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1 Outline: the Cosmic Web

The spatial cosmic matter distribution on scales from a few to more than a hundred
Megaparsecs has emerged over the past thirty years through ever more ambitious
redshift survey campaigns. From the first hints of superclustering in the seventies to
the progressively larger and more detailed three-dimensional maps of interconnected
large scale structure that emerged in the eighties, nineties and especially post-2000,
we now have a clear paradigm: galaxies and mass exist in a wispy weblike spatial
arrangement consisting of dense compact clusters, elongated filaments, and sheetlike
walls, amidst large near-empty void regions, with similar patterns existing at higher
redshift, albeit over smaller scales. The hierarchical nature of this mass distribution,
marked by substructure over a wide range of scales and densities, has been clearly
demonstrated. The large scale structure morphology is indeed that of a Cosmic Web
Bond et al. (1996).

Complex macroscopic patterns in nature arise from the action of basic, often even
simple, physical forces and processes. In many physical systems, the spatial organi-
zation of matter is one of the most readily observable manifestations of the nonlinear
collective actions forming and moulding them. The richly structured morphologies
are a rich source of information on the physical forces at work and the conditions un-
der which the systems evolved. In many branches of science the study of geometric
patterns has therefore developed into a major industry for exploring and uncovering
the underlying physics (see e.g., Balbus & Hawley, 1998)

The vast Megaparsec cosmic web is one of the most striking examples of com-
plex geometric patterns found in nature, and certainly the largest in terms of sheer
size. Computer simulations show the observed cellular patterns can arise naturally
through gravitational instability e.g., (Peebles, 1980), with the emergent structure
growing from tiny density perturbations and the accompanying tiny velocity pertur-
bations generated in the primordial Universe. Supported by an impressive body of
evidence, primarily those of temperature fluctuations in the cosmic microwave back-
ground e.g., (Smoot et al., 1992; Bennett et al., 2003; Spergel et al., 2007; Kuo et al.,
2007), the character of the primordial random density and velocity perturbation field
is that of a homogeneous and isotropic spatial Gaussian process. Such fields of pri-
mordial Gaussian perturbations in the gravitational potential are a natural product of
an early inflationary phase of our Universe.

The early linear phase of pure Gaussian density and velocity perturbations has
been understood in great depth. This knowledge has been exploited extensively to
extract from CMB data probing the linear regime half a dozen cosmological parame-
ters. Notwithstanding these successes, the more advanced phases of cosmic structure
formation are still in need of substantially better understanding. Observables of the
mildly nonlinear regime also offer a wealth of information, probing a stage when
individually distinct features start to emerge. The anisotropic filamentary and planar
structures, the characteristic large underdense void regions and the hierarchical clus-
tering of matter marking the weblike spatial geometry of the Megaparsec matter dis-
tribution are typical manifestations of weak to moderate nonlinearity. The existence
of the intriguing foamlike network representative of this early nonlinear phase of
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evolution was revealed by major campaigns to map the galaxy distribution on Mega-
parsec scales while ever larger computer N-body simulations demonstrated that such
matter distributions are indeed typical manifestations of gravitational instability.

The theoretical understanding of the nature of the emergent web is now reason-
ably well developed, but the development of quantitatively accurate analytic approx-
imations is impeded by the lack of symmetries, strong nonlocal influences, and the
hierarchical nature of the gravitational clustering process, with many spatial scales
simultaneously relevant. Computer simulations are relied upon to provide the quan-
titative basis. However, analytic descriptions provide the physical insight into the
complex interplay of emerging structures. An area that is still developing is the mor-
phological analysis of the observed and simulated patterns that develop.

This first lecture notes develops the theoretical framework for our understanding
of the Cosmic Web. We outline the various formalisms that have been developed to
describe the hierarchical nature, the anisotropic geometry of its elements, the intrin-
sic and intimate relationship with clusters of galaxies, and the predominance of fila-
ments consisting of galaxies, largely in groups, connecting the clusters. Even though
we concentrate on the analytical framework, we also describe and illustrate the re-
lated generic situations on the basis of computer simulations of cosmic structure
formation.

In the accompanying second set of lecture notes (van de Weygaert & Bond,
2005), we give an overview of Cosmic Web observations. We focus on the morphol-
ogy of the Cosmic Web and the role of voids within establishing this fundamental
aspect of the Megaparsec Universe.

2 Cosmic Structure Formation: from Primordial Quantum Noise
to the Cosmic Web

The weakly nonlinear Cosmic Web comprises features on scales of tens of Mega-
parsecs, in which large structures have not lost memory of the nearly homogeneous
primordial state from which they formed, and provide a direct link to early Universe
physics.

In our exploration of the cosmic web and the development of appropriate tools
towards the analysis of its structure, morphology and dynamics we start from the the
assumption that the cosmic web is traced by a population of discrete objects, either
galaxies in the real observational world or particles in that of computer simulations.
Even though individual dynamically relaxed galaxies were the most notable features
historically, followed by collapsed clusters, the deepest large potential wells in the
universe, we will pursue the view that filaments are basic elements of the cosmic
web. Most matter assembles along the filaments, providing channels along which
mass is transported towards the highest density knots within the network, the clus-
ters of galaxies. Likewise we will emphasize the crucial role of the voids — the large
underdense and expanding regions occupying most of space — in the spatial organiza-
tion of the various structural elements in the cosmic web. A goal is the construction
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of the continuous density and velocity fields from the initial condtions, or the recon-
struction of these from data, retaining the geometry and morphology of the weblike
structures in all its detail.

2.1 Gravitational Instability

In the gravitational instability scenario, e.g., (Peebles, 1980), cosmic structure grows
from primordial density and velocity perturbations. It has long been assumed that the
initial fluctuations were those of a homogeneous and isotropic spatial Gaussian pro-
cess. There is good evidence for this, most notably from the cosmic microwave back-
ground. Zero point quantum noise is ubiquitous, and in particular will exist in any
fields present in the early universe. In an early period of cosmic acceleration, these
fluctuations and the accompanying perturbations in geometrical curvature freeze out
as the universe inflates, providing the Gaussian proto-web for growth after matter
is created and cosmic deceleration begins. Here we establish the nomenclature and
notation for the initial gravitational potential and density fields. For the study of the
developing cosmic web at late times, we can ignore relativistic photons and neutri-
nos, and focus on gas, dark matter and dark energy.

The formation and molding of structure is fully described by three equations, the
continuity equation, expressing mass conservation, the Euler equation for accelera-
tions driven by the gravitational force for dark matter and gas, and pressure forces
for the gas, and the Poisson-Newton equation relating the gravitational potential to
the density.

A general density fluctuation field for a component of the universe with respect
to its cosmic background mass density p, is defined by

s = PO =P (1)

u

Here r is comoving position, with the average expansion factor a(¢) of the universe
taken out. Although there are fluctuations in photons, neutrinos, dark energy, etc.,
we focus here on only those contributions to the mass which can cluster once the
relativistic particle contribution has become small, valid for redshifts below 100 or
s0. A non-zero d(r, t) generates a corresponding total peculiar gravitational acceler-
ation g(r) which at any cosmic position r can be written as the integrated effect of
the peculiar gravitational attraction exerted by all matter fluctuations throughout the
Universe,

o(r, 1) = ~4nGpn(D)at) f dr’ 5(t', 1) l(r r@ 2)

Here p,,(?) is the mean density of the mass in the universe which can cluster (dark
matter and baryons). The cosmological density parameter 2,,(¢) is defined by p,, via
the relation Q,,H> = (87G/3)p,, in terms of the Hubble parameter H.> The relation

3 There are other contributions to the density, such as relativistic particles and dark energy
which either have negligible energy density or do not effectively cluster and so do not con-



5

Clusters and the Theory of the Cosmic Web

_—
Uedp 627 he

¢



6 Rien van de Weygaert & J. Richard Bond

Fig. 1. The Cosmic Web in a box: a set of each four time slices from the Millennium simula-
tion of the ACDM model. The frames show the projected (dark) matter distribution in slices
of thickness lSh‘lMpc, extracted at z = 8.55,z = 5.72,z = 1.39 and z = 0. These redshifts
correspond to cosmic times of 600 Myr, 1 Gyr, 4.7 Gyr and 13.6 Gyr after the Big Bang.
The set of four frames have a size 31.254~' Mpc zooms in on the central cluster. The evolving
mass distribution reveals the major characteristics of gravitational clustering: the formation of
an intricate filamentary web, the hierarchical buildup of ever more massive mass concentra-
tions and the evacuation of large underdense voids. Image courtesy of V. Springel & Virgo
consortium, also see Springel et al. 2005.

between the density field and gravitational potential @ is established through the
Poisson-Newton equation,

V2D = 47Gp,(Da(t)* 8(r, 1). 3)

The peculiar gravitational acceleration is related to @(r, r) through g = -V®/a.

The gravitational perturbations g induce corresponding perturbations to the mat-
ter flows, best expressed in terms peculiar velocities v rather than total velocities u
which include the average Hubble expansion:

da(t)r

ur, ) = 7

= H@®) a(Or + v(r,1). “4)

The equation of motion for these velocity perturbations from the Hubble expansion
is a recasting of the Euler equation:

0 7 1 1

Yyt WYy = —-Vo. )
ot a a a

This is appropriate for a pressureless medium. For gas, an additional — pia Vp appears,
along with possible viscosity and other gasdynamical forces. The mass conservation
is expressed by the Continuity equation:

@+1V-(1+6)V=0. 6)
ot a

In slightly overdense regions around density peaks, the excess gravitational at-
traction slows down the expansion relative to the mean, while underdense regions
expand more rapidly. When a positive density fluctuation becomes sufficiently over-
dense it can come to a halt, turn around and start to contract. As long as pressure
forces do not counteract the infall, the overdensity will grow without bound, assem-
bling more and more matter by accretion from the surroundings, ultimately fully

tribute to the local peculiar gravitational acceleration, but of course do contribute to the
mean acceleration value, —(47G/3)(p + 3p)ax, where p is the total pressure. It is conven-
tional to parameterize the mean dark energy pressure by p,. = wp,.. For the cosmological
constant, w = —1. Any w > —1/3 will give an accelerating term, whereas zero or positive
pressure terms appropriate for dark matter and baryons give a deceleration contribution.
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collapsing in a gravitationally bound and virialized object. By contrast the under-
dense regions around density minima expand relative to the background, forming
deep voids. Of course, negative §’s cannot become too negative, constrained to be
6 > —1, so the void structure is fundamentally different than the cluster structure.

In this way the primordial overdensity field evolves into the collapsed-peak/void
structure we observe, with their precise nature of the collapsed objects, dwarf galax-
ies, galaxies, groups, clusters, and determined by the scale, mass and surroundings
of the initial fluctuation.

2.2 Primordial Origins: Gaussian noise

There are both physical and statistical arguments in favour of the assumption that
the primordial density field in the Universe was a stochastic Gaussian random field.
These were applied before the observational evidence emerged for this hypothesis.

For over 25 years, the leading paradigm for explaining the large scale smoothness
of the universe has been the inflation hypothesis, in which the very early Universe
went through an accelerated expansion driven by an effective scalar field dominat-
ing the mass-energy. During an extremely rapid nearly exponential (nearly de Sitter)
phase the Universe could have expanded by at least ~ ¢®0 within a time measured in
Planck time units of 107 seconds, the details depending upon the specific particle
physics realization of the inflation phenomenon. The inflation ends when preheat-
ing occurs, namely when the coherent inflaton field begins to decelerate and and can
then decay into particles. The density and velocity perturbations that finally evolved
into the macroscopic cosmic structures in the observable Universe were generated
during this phase as quantum zero point fluctuations in the inflaton, with associ-
ated small-amplitude curvature fluctuations since the inflaton carries the dominant
source of mass-energy. Most inflation models, even radically different ones, predict
similar properties for the fluctuations: adiabatic or curvature, Gaussian and nearly
scale-invariant (see Sec. 2.2). The Gaussian nature of the perturbations is a simple
consequence of the ground state harmonic oscillator wave function for the fluctu-
ations (the zero point oscillations). Field interactions do generate calculable small
deviations from Gaussianity, but except in quite contrived cases these are too tiny
to effectively nullify the Gaussian hypothesis. Similarly radical deviations can ex-
ist from the simple near-scale-invariance in rather baroque models, but now these
are quite constrained by the observation of near-scale-invariance in the cosmic mi-
crowave background data.

But even if inflation is not invoked, there was an argument from the Central Limit
Theorem that Gaussian could still arise if the density field 6(x) is a superposition of
independent stochastic processes, each with their own (non-Gaussian) probability
distribution. The Fourier components (k) are defined by

dk . .
5(x) = S(k) e*x, 7
(x) f(2”)3 ke 0

where x is comoving position and k is comoving wavenumber. will be independent,
with random phases. There have been models in which Gaussianity does not fol-
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low, in situations where the primordial structure is created in phase transitions, e.g.
associated with topological entities such as cosmic strings and domain walls.

Gaussian Random Fields

The statistical nature of a random field f(x) is defined by its set of N-point joint
probabilities. For a Gaussian random field, this takes the simple form:

1
xp [_E Zj\il Z]jv:l ﬁ(M_l)ij]cj] N

= df; 8
Py [2n)" (detM)]' 1_1[ /i ®

where Py is the probability that the field f has values in the range f(x;) to f(x;) +
df(x;) for each of the j = 1,..., N (with N an arbitrary integer and X1, X, ..., Xy
arbitrary locations in the field). (We have assumed zero mean in this expression, as
would be the case for ¢, g and v.)

The matrix M~! is the inverse of the N x N covariance matrix M,

Mij = (fx)f(xp)) = &Xi—X)), €))

in which the brackets (. . . ) denote an ensemble average over the probability distribu-
tion. In effect, M is the generalization of the variance o in a one-dimensional normal
distribution. The equation above shows that a Gaussian distribution is fully specified
by the matrix M, whose elements consist of specific values of the autocorrelation
function &(r), the Fourier transform of the power spectrum P ¢(k) of the fluctuations

f(x),

dk —ik-r
éw = ) = | G PO (10)

Notice that the identity of &(r) and £(Jr)|) is assumed, not required. A homogeneous
and isotropic Gaussian random field f is statistically fully characterized by the power
spectrum P (k).

Power Spectrum of Density Fluctuations

The main agent for formation of structure in the Universe is a gravitationally dom-
inant dark matter constituent of the Universe. Within the currently most viable
cosmology, often called Concordance Cosmology, the dark matter is taken to be
Cold Dark Matter: a species of non-baryonic, dissipationless and collisionless matter
whose thermal properties are marked by their non-relativistic peculiar velocity (cold)
at the time of radiation-matter equality. The popular candidate for this, for which a
number of ambitious experiments in deep mines are in place to directly detect it
through its very weak non-gravitational interactions, is the lightest supersymmetric
partner of ordinary fermions, e.g. the neutralino, a scalar field partner of the neutrino,
the photino, the fermionic partner of the photon, or some linear combination of other
partners.
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The primordial spectrum P, (k) of density perturbations in the CDM spectrum di-
rectly follows from the post-inflation form of the graviational potential fluctuations
through the Poisson-Newton relation, §,(k) = —k*®(k)/(4nGpa®). Scale-invariant
means that there is equal power per decade in the gravitational potential fluctuations,
(D) >)dk/(2m)} ~ k" 'dInk is o dInk, where n is a power law index measuring
deviation from the scale-invariant unity. The corresponding form for the initial den-
sity power spectrum is Pf)(k) = (|6(k)[*) oc k". Current CMB data supports an index
n close to the scale-invariant unity, but slightly deviating from it, n ~ 0.96 + 0.02
Kuo et al. (2007); Spergel et al. (2007). This nearly scale invariant nature is a natural
outcome of large classes of inflationary models. The expectation is that there are at
least logarithmic deviations from s constant n, and it possible to get more radical
deviations, as expressed by the running of the index, dn/dInk # 0. (There are hints
of running from CMB observations, —0.06 +0.03 without gravity wave perturbations
Kuo et al. (2007), —0.04 + 0.03 with them included Bond et al. (2007).) Even before
inflation theory or the data focussed attention on n nearly one, the scale-invariance
was considered a natural property to assume to avoid a power spectrum with large
rises either at large wavenumbers (n > 1) or small wavenumbers (n > 1), since
¢ could otherwise exceed unity and nonlinear collapsed structures (e.g. primordial
black holes) could form in the ultra-early universe. Thus n = 1 was recognized as a
possibility from the early seventies, defining the Harrison-Zel’dovich-Peebles spec-
trum.

During acceleration Ha increases and what has often been called the instanta-
neous horizon over which signals can propagate in a Hubble time, (Ha)~' decreases,
and wave structure with k/Ha < 1 can no longer communicate, the fluctuations
freeze out at their inflationary values. Once preheating occurs and radiation and mat-
ter some to dominate the energy density, the universe decelerates, Ha decreases and
frozen-in perturbation patterns can respond to forces associated with their gradients
once k goes above Ha. The combination of gravity and the opposing radiation pres-
sure cause these sub-horizon fluctuations in radiation and baryon density to respond
as sound waves. Meanwhile, positive fluctuations in the cold dark matter have no
pressure forces and can grow, however they must do so in an expanding environ-
ment dominated by radiation which impedes the rate of growth of ¢ (called Hub-
ble drag). It is only after the dynamics of cosmic expansion becomes dominated by
matter following the matter-radiation equality, at z,, ~ 3450, when CDM density
perturbations can grow rapidly, impeded only by its own Hubble drag to grow at a
power law rate oc ¢>/3 rather than exponentially. The evolutionary history of fluctu-
ations of a wavenumber k then depends upon whether k exceeds Ha in the radia-
tion or matter dominated phase. This is encapsulated in the power spectrum transfer
function T'(k), defined by the deviation from the primordial power spectrum shape,
Peom(k) o< k"T2(k). Corresponding to the redshift z,, is a characteristic wavenumber
scale, kyeq = Ha(zeq). For a CDM model with vary small baryon content, the transfer
function is a unique function of k/kgeq.

(From the early 80s, much effort has gone into computing the transfer functions
in terms of the material content of the universe, varying amounts of dark matter,
massive neutrinos, baryons, relativistic matter, dark energy, etc. An example of a
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much-used numerical fitting formula for the CDM class of models which is accurate
for low baryon density parameters £, is that given by Bardeen et al. (1986),

k" [In (1 + 2.34¢))

Pcpm(k) o y ’
o [1+3.89¢ + (16.1¢)> + (5.469)% + (6.71¢)*]""* (2.349)?

Q,
q=kiI', T =Q,.h exp{—Q;,— Qb }

where k = 277/ is the wavenumber in units of Z-Mpc™! and I' the shape parameter. It
is indeed a function of k/kp,y, with kyeq ~ ST'h Mpc‘1 in the Q;, — 0 limit. The Q,
dependencs approximately accounts for the effect of baryons in the transfer function
Sugiyama (1995), although superposed upon such a 7 is an oscillation associated
with the acoustic oscillations that the baryon-photon fluid participates in, unlike the
CDM.

The corresponding effective power spectrum slope n.5(k) of the Cold Dark Mat-

ter spectrum, -
n P(k)
dlnk (i

drops from the primordial value value n.¢rr = n in the large scale limit k£ | O to
nesy ~= =3 + (n — 1) modulo logarithmic corrections at high k — oo, a direct
consequence of the large Hubble drag from radiation, hence slow growth that the high
k fluctuations experience. The density power spectrum per e-folding in wavenumber
is

nefr(k) =

Pp(k) = do'g/d Ink = <|5(k)|2>k3/(2n’2) o kn+3 .

The power progressively drops from small scales to large, defining the hierarchical
nature of the power spectrum. (The integrated rms density fluctuations up to scale k,
o, (k), implicitly defined by eq.(12) is by definition monotonic.)

2.3 Structure Growth

The time evolution of the density perturbation field 6(x, f) can be inferred from the
solution to the three fluid equations. Generally, |6] grows with time. When a cosmic
structure reaches virial equilibrium, as in galaxies or clusters, the physical density is
constant, but the overdensity relative to the declining pPCDM o a~3 background still
rises. Once the radiation energy density falls off after z.,, there is still a long period of
growth in the linear regime, defined by density perturbations with 6 <« 1 and velocity
perturbations with (Vfx,/d)* < 1 (with d the coherence length of the perturbation.
For the early phases of growth, it is useful to expand the perturbations in spatial
eigenmodes of our three evolution equations. These are simply plane waves, and the
Fourier-transformed equations depend only upon & for small § (mode-mode k — k’
couplings occur through the nonlinear 6v and v- Vv terms). The three evolution equa-
tions reduce to a single linearized equation for the growth of density perturbations
ox,1t)e.g.,
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8%s ads 3 1
— 425 — = ZQH} =6 12
o aor  2°m0%o 3 (12)

The general solution to this second order partial differential equation is the sum of a
universal growing mode solution D (f) and a a decaying mode solution D;(t),

6(x,1) = Di(0) 41(x) + Da(1) 45(x) 13)

Because the decaying mode is quickly rendered insignificant in comparison to the
growing mode for practical purposes it is usually sufficient to concentrate solely on
the growing mode solution.

The density growth factor D(¢) is dependent upon the cosmological background:
in different FRW Universes the growth of structure will proceed differently. In a
matter-dominated FRW Universe D(#) can be solved fully analytically, for more
general situations the linear growth factor needs to be evaluated numerically. Ig-
noring the contribution by radiation, the linear growth factor D(¢) in a Friedmann-
Robertson-Walker Universe containing only matter and a cosmological constant A
(or equivalent dark energy component), with current density parameters Q,, and
Q4 0, may be computed from the integral (see Heath, 1977; Peebles, 1980; Hamilton,
2001; Lahav & Suto, 2004)

D(t) = D(t, 20, 240) = SQm’OH(Z) H( )f da (14)
- s =@m,0s 2<A0) — 2 a 0 a'3H3(a') )

where the linear density growth factor is normalized to unity at the present epoch,
D(ty) = 1. For pure matter-dominated Universes, £, = 0, one may derive analytical
expressions for D(¢) (see Peebles, 1980). For ©,, = 1 and no mean curvature, D = a.
For the general situation including a non-zero cosmological constant, 2, # 0, the
following fitting formula provides a sufficiently accurate approximation for most
purposes (Lahav & Suto, 2004),

50(1) 1
2 QM — Qat) + [1+Q(0)/21[1 + Q4(H/70]°
in which Q(f) = Q,,(t) + 2,4().

The accompanying growing mode linear velocity perturbations v(¢) are linearly
proportional to the generating peculiar gravitational acceleration g(7),

2f
T 3H0 %

The deviation from Einstein de Sitter D = a growth is described by the dimensionless
linear velocity growth factor f = f(Q,,, 2,) encoding how D runs with respect to a:

adD
D da

D(t) = a(t)

15)

v

S (@, 24)

(16)

Q, 50, a
-1 - — + 0y + —/—,
2 A 2 D
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with the implied growth D, (¥) of linear velocity perturbations given by
D,(t) = aDH f(Q,,2,). a7

For a matter-dominated Universe with ©,, < 1 Peebles (1980) found the famous
approximation,

f(Qu) ~ Q08 (18)

An extension of this approximation for a Universe with both matter and a cosmolog-
ical constant A was given by Lahav et al. (1991),
o 006, 2

f(Qu, Q) = Q,° + 70 (1+ 5 ) (19)
This form clearly shows that the velocity growth being is mainly determined by the
matter density £, and is only (very) weakly dependent on the cosmological constant.
The latter is to be expected since perturbations in dark energy are expected to damp
when k exceeds Ha rather than grow.

Current estimates of the material content of the Universe for tilted ACDM models
from CMB and large scale structure data are Q,,9 ~ 0.27 £ 0.03, 2,0 = 0.73 =
0.03 and Q, ~ 0.045 (Kuo et al., 2007). The dark matter to baryon ratio is ~ 5,
small enough for acoustic oscillations to be evident in the transfer function, and this
effect has now been observed in galaxy redshift surveys. At early times any matter-
dominated FRW Universe evolves as the expansion factor a(t), D(1) = a(f) o t?/3,
as in an Einstein-de Sitter Universe (defined by Q,,(a) = Q,,0 = 1, Q4 = 0).

In the A-dominated cosmology favored by current cosmological observations, the
universe makes the transition from deceleration to acceleration at

Qo 1/3
A : . 20
ama (2QA,0) (20)

The vacuum energy density associated with the cosmological constant dominates
over the mass density of matter at 2'/3a,,4, hence the Hubble parameter is A-
dominated and Hubble drag slows the subsequent growth of fluctuations. With
Qno = 0.27 and Q4 ~ 0.73, this gives z,4 ~ 0.7. This freezing out of growth
occurs for linear structures on large scales. In nonlinear high-density regions, the lo-
cal gravity is strong enough for the evolution of structure to continue. As a result,
no larger scale weblike patterns will emerge after the Universe gets into exponential
expansion, yet within the confines of the existing Cosmic Web structures and ob-
jects will continue to evolve as clumps of matter collapse and merge into ever more
pronounced and compact halos and features (see next section).

A nice illustration of the evolution is in fig. 2, showing how the large scale Uni-
verse changes in a ACDM model from z = 8 until the present-day, in a box of size
65h~! Mpc. The time proceeds along the length of the two strips, the lateral direction
is taken along the length of the box. The developing structure along the two strips
shows the emergence of the Megaparsec Cosmic Web out of the nearly uniform and
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Fig. 2. The development of the large scale Universe from z = 8, after the end of the Dark Ages,
until the present-day in a timeline proceeding along two strips. The timeline runs from lower
lefthand frame (end Dark Ages, z = 8) until z = 4 (top of lefthand frame), resuming the latter
at the bottom of the righthand frame and running on to the present-day at z = O at the upper
righthand of that frame. The cosmic mass distribution is marked by cellular patterns whose
characteristic size grows continuously and becomes ever more pronounced up to z = 1.5 -2
(centre righthand frame). As a consequence of the accelerated expansion of the Universe the
large scale structure freezes at that point: the overall distribution of matter remains basically
unchanged, except for the sharpening of the features as a result of the continuing nonlinear
evolution within these features. Image courtesy of M. Aragén-Calvo, also see Aragén-Calvo
2007.

early Universe. Along the lefthand frame time runs from z ~ 8 (bottom) until (top)
and in the righthand frame from z ~ 4 at the bottom to the present-day at z = 0
(upper righthand frame).

The cosmic mass distribution is marked by cellular patterns whose characteris-
tic size grows is continuously growing and becomes ever more pronounced up to
z = 1.5 =2 (centre righthand frame). Clearly recognizable, particular in the lefthand
frame, is the hierarchical buildup of the weblike patterns. Both filaments and voids
are seen to merge with surrounding peers into ever larger specimen of these features.

Later, as a consequence of the accelerated expansion of the Universe the large
scale structure begins to slow at z ~ 1.5 — 2.0. As a result the overall spatial dis-
tribution of matter remains basically unchanged. Within the existing structures the
nonlinear evolution does indeed continue: filaments and clusters remain overdense
regions in which gravity continues to mould the clustering and configuration of mat-
ter. It results in a continuing sharpening of the weblike features in the Megaparsec
universe.

2.4 Nonlinear Clustering

Once the gravitational clustering process has progressed beyond the initial linear
growth phase we see the emergence of complex patterns and structures in the density
field. Highly illustrative of the intricacies of the structure formation process is that
of the state-of-the-art N-body computer simulation, the Millennium simulation by
(Springel et al., 2005). Figure 1 shows two sets of each four time frames out of this
massive 10'° particle simulation of a ACDM matter distribution in a 500h~'Mpc
box. The time frames correspond to redshifts z = 8.55, z = 5.72, z = 1.39 and
z = 0 (ie. at epochs 600 Myr, 1 Gyr, 4.7 Gyr and 13.6 Gyr after the Big Bang).
The earliest time frame is close to the epoch when the first dwarf galaxies formed.
Current estimates show that the characteristic redshift for reionization of the gaseous
IGM by radiation from the first stars, when the so-called Dark Ages ended, is at
Zren = 11.4 £ 2.5 (Kuo et al., 2007). (Even with 10 billion particles, the web-like
structure that actually exists at z = 8.55 is not evident since the waves that have
formed it cannot be included in such a simulation.) The first set of frames contains the
Dark Matter particle distribution in a 15h~'Mpc thick slice of a 1254~ Mpc region
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centered on the central massive cluster of the simulation. The second set zooms and
illuminates the details of the emergence of the central cluster in a 31.25h~ ! Mpc sized
region.

The first set provides a beautiful picture of the unfolding Cosmic Web, starting
from a field of mildly undulating density fluctations towards that of a pronounced
and intricate filigree of filamentary features, dented by dense compact clumps at the
nodes of the network. The second set of frames depict the evolution of the matter
distribution surrounding the central highly dense and compact cluster. In meticulous
detail it shows the formation of the filamentary network connecting into the cluster
which are the transport channels for matter to flow into the cluster. Clearly visible
as well is the hierarchical nature in which not only the cluster builds up but also
the filamentary network. At first consisting of a multitude of small scale edges, they
quickly merge into a few massive elongated channels. Equally interesting to see is
the fact that the dark matter distribution is far from homogeneous: a myriad of tiny
dense clumps indicate the presence of the dark halos in which galaxies — or groups
of galaxies — will or have formed.

Large N-body simulations like the Millennium simulation and the many others
currently available all reveal a few “universal” characteristics of the (mildly) nonlin-
ear cosmic matter distribution. Three key characteristics of the Megaparsec universe
stand out:

e Hierarchical clustering
e Anisotropic & Weblike spatial geometry
e Voids

These basic elements exist at all redshifts, but differ in scale, in fact with a grow-
ing nonlinear wavenumber kyr(z) characterizing the onset of moderate nonlinear-
ity. The linearly-evolving integrated power spectrum defined by eq.(12), O’Z 1 (k,z) =
Dz(z)a'f) 1 (k,0) as a function of redshift. If linear growth were to prevail, formal non-
linearity would occur when 6(k, z) ~ 1, namely at k = ky1(z), where o1 (knr(2),0) =
D~'(z). Monotonicity of o1 guarantees ky; (z) increases with decreasing redshift.
The cosmic web pattern is developed from waves in a band of wavenumbers just
below ky1(z), hence the web-like patterns seen in simulations look somewhat simi-
lar at differing redshifts, except the overall scale changes with increasing kyz. (The
relevant web-band in o, for the weak to moderate nonlinearity relevant to the web
pattern turns out to be about 0.2 to 0.7 (Bond et al., 1996, 1998), with higher values
associated with collapsed density peaks.) Because Ao, /0pr oc (nerr + 3)4Ink in
terms of the effective index of the power spectrum n. s, the wavenumber band 4 In k
associated with o, /o, = 1/2 is considerably wider for the flattened spectra asso-
ciated with higher redshif: that is more waves belong to the web-band around ky;,
and the filaments tend to be fatter (more ribbon-like) than at lower redshift (Bond et
al., 1998).

The challenge for any viable analysis tool is to trace, highlight and measure each
of the morphological elements of the cosmic web. Ideally it should be able to do so
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without resorting to user-defined parameters or functions, and without affecting any
of the other essential characteristics.

3 Hierarchical Structure Formation

Perhaps the most significant and characteristic property is the hierarchical nature of
the cosmic matter distribution. Over a wide range of spatial and mass scales objects
and/or structures are embedded within structures of a larger dimension and a lower
density (see fig. 3).

The scenario of structure formation is one in which the first objects to form are
small compact objects which subsequently merge with their surroundings as the
larger scale density excess in which they are embedded condenses out of the cos-
mic background. Small scale perturbations evolve substantially faster than the ones
on larger scales and will emerge first as genuine recognizable objects. In a sim-
ple Einstein-deSitter model of spherical overdense perturbations, when the linear
or = 1.05, the flow changes from outward, albeit increasingly lagging the cosmic
Hubble flow, to infall, toward complete collapse and virialization by §; = f. = 1.7.
If so, a typical 2-sigma density peak associated with a scale k& will collapsed at
oo ® f./2 ~ 0.8, the (much) rarer 3-sigma density peaks at o,;, ~ 0.6, hence
the collapsed structure band is associated with o, 2 0.7 which defined the upper
bound of the web pattern o, described in the last section. A rough relation of char-
acteristic wave number to mass of the collapsed object is M = (47/3)p,n(2a/k)? ~
10'2Q,,(2k™' /M pc)®* My (Bond & Myers, 1996a).

Thus, as ky; sweeps down from high redshift, it leaves in its wake first stars
which reionize the universe formed in tiny dwarf galaxies with 2k~! ~ 10 kpc, dwarf
galaxies with 2k~! ~ 100kpc, large Milky Way like galaxies with 2k~! ~ Mpc to
rare large clusters with 2k~' ~ 10Mpc. The larger perturbation will gradually evolve
through the merging and accretion of smaller scale clumps, a process illustrated in
fig. 3.1. The web associated with sligthly lower k’s is formed from the front end of
the kyz-wake. These features of (zero-dimension) objects embedded in structures of
a larger dimension (one-dimensional filaments, two-dimensional sheets) at a lower
density is clearly evident in fig. 3), with the larger encompassing perturbations grad-
ually evolving through the merging and accretion of smaller scale clumps, a process
illustrated in fig. 3.1.

Aptly described by the concept of merger tree (Kauffmann & White, 1993; Lacey
& Cole, 1993, see e.g.), the precise path that an encompassing perturbation follows
towards final collapse and virialization may be highly diverse.

3.1 Hierarchical structures

Extended features still in the process of collapsing, or collapsed objects which have
not yet fully virialized, often contain a large amount of smaller scale substructure
at higher density which materialized at an earlier epoch. This substructure is a clear
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Fig. 3. The hierarchical Cosmic Web: over a wide range of spatial and mass scales structures
and features are embedded within structures of a larger effective dimension and a lower den-
sity. The image shows how structures in the Millennium simulation are mutually related: at
five successive zooms it focusses on a very dense and compact massive cluster at the inter-
section of a high number of filamentary extensions. Image courtesy of V. Springel & Virgo
consortium, also see Springel et al. 2005. Reproduced with permission of Nature.

manifestation of the hierarchical development of structure in the Universe. This hier-
archy of embedded structures is illustrated in Fig. 3, which shows five slices through
the Millennium simulation (Springel et al., 2005), from bottom to top representing
successive zoom-ins onto a very dense and compact massive cluster.
Observationally we can recognize traces of the hierarchical formation process in
the galaxy distribution on Megaparsec scales. The large unrelaxed filamentary and
wall-like superclusters contain various rich clusters of galaxies as well as a plethora
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Fig. 4. Ilustration of the hierarchical formation of a cluster sized halo. From: van Haarlem &
van de Weygaert 1993. Reproduced by permission of the AAS.

of smaller galaxy groups, each of which has a higher density than the average su-
percluster density. Zooming in on even smaller scales, within groups large galaxies
themselves are usually accompanied by a number of smaller satellites and dwarf
galaxies. The imprint of hierarchical clustering may also be found in fully collapsed
structures, such as clusters and even the halos of galaxies. Even when studying the
hot X-ray emitting intracluster gas, more evenly distributed than the galaxies, the
majority of clusters appears to display some measure of substructure (e.g. Schiicker
et al., 2001). