models. The family of scale
factors R (7) for models satisfying the “inflationary constraint”
(three-space curvature Ky=0). The free parameter, shown on
the curves, is . The cosmological constant A is determined
from Q, by Eq. (14).

early times stretches K out so that it is negligibly small at
later times. Putting Ko=0 in Eq. (8) and using Eq. (10)
yields

A=3(1—QyH3} (14)

as the condition that must be satisfied by an inflationary
model in the subsequent (present) state when the Fried-
mann or the Lemaitre equation is satisfied. Thus A is no
longer free in inflationary models; it is determined by H,
and Q,. We show in Fig. 2 the family of these models,
with Qg as the parameter.

If A=0, Eq. (14) shows that we require {p=1 in the
inflationary theories. Discussions of inflationary models
(Linde, 1984; Brandenberger, 1985; Turner, 1985) tend to
concentrate on this ‘“standard case,” also known as the
Einstein—de Sitter model. The model age is then unique
and is known analytically to be > H ! (cf. the 7 intercept
for Qp=1 in Fig. 2), and the age becomes even shorter in
non-Friedmann models including effects of pressure
(Turner, 1985). This age for the standard inflationary
model is embarrassingly short if Hy > 50 kmsec™! Mpc™!
(Hy'<20x10° yr), because the globular clusters
(ages > 16X 10° yr; Sandage, 1982; Janes and Demarque,
1983; VandenBerg, 1983; Sandage and Tammann, 1984)
cannot then be accommodated (Klapdor and Grotz,
1986).5 Peebles (1984) and Turner, Steigman, and Krauss
(1984) have therefore directed attention to the alternative

SFor a recent review of these constraints see Sandage and
Tammann (1986).
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models = of Fig. 2 with As0. With Hy;=80
kmsec™!Mpc~!, for example, we could have reasonable
consistency with Qy=~0.1 and a model age ~1.3H, L

We see that the inflationary family has analogs of the
Lemaitre coasting models. The limiting case (Qy,=0,
A/H}=3), shown in Fig. 2, is known as the empty de
Sitter model; its equation is R=expr. It is in fact an EL
model, with infinite age, which becomes quasistatic at
R=0. Figure 2 shows that coasting models exist for
04 << 1; they peel off the curve R =expr at various model
ages. But in contrast to Figs. 1(b) and 1(c), ages larger
than Hg ! can be obtained only for Q<< 1 when the in-
flationary constraint is in force.

Finally Fig. 3 shows the familiar family of “‘standard
models” (A=0), with Q as the parameter. These, as the
simplest, are much beloved by theorists. In the empty
case =0, R(7) is a straight line because there is no
force to give acceleration. This model has age Hy ', the
longest obtainable among the standard models. This is
still short enough to cause trouble (Sandage and Tam-
mann, 1986) if H, is near 100 kmsec™'Mpc~!. The
higher-density models have progressively shorter ages,
which can be read roughly from the 7 intercepts. For
0y <1 the standard model is open and expands forever;
for Q> 1 it is closed and recollapses.

The reader should understand, with respect to all of
these models, that the Friedmann equation cannot remain
valid all the way down to R=0. Close to the big bang,
pressure must be important. But standard texts show that
if the present pressure is mainly that due to the 2.7-K
background radiation, then at present we have
Po<107%pec?, and p will remain negligible, and the
Friedmann solution good, until R gets down to < 1073,
This is small on the scale of Figs. 1—3, so the non-
Friedmann effects are only tiny perturbations on the tails

/0.1
T ' T ' T I T] T T I 1,
— "STANDARD” MODELS 0 0.3 _~
(A=0) //1’ J
T 2t e =
- Pid —
o L ,’,/ // 2 4
S 0 s - N
=L Z Q 3
2 ol <50
N LI
4
S | 74 \ NS |
2/ Y
St A Vo N\
- l' ;/ 100 \ \‘ -
V11 o \
/1 2 J1a | L | |\ | 1 i 1
-1 ‘\:)\10.3 0 2

003 COSMIC TIME t (UNITS Hg 1)

FIG. 3. “Standard” Friedmann models. The family of scale
factors R (r) for the “standard models” (A=0). The free pa-
rameter, shown on the curves, is . As shown by the 7 inter-
cepts, all models have ages <1 (<Hg ' yr).
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of these curves near R=0. The same is true of the more
complicated effects caused by phase transitions, particle
interactions, and decays at very early epochs. None of
these will compromise the validity of the Friedmann
equation for deducing gross properties such as the model
age or for predicting observable properties at red shifts
z=R'—1 < 10°. On the other hand, if the present p,
were appreciable (~poc?), due, for example, to a high
density of relativistic particles, we would be thrown back
to the Lemaitre equations (4) and (5) throughout the range
of 7, and changes in R (7) would be noticeable (Turner,
1985). One of the principal effects would be to shorten
the model ages further. The ages of some popular models
are already uncomfortably short.

