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VISUAL HORIZONS IN WORLD-MODELS

W. Rindler

(Received 1956 November 23)

Summary

This paper seeks to effect a unification and generalization of various particu-
lar results on visual horizons scattered in the literature. A horizon is here
defined as a frontier between things observable and things unobservable.
"T'wo quite different types of horizon exist which are here termed event-horizons
and particle-horizons. These are discussed in detail and illustrated by
examples and diagrams. 'The examples include well-known model-universes
which exhibit one or the other type of horizon, both types at once, or no
horizon. Proper distance and cosmic time are adopted as the main variables,
and the analysis is based on the Robertson—-Walker form of the line element
and therefore applies to all cosmological theories using a homogeneous
and isotropic substratum.

1. Introduction.—There has recently occurred a renewed interest in the
definition and properties of horizons in world-models, as witnessed by a pro-
longed correspondence in The Observatory (1) and subsequently in Nature (2).
This discussion was chiefly devoted to the horizon in the de Sitter space-time
associated with the model of the steady state theory, but the horizon concept
has applications to many other models besides, and cosmologists since de Sitter
and Eddington have concerned themselves with it. The above-mentioned
correspondence drew attention to the lack of general agreement on even the
definition of horizons. Different writers appear to use different horizon concepts,
or different descriptions of the same concept, without always making the necessary
distinctions. Furthermore, the meanings of many phrases used in discussions
of horizons such as, for example, ““all particles on one side of the horizon”,
*“ crossing the horizon with the speed of light”, ““in the observer’s finite experi-
ence’’, etc. evidently depend critically on the definitions of time and distance
whose diversity is notorious. A statement meaningful and valid on one inter-
pretation can be meaningless or even false on another, unintended, interpretation.
Consequently there can and did arise certain apparent ‘paradoxes”. These
facts seem to indicate the desirability for clear definitions to be laid down and
accepted. That there is, moreover, room for a long overdue general study of
horizons in cosmology was pointed out by H. Bondi and T. Gold (3) in the

. course of the Observatory correspondence.

In the present paper I seek to supply these needs. The main argument
applies to all homogeneous and isotropic model-universes, being based on the
Robertson—Walker form of the line element, but certain well-known particular
models are singled out for illustrative purposes. As main variables I have chosen
proper distance and cosmic time. In terms of these, horizons turn out to be
loci of ordinary points, not singularities; in fact, it is now well-known that by
means of these variables it is possible to represent the whole of space-time
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regularly, in spite of what Eddington wrote in 1923*; the description of particles
or events beyond the horizon presents no difficulties ; and some apparent paradoxes
disappear almost automatically. For the sake of clarity a small number of
diagrams have also been designed. 'Their purpose is, however, purely schematic
and no attempt was made to draw them to scale.

We shall define a horizon as a frontier between things observable and things
unobservable. ('The vague term things is here used deliberately.) 'There are then
two quite different horizon concepts in cosmology which satisfy our definition
and to which cosmologists have at various times devoted their attention. The
first, which I shall call an event-horizon, is exemplified by the de Sitter model-
universe. It may be defined as follows : An event-horizon, for a given fundamental
observer A, is a (hyper-) surface in space-time which divides all events into two
non-empty classes: those that have been, are, or will be observable by A, and those
that are forever outside A’s possible powers of observation. It was this horizon,
with particular reference to the steady state theory, which formed the subject
of the above-mentioned correspondence. Earlier references to it were made,
among others, by Eddington (5) in connection with the de Sitter model (it was
then called the *‘ mass-horizon”’) and by E. A. Milne and G. J. Whitrow (6) in
connection with Page’s “‘ uniformly accelerating ”’ equivalence. A very interesting
-discussion of the event-horizon in the de Sitter model was recently given by
Schrodinger (7) who greatly developed the geometric technique used by
Eddington.

The other type of horizon, which I shall call a particle-horizont, is exemplified
by the Einstein—de Sitter model-universe. It may be defined as follows: A4
particle-horizon, for any given fundamenial observer A and cosmic instant 1, is a
surface in the instantaneous 3-space t=t,, which divides all fundamental particles
into two non-empty classes : those that have already been observable by A at time i,
and those that havenot. W.H. McCrea(8)and G. C. McVittie (9) have previously
discussed the particle-horizon from the point of view of its providing an empirical
procedure for the determination of the rate of expansion of the universe. E. A.
‘Milne (r0) discussed it as an example of the absurdities inherent, in his opinion,
in some of the cosmological models of General Relativity.

It must be pointed out that there are models, for example the well-known
Lemaitre model of General Relativity, which actually possess both types of
horizon. Others, like Milne’s ““uniformly expanding” model possess neither
typel.

The general mechanism of horizons can be simply illustrated by means of
the well-known “ reduced”’ model which represents the universe as an expanding
balloon. (This, of course, is a representation of a closed universe, but the
argument for open universes is similar.) The fundamental particles can be re-
presented by black dots distributed uniformly on the balloon. One particular dot
may be marked specially so as to represent a given fundamental particle-observer
A. Photons can be represented by red dots moving over the balloon along great

* < If de Sitter’s form for an empty world is right it is impossible to find any coordinate system
which represents the whole of real space-time regularly.”” (4). Our statement above includes de
Sitter’s form.

+ It will be understood that whenever we speak of particles in this context we always mean
fundamental particles, i.e. the representations of the nebulae in the world-model.

I What is commonly referred to as the horizon in that model is no true horizon in the sense of
dividing things observable from things unobservable. 'The horizon of Milne’s model is an accident
of a particular choice of coordinates and can be ‘‘ transformed away *>. See Section 10.
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circle paths and always at constant speed relative to the material of the balloon.
An event-horizon will exist for 4, and similarly for all other fundamental observers,
in models where the rate of expansion is and remains sufficiently great for some
of the red dots moving on great circles towards 4 never toreach 4. As Eddington
put it, light is then like a runner on an expanding track, with the winning post
receding faster than he can run. On the other hand, a particle-horizon will occur
if, for example, the balloon is blown up from a volume approximating to a point
at an initial rate exceeding the speed of the red dots, so that a finite time will
elapse before any given one of them can reach 4. None will reach 4 unless the
rate of inflation decreases from its initial value. Some will never reach 4 if the
rate of inflation, after first decreasing, increases again suitably. This is what
happens in a model with both types of horizon.
A full discussion of these phenomena can, of course, not be given without
a mathematical formulation, to which we now proceed.
2. Mathematical preliminaries.—As the mathematical basis of our discussion
we take the Robertson-Walker line element,
dr® +r*(d6? + sin® 0 d¢?)
G R ) )
In fact, the present paper may in a sense be regarded as a study of some of the
properties of this metric. It has been shown to be applicable to all homogeneous
and isotropic model-universes (11, 12). Since practically all modern cosmo-
logical theories employ such model-universes our discussion will be of sufficient
generality. The metric (1) has the following significance: (i) ¢ is a cosmic
time coordinate; (i1) 6, ¢ are the usual angular measurements made at the spatial
origin r=o0 (which can be identified with any fundamental particle); (iii) the
world-lines of the fundamental particles are the geodesics 7, 8, ¢=constant,
whence 7 is a “‘ co-moving”’ radial coordinate; (iv) light-tracks correspond to
the null geodesics of the metric and, in particular, light-tracks through the spatial
origin have the equations f, ¢ =constant and
cdt dr
==t ’ (2)
R(2) 1+ k2[4
the positive sign evidently being required for light travelling away from the
origin and the negative sign for light travelling towards it. Additional hypo-
theses are needed before a particular form can be assigned to the scale function
R(t) and a particular value (o, 1 or —1) to the curvature index k, and these are
supplied by the various cosmological theories. In any theory which adopts
the convention of the constancy of the local speed of light (and which consequently
has interdependent time- and distance-scales) that speed is identified with the
constant ¢ in (1).
We shall employ proper distance and cosmic time as the main variables
throughout this discussion. Due care must be exercised, especially in connection
with the state of the universe shortly after the creation event in models where

ds? =2 dt2~R2(t){

. such an event occurs, not to identify these conventional variables too readily

with “ ordinary” distance and time.
If we introduce a function o(r), which may be regarded as an alternative
““co-moving >’ radial coordinate, by the equation

r g
a(r)sjork’r%, (3)
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then the proper distance, /, at time ¢; between the spatial origin and a fundamental
particle with coordinate 7, is given by /= R(¢,)o(r;). (Asis well-known, in theories
with a conventionally constant speed of light this distance can be interpreted as
the sum of the infinitesimal distance measurements made at the world-moment #,
by a chain of intermediate fundamental observers situated along the space-geodesic
joining the particle to the observer. In other theories / must be regarded as
purely conventional.) The equation of motion of this fundamental particle
is therefore
1= R(t)o(r,). ()
To obtain the equation of motion of a photon emitted at time #; at a funda-
mental particle with coordinate 7, in the direction towards the origin, we integrate
equation (2), choosing the negative sign, between the time and radial coordinate
of emission and the current time and radial coordinate, ¢ and 7, and find

otr)=otr)~[ %5

which, on multiplication by R(t), gives the required equation of motion,

Z:R(t){o(rl)— J j ]%}. (5)

In the sequel we shall want to assume that or) can take all positive values.
Reference to (3) shows that this is evidently so when k=0 or —1 (in the latter
case the radial coordinate 7 is restricted by » <2). When k=1, o(7) as originally
defined is restricted by o<<w for all finite values of 7, and thus there appears to
exist a boundary to the fundamental particles at /==R(¢). In fact this boundary
is artificial and merely due to the particular definition of the coordinate »
which in this case makes 7= oo correspond to the antipole of the origin in the
instantaneous spherical 3-spaces f=constant. There are, of course, particles
beyond this pole on any line of vision. Moreover every particle occupies infinitely
many positions on the line of vision, the latter being a closed curve of proper
length 27R(t). Now it is easily verified, and indeed it follows from the physical
significance of proper distance, that o is an additive coordinate in the sense that
the o of a particle C relative to the origin-particle 4 equals the o of an intermediate
particle B relative to 4 plus the o of C relative to B. We therefore extend the
definition of o to particles beyond the pole by taking the pole as auxiliary origin,
evaluating o from there, and adding =. This process can be continued indefinitely.
Analogy with an ordinary circle makes the idea quite clear: ¢ corresponds to the
angular coordinate at the centre. Thus to each o, however large, there corres-
ponds a particle on the line of vision and each particle corresponds to infinitely
many values of o, all differing by multiples of 2. A little care must therefore
be exercised in the interpretation of horizons in these models, as will be seen in
Section 4.

3. The event-horizon.—The necessary and sufficient condition for an event-

: o . . . © dt .
horizon to exist in a given model is that the 1ntegra1J R® converge to a finite
limit. For then, as reference to (5) shows, there exists at any given time £, and
on any given line of vision a particle determined by

© cdt

=], ®D) (6)

g=0y
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such that a photon emitted at that particle towards the origin at time £, reaches

the origin at time ¢ = o, i.e. in the infinite future. Photons emitted at the same

time, Z,, from all farther particles (¢>0,) do not reach the origin at all (/ never
vanishes) whereas photons emitted at ¢, from all nearer particles (¢ <o,) reach
the origin at some finite time. We shall call the position of the critical particle
at time Z, the horizon-point at t, on that particular line of vision. If we multiply

(6) by R(z) and discard the particularizing suffix we obtain the equation of motion
of the horizon-point.

(® cdt
[=R(t)| +~=.
O], 7@ (7)
Reference to (5) shows that this is actually the equation of motion of a photon,
since (5) reduces to (7) if we put o(r;) =Jw }%% . Thus the horizon-point on any
t

given line of vision may be identified with one particular photon travelling towards
the origin. It follows that the event-horizon, which we now define as the aggregate
of all horizon-points, is a closed light-front travelling towards the origin, and at
proper distance from it given by (7).

It is perhaps useful to retain a dual picture of the event-horizon: (i) as a
surface (geodesic sphere) in the observer’s instantaneous 3-spaces ¢=constant,
whose proper radius may or may not change with time, depending on the model,
and (i) as the corresponding hypersurface (a pseude cylinder) in space-time.
Where a distinction is necessary, the former might be called the space event-
horizon, and the latter the space-time event-horizon.

Events occurring beyond this horizon are evidently for ever outside the
possible powers of observation of the origin-observer 4. On the other hand,
particles that have at some time been visible to A remain so for ever. For, by equation

(5), light emitted at time #, from a particle with coordinate 7; reaches the origin
at time ¢ given by cdt

t
o(r) = [ s
V) R(2)
If for some particular value ¢ =#, this equation for #, furnishes a solution then it

furnishes a solution for any #>¢,. Thus there is then a signal from the particle
that arrives at the origin at any specified later time ¢. As ¢#— oo, #; approaches a

. limiting value which evidently is the time at which the particle crosses 4’s horizon.

Hence, although no particle can ““ pass out of view ”, its history as observed by 4
becomes more and more dilated, the event of its crossing the horizon being
visible to A4 only in the infinite future, and all events at the particle -after that
event will never be visible to 4. Again, all fundamental particles other than A
itself that are at some time within A’s event-horizon, if such a horizon exists, must
eventually pass beyond this horizon at the speed of light as measured locally. These
statements follow easily from equations (4) and (7), but they can also be seen in
the following way. Consider any line of vision originating from a particle 4
and let B be another particle on this line, within A’s horizon at some given time ¢.
Then the proper distance of 4’s horizon-point P from A4 is the same as that of
B’s horizon-point Q from B, both distances being given by (7). Thus Q lies
beyond P, whence P is a photon within B’s horizon moving towards B, and will
therefore reach B at a finite time. Moreover, like all other photons, it will reach
B with the speed of light. This means that B will pass A’s horizon-point, and
pass it with the speed of light.
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We may note that a contracting model-universe cannot have an event-horizon,

. © dt . . . s
since for the convergence of J RO it is necessary that R(¢) increase to infinity.

Models oscillating between singular states must logically be treated as existing
only for a finite time (the time of one oscillation) and so the concept of an event-
horizon would appear to be irrelevant to them.

4. Examples of models possessing an event-horizon.—As an important first
example we consider the de Sitter model-universe. In this model R(t)=e!/7,
where T is the reciprocal of Hubble’s coefficient and has the dimensions of time,
and k=o0. The model evidently satisfies the condition given at the beginning
of Section 3 for the existence of an event-horizon. From (4) the equations of
motion of fundamental particles in the de Sitter model are

I=o(r,)e"", (8)
which correspond to similar exponential curves on an /-t diagram (see Fig. 1)
referring to a single semi-infinite line of vision. All these curves have the t-axis

as asymptote. From (5) we find that the equations of motion of photons moving
towards the origin are given by

l=cT+yelT, y=a(r))—cTe T, 9)
These equations also correspond to similar exponential curves, but they have the
line [=cT for asymptote. They lie above or below this asymptote according
as y is positive or negative. (There is no contradication in the fact that a photon
travels towards A4, yet its proper distance from A4 increases: cf. Eddington’s
runner mentioned in the Introduction.) Itis evident that the line /= c7T represents

Y

Fic. 1,
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the event-horizon, and this naturally agrees with (7). In Fig. 1 only three particle
paths have been drawn (full lines)—those of the origin-particle 4, and of two
other particles, Band C. The stippled curves represent light-paths corresponding
to photons travelling towards the origin and two of these, in particular, are the
paths of the horizon-points of 4 and B. (It can easily be verified, and indeed it
is obvious from symmetry considerations, that light-paths directed away from
the origin-particle correspond to similar exponential curves with the line /= —¢T
for asymptote. However, none of these has been marked in the diagram.)
E,, E,, E,, E, are events, in that order, at C. E; is observed at B at E,’ and at
A at E\". E, is the event of C’s crossing A’s horizon, and this is observed at
B at E,’, but the corresponding event E,” at A occurs in the infinite future.
E,, which occurs beyond A’s horizon but within B’s, will be observed at B at
E;' but never at A. Events after E, (the crossing of B’s horizon by C) are
unobservable also at B.

The same diagram can be used to illustrate the significance of a horizon in
models with positive space-curvature (k=1) which present some complications
as was pointed out at the end of Section 2.  Let us consider a model which
has R(f)=¢'T and k=1. The above calculations are equally valid for this model,
only the interpretation differs somewhat. We shall now suppose that 4, B
and C are representations of the same particle (at o=o0, 27, 47 respectively).
Thus, for example, the segment E,, E,’, E,” represents a light-track going twice
round the universe. If E," and E; are the same event, then so are E,” and E;'.
E, and E, are evidently identical. All events occurring before ¢,” (the time
of E,’) are effectively observable at A, that is, at 4 or B or C etc. At time #,’
each particle crosses its own horizon for the last time. Before £," the expansion
of the model is such that each photon is able to make at least one complete circuit
of the universe, but for photons emitted after #,’ no more complete circuits are
possible. The domain of unobservable events for 4 is thus not given by [ >¢T
alone but by / >¢7T and t >t,’.*

As a second example we consider the class of models characterised by
R(t)=at™, where a is a constant. 'This class contains several well-known models.
For example, the Einstein—de Sitter model with z=2/3, Dirac’s model withn=1/3,
Milne’s ““uniformly expanding” model with n=1 and Page’s ‘‘uniformly
accelerating” model with #=2 (13). Evidently the necessary and sufficient
condition for this type of model to have an event-horizonis z>1. Consequently
the Einstein—de Sitter model, Dirac’s model and Milne’s model do not have an
event-horizon. From (7) the equation of the horizon, when it exists, is

t
- , (10)

h—1

which shows that the horizon expands uniformly in all cases. For illustration
we may choose the typical case of Page’s model which has R(t)=at?. From (4)
the particle paths are /=ao(r,)* and from (5) the light-paths are /=y#*+ ct,
where y=a(o(r;) —c/t;). On an -t diagram the former are parabolas touching
the t-axis at the origin, whereas the latter are parabolas passing through the origin
with gradient ¢ and curving away from or towards the #-axis according as y is

* Events unobservable from this one direction may, however, be observable from the opposite
direction. Only after A’s antipode A(e=m) crosses A’s horizon for the last time, does there
develop around 4 an ever-growing region whose events are truly unobservable by 4.
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positive or negative. The line /=ct corresponding to y=o divides these two
ciasses and thus evidently represents the event-horizon of the origin-observer,
which is in agreement with (10).

5. The particle-horizon.—The necessary and sufficient condition for a particle-

horizon to exist in a given model is the convergence of the integralJ , or of

dt
R(t)
J R( )m cases where the definition of R(f) extends to negatively unbounded
values of . 'The analysis is quite similar in the two cases and we therefore
assume the former condition to obtain, since the latter implies the less probable
situation of a universe contracting from a state of infinite expansion. It then
o cdt

R(?)
have not yet been observed by the origin-observer A, whereas all others have.
Hence the surface

follows from (5) that at any given time Z, all those particles for which 0>J

to N

o= 2~ (1)
where ¢ is defined by this equation, divides all particles into two non-empty
classes: those that have been observed by A at or before ¢, and those that have
not. This surface we call A’s particle-horizon at time #,. It is evidently a
geodesic sphere in the observer’s instantaneous 3-space {={, and its radius may
or may not change with time, depending on the model. Occasionally we shall
wish to regard the particle-horizon as the section ¢ =%, of the hypersurface

o =¢(1) (12)
in space-time, which might be called A4’s space-time particle-horizon.

As R(t) is by its nature positive and finite, ¢(¢) is an increasing function of ¢
when it exists, and thus, by (11), more and more particles become visible to A as time
goes on, since o is a ‘‘ co-moving’’ coordinate. Whether every particle eventually
becomes visible to 4 or not depends on whether ¢(¢) tends to infinity with ¢ or not.
© cdt

R(?)
are entirely outside A4’s possible powers of observation and the model evidently
possesses an event-horizon in addition to its particle-horizon. In any case, as
before, a particle once seen remains for ever visible. Each particle is first seen
at its “birth” or, in other words, the first signal received from the particle in
question was emitted there at =0 (or t= — o0, as the case may be). However,
in models which postulate a unique creation event in the finite past (R(o)=0)
each particle comes into view with an infinite Doppler ratio. For the latter is
given by the well-known formula (14)

ﬁ R(t,)

A R@)’
where Ay, #; and A, ¢, are the wave-lengths and times of emission and reception,
respectively, of the light-signal whereby the particle is observed, and in our
case R(t;)=R(o)=o. This would, in practice, prevent the observation of the
actual creation process, which was one of the objections Milne (loc. cit.) made to
models possessing a particle-horizon. On the other hand, in models which
contract from infinite extension in the infinite past and possess a particle-horizon
(e.g. a model with R(¢) = ¢~/T), particles first come into view with zero wave-length!

If &(t) approaches a finite limit then all those particles for which o >J
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'The unique creation event (point-creation) is a singularity in all models in
which it occurs, in the following sense: there is one particle world-line, and only
one, through each event except the creation event, through which there passes
an infinity of such world-lines. But in models with point-creation and a particle-
horizon, the creation event is a singularity in yet another sense: each event
determines a unique light-cone with vertex at that event except the creation
event at which there originates an infinity of different light-cones, one corres-
ponding to each particle. For consider the equation

cdt) (13)

I=R(t {0’ T i—f =,
( ) ( 1) " R(t) J’

which is obtained from (2) in the same way as (5) but with the retention of both

signs. This is an equation of the light-cone whose vertex is at a particle

characterized by 7, at time #;. Now if J' % is divergent, the light-cone of the

creation event (¢, =0) has equation ¢ =o0, the same for all particles. But if this
integral is convergent the light-cone of the creation event is evidently not unique
but depends on which particle emits the light.
Let us consider now the /—¢ equation of the space-time particle-horizon.
We obtain this by multiplying (12) by R(#) and using (11),
, b ocdt
1=RO)| 7w (14)

Comparison of (14) with (13) shows that the space-time particle-horizon of any
observer is the boundary of his creation-light-cone. Thus a particle B becomes
visible to the particle-observer 4 the moment it enters 4’s creation-light-cone.
This is not surprising, for, by the symmetry that obtains between the two
particles, 4 at that same instant enters B’s creation-light-cone. Fig. 2 illustrates
this situation.

In the same way that we identified the event-horizon with a geodeso-spherical
light-front converging on the observer and reaching him at time ¢= o0, so from
our present discussion of the particle-horizon we see that this latter can be
identified with a geodeso-spherical light-front diverging from and emitted by
the observer at time t=o0 (or at t= — oo, as the case may be), being the section
t=constant of the space-time particle-horizon. It is therefore evident that
fundamental particles entering this horizon do so at the speed of light, as measured
locally. This is why the particle-horizon has sometimes been described, perhaps
misleadingly, as expanding with the speed of light. Its proper distance from
the observer, given by (14) or the corresponding formula with an integral from
— oo to ¢, may remain constant or even decrease.

6. Examples of models possessing a particle-horizon.—Of the class of models
characterized by R(t)=at™, where a is a constant, evidently only those models
which have #n <1 possess a particle-horizon which, by (14), has equation

ct
I—n

I= (15)
Thus, in particular, Milne’s uniformly expanding model (r=1) and Page’s
uniformly accelerated model (z=2) do not possess a particle-horizon, whereas
Dirac’s model (n=1/3) and the Einstein—de Sitter model (n=2/3) do possess
one. Ishall choose this latter model for illustration since it is typical. From (4)
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we obtain the equations of the particle paths, /=ao(r,)t?3, and from (13) we find
the equations of the paths of photons emitted at an arbitrary particle with
coordinate r; at the creation event (¢, =0) and directed towards and away from
the origin,

I=t"3{ao(ry) + 3ct3}. (16)
In Fig. 2 the world-lines of only two particles (one of which is taken to be the
origin-particle) are shown, together with their corresponding creation-light-cones.
We note that these cones have no overlap near their common vertex, and this is
typical for models with a particle-horizon. At time £, each of the two particles
enters the creation-light-cone of the other, and thus they become visible to each
other for the first time.

It may be of interest to quote Milne’s description (loc. ¢it.) of the horizon
in the Einstein-de Sitter model: ‘“The frontier...of observability moves
onward with the speed of light; it contains always the particles just being
created and it leaves in its wake a spray of decelerating newly created particles.”.
Although Milne’s deliberately absurd deductions can to some extent be blamed
on the subjective coordinates he used, certain physical difficulties seem to be
inherent in models possessing a particle-horizon: if the model postulates point-
creation we have material particles initially separating at speeds exceeding those
of photons; if the model postulates collapse from infinite rarification there is
the extraordinary phenomenon, noted above, of particles coming into view with
zero wave-length; lastly, models postulating a beginning at a finite epoch with
finite separation between particles, whilst possessing neither of these crass
difficulties, seem hardly less artificial.

A
4

~

F1G. 2.

As an example of a model-universe possessing both a particle-horizon and
an event-horizon I shall choose that General Relativity model which is
characterized by k=0 and a positive cosmological constant, and has

R(t) = a(cosh bt — 1)'3,
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where a and b are constants (15). This model is somewhat similar in general
behaviour to the better known Lemaitre model, but has the advantage, for
illustrative purposes, of possessing a simple functional form of R(#). We need
not here enter into the exact calculations for the light-paths, but we note that
R~1t*3 for small values of ¢, and R~exp (b¢/3) for large values of ¢, whence
the model is seen to approximate asymptotically to the Einstein—de Sitter
model for small values of ¢ and to the de Sitter model for large values of z. The
properties of this model are illustrated schematically in Fig. 3. The origin-
observer is denoted by 4. Bis an observer on a typical particle which becomes
visible to 4 at creation-time #; (when A4 and B enter each other’s creation-light-
cones) and which passes beyond A’s event-horizon at time #,, so that events at
B after t, are outside A’s possible powers of observation. C is the critical
particle which becomes visible to 4 only at = o0. C’s creation-light-track
towards A is that of the unique photon which reaches 4 at t= co, and which
we have already identified with A’s event-horizon. And in the same way
that 4 approaches asymptotically the boundary of C’s creation-light-cone, so
C approaches that of A’s creation-light-cone. Evidently all particles beyond
C are entirely outside A’s cognizance. In the diagram only the portions near
the vertices of the creation-light-cones have been shaded in..

| “l “ - e
|ll | -

gz::'l%'ﬂfl'ﬂ'! AR O

\

Fic. 3.

We may note that the existence of a critical particle with properties analogous
to those of C above, one on each line of vision of each fundamental observer,
is a general feature of all models possessing both types of horizon. From
equations (4) and (5) we easily find that the o-coordinate of this particle relative
to the observer is given by

. =J‘°° cdt ©  cdt

Oﬁm (01’ g,.= _wm

7. Horizons for non-fundamental observers.—In connection with the de Sitter
model Eddington (16) made the assertion that ‘““events before #= — oo (i.e.
events outside the event-horizon) may produce consequences in the neighbour-
hood of the observer and he might even see them happening...” Schrédinger
(17) in his recent book concurred with this assertion and amplified it to some

, as the case may be).
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extent. Evidently the observer contemplated by these authors cannot be a
fundamental observer. In defining the event-horizon of a particular fundamental
observer in an arbitrary model we assumed that the observer in question remained
attached to his original fundamental particle. If we discard this restriction
the class of events observable by him is naturally increased, and we shall now
briefly examine this new situation.

By a generally accepted relativistic principle an observer can theoretically
reach and be present at any preassigned event within his forecone. This is
merely equivalent to saying that matter can attain any velocity short of the
velocity of light, both velocities being measured locally and with respect to the
substratum. Thus if at some instant #, an observer can detach himself from
his fundamental particle and journey with sufficient energy into space, thereby
ceasing to be a fundamental observer at least for a certain period, all events
within his forecone at 7, become attainable to him and all events whose forecones
intersect his own become observable by him. We shall now prove the following
statements, in so far as they have not already been proved:

(1) If a model possesses no event-horizon then all events are observable
sooner or later by any fundamental observer.

(i1) If a model possesses an event-horizon but no particle-horizon then any
observer can be present at any one preassigned event provided he is willing if
necessary to detach himself from his original fundamental particle and provided
also he does so soon enough. Nevertheless, if two events are preassigned it
will, in general, be impossible for any one observer either to be present at, or
ever to observe, both events.

(iif) If a model possesses an event-horizon and a particle-horizon then for
any observer originally attached to a given fundamental particle there exists
a class of events absolutely beyond his cognizance, no matter how he journeys
through space. We may here speak of an absolute horizon.

Statement (i) has been justified in Section 3. To prove the first part of
(i1) we must show that any event E lies in at least one forecone of any given
fundamental observer 4. Let E occur at a fundamental particle B at cosmic
time #,. Then if E lies in none of A’s forecones, A has not been observable at
B at or before time ?#;, and this contradicts our assumption that there is no
particle-horizon. Thus E lies in one of A’s forecones and the statement is
proved. In support of the second part of (ii) we shall show that corresponding
to any event E there exists a class S of events such that no event of S can be
observed by any observer who ever observes E. Consider the closed light-front
7 converging on the fundamental particle B associated with E and at the time #,
of E at proper distance 2p, from B, where p, is the radius of the event-horizon
at Z,. Any two photons emitted towards each other at #; a proper distance 2p,
apart will meet at t=o0. Hence photons emitted at E meet 7 at = oo
This proves that the forecones of events occurring beyond = will not intersect
the forecone of E. 'These events evidently constitute the class S. For an
observer seeing an event must be situated in the forecone of that event and
cannot ever get out of it again. We may note that, conversely, the forecones
of all events occurring within = do intersect the forecone of E and hence any
one of these events can be observed jointly with E.

Lastly we prove (iii). We remember that in any model possessing both types
of horizon there exists on any line of vision of any given fundamental observer 4
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a critical particle C with coordinate o, which enters A’s creation-light-cone at
t= oo (cf. Section 6). Consider now the particle P with coordinate 20, on the
same line of vision. Clearly C enters P’s creation-light-cone also at t= oo
and therefore the creation-light-cones of A and P intersect at = co. Thus it
is impossible for A ever to observe the particle P at a finite time, even if he
detaches himself from his original fundamental particle. He can therefore
have absolutely no cognizance of events occurring at P and, a fortiori, of events
occurring beyond P. All events occurring nearer than P can, on the other
hand, be observed by A provided he can if necessary detach himself from his
fundamental particle and journey within his creation-light-cone. Thus the
path of P, which has equation

I=20,R(2), (17)
constitutes an absolute horizon.

8. Effects of reversing the direction of time.—We have noted the phenomenon
that in certain models (those possessing a particle-horizon) fundamental particles
suddenly come into the view of fundamental observers at a finite time. We have
also noted that the reverse phenomenon, viz. particles disappearing from view
at a finite time, cannot occur under any circumstances. A very loose argument
might seem to suggest that if we reverse the direction of time in any model
with a particle-horizon we ought to obtain a model in which particles disappear
from view. Although this is by no means the case it is of some interest briefly
to consider such time reversals, especially in view of the fact that in some models
(e.g. all the cosmological models of General Relativity) the direction of time can
be reversed without violating the hypotheses on which the model is constructed.
In any case there is nothing to prevent us from contemplating the dual of any
given model formed in this way. The one result that is of interest in this
connection is that an event-horizon transforms into a particle-horizon and
vice versa.

Let us first consider a model with a scale-function R(¢) defined over the whole
range — co<<t< oo and possessing an event-horizon whose equation will be, as
we saw in (7), cdt

1=R(t)f:°m. (18)

The dual of this model has the scale-function R(—?) and thus possesses a
particle-horizon whose equation, by analogy with (14), is given by

1=R(—t)f_w%. (19)

This equation also results if we change the free variable ¢ in (18) into —¢ and
thus our assertion is proved. Let us also consider a model with point-creation
in the finite past and a particle-horizon. On time reversal the point-creation
event transforms into a point-annihilation event in the finite future. The
particle-horizon transforms into an event-horizon in the sense that events occurring
beyond it will not be observed in the finite stretch of time left to the observer
before annihilation. With similar modifications our result applies in all cases.

We may also note that in the dual model all Doppler ratios are inverted.
If a light-signal from an event E; to an event E, in the original model exhibits a

Doppler ratio D= ;\Tf,where A, and A, are the wave-lengths as measured at E;
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and E, respectively, then the corresponding signal from E, to E; in the dual
model exhibits a Doppler ratio 1/D. This is easily seen by considering two
successive light-signals whose time difference is df, at E; and dt, at E,. Then

the Doppler ratios in the original model and the dual are % and Z—? respectively.
1 2

9. General time transformations.—It is one of the achievements of the
theory of Kinematic Relativity that it brought into prominence the relativity
of clock rates. No one clock rate is any longer regarded as absohite. Cosmo-
logical theories other than steady state theories must recognize the possibility
that even different physical clocks, e.g. “atomic” clocks and ‘‘dynamic”
clocks, though synchronous momentarily will not necessarily go on keeping the
same time indefinitely. Again, Kinematic Relativity showed how it was possible
to adopt a conventionally constant speed of light by linking the unit of distance
to the unit of time. Thus the only standard unit required is the unit of time.
If we change from one standard clock to another whose rate, let us assume,
accelerates relative to the first, then the corresponding new unit of length
decreases relative to the old one. Distances which in our first reckoning
remained constant will now be regarded as increasing with time. Thus by means
of a suitable time transformation it is possible to transform a static model-
universe into an expanding one, or indeed to transform a model with any given
rate of expansion into one with any other given rate of expansion. The detailed
formulation and proof of this result for models described as *‘kinematic equi-
valences’ is sometimes referred to as the ‘““main theorem on equivalences”
(18). I have shown elsewhere (13) that this theorem applies equally to models
described in terms of the metric (1). 'The question arises whether, if no one
clock rate can be regarded as absolute, all models are indeed equivalent to each
other. This is an impression one sometimes gains from Milne’s writings.

There are physical objections to this view: the clocks implicit in our
empirical work on the expansion of the universe are atomic clocks and not
arbitrary clocks (13) and the model we seek is unique. However, even
theoretically there is a limitation to the formal equivalence of different models,
and horizons provide the clue to this limitation. Eddington (x19) considered
an essentially similar problem and may even have anticipated Milne in his
interrelation of the units of time and distance. Eddington concluded that a
reduction of the de Sitter model to rest by means of a time transformation leads
to an absurdity, namely the sudden arrest of all proper motions at a finite
future time. We can now say that this result is characteristic of all models
possessing an event-horizon. For the clocks that give rise to the static description
of the model can be identified with rays of light oscillating between neigh-
bouring fundamental particles, successive reflections defining equal units of
time. We know that if the model possesses an event-horizon there will come a
time when the signal can no longer pass from one of these particles to the other.
Evidently each photon in the static description of the model moves with uniform
speed towards a limiting particle and then stops dead. All other proper motions
must cease at that instant also. Hence models with event-horizon when
transformed to the static form exhibit properties startlingly different from
those of genuinely static models which exist indefinitely. Evidently no model
with an event-horizon can be equivalent to one without, and a similar remark
holds for models with particle-horizons. Transformations of one of these types
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of model into another are possible only partially, a fact already noted by Milne
and Whitrow (6) in connection with Page’s and Milne’s models.*

10. The boundary in Milne’s model.—Milne’s model is often described in
coordinates different from the cosmic time and proper distance employed here,
namely as an expanding spherical aggregate of particles satisfying the postulates
of homogeneity and isotropy and embedded in the space-time of the special
theory of relativity. Each fundamental particle-observer may consider himself
to be at the centre of the sphere, whose boundary expands with the speed of
light and which therefore has radius ct at time #, in the coordinates of the special
theory of relativity. It is well known that this description of the model is
equivalent to its description by means of the metric (1) with R(¢f)=ct and
k= —1, and we saw that that model possesses neither an event-horizon nor a
particle-horizon. Nevertheless, using the first description, it has seemed quite
natural to Milne to call the boundary of the sphere a “horizon”. What is the
intrinsic significance of this ‘““horizon” when we leave out of account the
particular coordinates employed? It is simply that each observer considers
the distances of fundamental particles from himself to possess an unattained
upper bound. It appears to him at time ¢ that this bound is at a distance
4ct from him (world-picture) but taking into account the finite velocity of
light he calculates that the bound is actually at distance ¢tz (world-map). In
order to associate an intrinsic significance with the distance concept we note
that in the special theory of relativity distance from parallax is identical with
coordinate distance. Thus we can finally characterize the situation in Milne’s
model as follows: All fundamental particles are visible at all times and there

exists at any time ¢ a finite upper bound P(f) to the apparent distances by
parallax of these particles. When we inquire whether this state of affairs is
in any way peculiar to Milne’s model we find that this is by no means the case.
The distance by parallax, P, is defined by the equation Pdf=dl, where
df and dl are measured at the observer and represent angular difference and
distance respectively between two neighbouring rays diverging from the event
in question. It can be shown (20) that in a model referred to the metric (1)
the distance by parallax of an event occurring at coordinate r, and observed at
time £, is given by
R(to)r,

P et RGye (20)

* The mathematical formulation is straightforward: to transform a model with metric (1)
into another with the same curvature index % but a different scale-function, say G(t) instead of
R(®), let us apply the clock transformation t=g(7T). The metric becomes

2
ae=y{ et are- (M) art |,
g(T)
where dp?is the { } of (1). The conformality factor is discarded and the Robertson-Walker metric

of the new model is ds®=c¢? dT%*— G¥T) dp?, provided R(,g((;;))

=G(T), which gives the required
g(T). This equation also yields the relation
J L dt f T, 4T
£, R(2) 7, G(T)
for corresponding time intervals t;,—¢,, 77— 7T,. Suppose the R model possesses an event-horizon
so that the left integral converges for ¢, - . If the G model does not possess such a horizon

evidently ¢,=o transforms into a finite time 7T, and greater values of T do not correspond to any
values of £. 'The situation is similar when only one of the models possesses a particle-horizon.
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In Milne’s model we therefore have

ey

ST 1

whence P approaches the value P(t,)=4%ct, as r, approaches its limiting value
of 2 (for the most distant particles), which agrees with our previous assertion.
Let us next consider the general class of models characterized by
R(t)=ct* (n>1), k=-1.
From (20) we find that, for this class,

P ()= (22)

and thus all these models possess a Milne type of boundary which, moreover,
to a first approximation expands uniformly. When we consider a model of
the above general class but with #<1 we find the situation somewhat changed:
although there still exists a finite upper bound to the distances by parallax of
all visible particles, not all particles are visible at any given time, as we saw in
Section 6.

We may note, finally, that the de Sitter model (R(#) = ¢/, k=o0) also possesses
a Milne type of boundary with constant radius P=c¢T, as is easily verified.
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