IV. CRITICAL VALUES OF A

It is of interest to obtain analytical expressions for the
critical values A; noted in Sec. III. Expressions already
in the literature are not particularly transparent and are
not written in terms of the parameters (H,{,) popular
today. To do this we note that a critical (EL) model is
asymptotic to a static Einstein model in the infinite past,
so that in that state it must satisfy the familiar pair of
equations satisfied by an Einstein model. In our notation
these equations are’

cXKoR;>=A;=3CR . (15)

The Gaussian curvature K, and the density parameter C
(=3$7Gpy) refer to the present epoch; R, is the scale fac-
tor (< 1) at which the model becomes quasistatic in the
past. Recall from Egs. (8) and (10) that C =Q,H3 and

2 Ko=H}Qo—1++A,/H}) , (16)

if A, is the value of A for this EL model of given Hy and
Q.
We may eliminate R, from Eq. (15) to obtain

As=4(cKoPC2=3(c?Ko)(QoHJ) 2 . an

This expression is familiar [Landsberg and Evans, 1977,
Eq. (7.1); Rindler, 1977, Eq. (9.89)]. Equation (16) shows
that, for fixed H, and Q, Eq. (17) is a cubic for the criti-
cal A;(Hy,Q,). We are interested only in positive roots,
for there can be no equilibrium with A <0. We set

x=(A,/12Q,H3)'/> (18)

7These equations may be derived by setting p =R=R=0 in
Eqgs. (9.72) and (9.73) of Rindler (1977). This yields Rindler’s
Eq. (9.83), where he has taken c¢=1; the last member of Eq.
(9.83) actually reads 47Gpc ~2. Conversion to our notation, and
use of the Friedmann density dependence p, =poR; >, yield Eq.
(15).
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in Eqgs. (16) and (17) and obtain a dimensionless cubic
fX)=x—3x +H(Qo—1)/Q,=0 (2,>0). (19)

We seek positive roots. ‘“Cardan’s method” (invented by
Tartaglia and stolen by Cardan; Burnside and Panton,
1960, Sec. 56) may be used. This cubic is already in the
“reduced form,” and its discriminant® A is

A=a~AG*+4H?)=(1-200)0Q52. (20)
The familiar Cardan solution can be written
x=pAylp-1/3, @1
where
p=31—G +(G*+4H*)' =1 [+(1-00)Q '+ 417 .
' (22)

Equation (21) yields three roots x corresponding to the
three (real or complex) cube roots of p. The positive roots
x may be counted by standard analysis using the value of
A and Descartes’s strong rule of signs (Hart, 1947; Burn-
side and Panton, 1960, Sec. 43). If 0<Qy< 5, then p is
positive, and the principal cube root of p gives one posi-
tive root x—the only one. But for Q> %, we have A <0,
and p is complex. Nevertheless all three roots x are real
and distinct. This is the celebrated “irreducible case,” in
which “... from a real cubic three real roots cannot be ex-
tracted by Cardan’s algebraic formula without a circui-
tous passage into, and out of, the domain of complex
numbers” (Turnbull, 1952, Secs. 49ff). In this case it is
convenient to use the alternative trigonometric solution
for the three real roots (Turnbull, 1952). Only one root is
positive for Qg < 1, but two are positive for ¢> 1. Final-
ly, although Egs. (20)—(22) are adequate for the positive
root x in the case Qo< 5, there is a hyperbolic form
homologous to the trigonometric solution which is more
attractive (Turnbull, 1952).

We can write the results as follows: If x is a positive
root of Eq. (19), the critical value Ay is given by

As(Hoy,Q0)=12Q0H3x3 , (23)

and it is easily shown from the last member of Eq. (15)

that the corresponding quasistatic scale factor is
Ry,=+4x"'. : (24)

For the positive root or roots x used in Egs. (23) and (24),

we must distinguish three cases.
Case 1: 0<Qy< 5. The positive root is

1-90}

x =cosh |5cosh™! (25a)

Qo

Case 2: 7 <Qy< 1. The positive root is

8Various authors disagree on the numerical factor attached to
A; we use the definition of Burnside and Panton (1960, Sec. 42).
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X =cos [+cos™ (25b)

Qo

11-90]

Case 3: (o> 1. Equation (25b) gives the positive root
x which yields Ay, and there is a second and smaller posi-
tive root,

[ 1-0,
Qg

1 —_
X, ==CO0S | 5Cos

+#;—1r] : (26)

(This root corresponds to a quasistatic state in the future,
yielding a second critical value A;,, with R;,= %x{ IS,
and confirms the result noted in numerical integrations in
Sec. III.) Readers whose pocket calculators lack the cosh
and cosh™! functions may easily use Egs. (20)—(22) in
case 1. Note that R, and A,/H 3 are functions only of
Q. Figure 4 shows these functions, together with asymp-
totic forms for Qy<<1 and Q¢>>1.

Surprisingly, these pleasant expressions for A; and R;
seem to to be new in the cosmology literature. [Blome
and Priester (1985) derived a more complicated expres-
sion, restricted to case 1 only. In the preprint version of
their paper, the radical covering the right-hand side of
their Eq. (18) was omitted.] Our work was, however, an-
ticipated by Glanfield (1966), who did not graph R (¢) or
obtain Egs. (23)—(26), but did write a cubic equivalent to
Eq. (19) (his R=Q, and his L =+A/H}), obtain roots
numerically, and give an excellent discussion of the solu-
tions R(t). His fine paper has fallen into obscurity.
Similarly, Bludman (1984) wrote an implicit cubic and
obtained a few roots numerically. Expressions like Egs.
(25) and (26) are surprisingly unfamiliar to physicists, al-
though similar expressions are obtainable for the real
roots of any real cubic. Apparently they are unfamiliar
because relatively few physical problems involve roots of
a cubic.

A e o Lt
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FIG. 4. The critical value A;/H3 [Eqgs. (23) and (25)], the cor-
responding quasistatic scale factor R, [Egs. (24) and (25)], and
the red shift z,(=R,'—1) of the quasistatic epoch, all shown
as functions of the present density parameter €, in a Friedmann
model. Their asymptotic forms for Q<< 1 and Qy>>1 are also
shown.
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Since the red shift z at any epoch is given by R ~!—1,
we can obtain A and ) in terms of the red shift z; at the
quasistatic epoch. We have z;=2x — 1, and from Eq. (23)
we find

Ay=2QH3(z,+1)° . 27

Using Egs. (24) and (25) and the multiple-angle formulas
for cos36 and cosh36, we easily find

Qo=2[(z;+ 113 —3(z,+1)+2]7". (28)

Thus A,/H3 and €, are uniquely determined by z,.
Equations (27) and (28) are exact for an EL model but
evidently apply approximately to a coasting model as
well. They are implicit or explicit in several earlier pa-
pers. During the period 1966—1969 it was thought that
quasar red-shift data required a coasting model with
z, ~1.95 (Burbidge, 1967; Shklovsky, 1967). By Egs. (27)
and (28), this would imply Q(~0.106 and A ~4.09H3.
We show z,({g) and its asymptotic forms in Fig. 4.

V. PARADOX AND DISCUSSION

We wish to resolve the paradox encountered in Sec. III.
Is the cosmological constant A for a coasting model
greater than or less than the EL value A ? It is helpful to
visualize this geometrically. The Friedmann models,
determined by three parameters (Hy,{Q,A), can be
represented as points in a three-dimensional parameter
space, with Hg,, Qg and A as x, y, and z coordinates.
The equation A=A, where A is given by Eq. (23), de-
fines the EL models, which occupy a two-dimensional
surface in this space. At fixed Hy and €, the coasting
models clearly occupy a short line segment with values of
A=A (1—¢). This is clear from the physical discussion
of Sec. III. Thus the coasting models occupy a thin layer
below the EL surface. (The entire half-space below the
surface comprises the big bang models.) If we start at a
given coasting model with parameters H,,Qg,A, and
move in parameter space in some arbitrary direction, we
shall arrive at the EL surface by moving in any direction
within almost 27 sr of solid angle. Thus there is a two-
dimensional infinity of EL models (not just one) near any
given coasting model. It is therefore misleading in this
context to speak, as some authors do, of the value of A
for the static Einstein universe. As the surface is not hor-
izontal, some of these models will have cosmological con-
stant lower than the value A for the given coasting model.

This picture clarifies the following remarks. For any
given model Hy,Qo,A (in particular, for a coasting
model), we define a characteristic value A; by Eq. (23).
Then A; may be described as the value of the cosmologi-
cal constant for the EL model having the same H,,, as
the given model. We would reach this EL model by mov-
ing vertically upward (at constant H, and Q) from the
given model. We find A; a useful number in categorizing
models; for example, if A <A, the given model has a big
bang, while if A=A, the given model is an EL model.
But we could also define a second characteristic value for
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the given model (call it A.) by
Ac=5(c K (QoH3) 2= 5(cKy)’C~2, (29)

where K, O, and H, are properties of the given model.
Equation (17) shows that (if K, is positive) A, may be
described as the value of the cosmological constant for
the EL model having the same Gaussian curvature K
and the same product QuH3 as the given model. In fact,
any EL model with the same ratio (¢?K,)®/C? will has
the same value A=A,. We would reach these models by
moving in parameter space in a one-parameter family of
directions, but not vertically; none has the same H,Q, as
the given model. Equation (29) is the characteristic value
used by authors who assert that A> A, for a coasting
model.

The physical meaning of Eq. (29) becomes clearer if we
cast it into an alternative form. If K;> 0, the volume V
is finite, and the total mass of the universe is M =p,V}.
From Egs. (3), (10), and (29), we find

A =57 c(GM)2 . (30)

This appears correctly but in slightly different form in
textbooks [Landsberg and Evans, 1977, Eq. (7.1); Rindler,
1977, Eq. (9.89)]. Thus the characteristic value A, for a
given model depends only on the mass M. In comparing
A with A., we are comparing A for the given model with
the value of A for an EL model having the same mass as
the given model. This is attractive theoretically but has
some drawbacks in applications (Priester, 1985). The
mass M of any model depends implicitly on A, which is
the hardest of the cosmological parameters to measure in
our universe. If three-space is nearly flat, then V and M
are large and uncertain, and A, cannot be calculated even
to within an order of magnitude. Furthermore M is am-
biguous because of the topological uncertainties men-
tioned below Eq. (3). On the other hand, Ay/H} is a
well-behaved function of g only, and there are methods
of measuring H, and Q,, at least in principle. The merits
of A, are clear.

If the given model is an EL model, then A=A, =Ag;
this is obvious from their definitions. But for an arbi-
trary given model, and in particular for a coasting model,
A, A., and A are all unequal. It is easy to verify that
A > A, for the coasting models. Differentiating Eq. (29)
at constant H, and €}, with the help of Eq. (8), we obtain

2 Ac 2/3
=l . @
3Q, H3

(CZK[))Z _
(QoH3?

oA,
JA

_4
9

Hy,Q,

But at the EL surface, where A=A, =A,, Eq. (27) or Fig.
4 shows that the last form of Eq. (31) must be > 1. It fol-
lows that for the coasting models (which lie at dA <O,
just below the EL surface) we must have A > A.. So the
conventional wisdom does hold for the coasting models.
However, A > A, does not hold for all big bang models;
for example, for Qy> 1, we have Ky=0 and A, =0 when
A= —3H3(Qu—1). On the other hand, A <A, does hold
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for all big bang models. The comparison of A and A,
shows conclusively whether or not a model has a big
bang. This is another advantage of A;.

Finally, readers familiar with the subject may note that
the parameters Qy and A/H (2), together with Ay /H (2, and
Ay,/H} [the two functions of Qg given by Egs. (23), (25),
and (26)], provide the elements of a scheme for classifying
the Friedmann universes (Glanfield, 1966). This is an al-
ternative to Robertson’s (1933) famous classification
scheme, still often quoted. Consider, for example, the
model in Fig. 1(c) labeled 0.52, which coasts in the future.
This model has A < A; and therefore has a big bang, but
it also has A > A, and therefore escapes to infinity even-
tually. It is of Robertson’s type M. For a second exam-
ple, any model with A > A, is a catenary model. Robert-
son, following Friedmann (1922), called the catenary
models “monotonic worlds of the second kind” (M,
models), by which they meant that, once in expansion,
these models continue to expand. But no one looking at
Fig. 1 today would be likely to think of these as monoton-
ic.

In a forthcoming paper (Felten and Isaacman, 1986) we
shall discuss the role of A, as an upper limit on A and ex-
tend our calculations of A, to more general Lemaitre
models having nonzero pressure. We shall also calculate
model ages for a wide variety of such models.
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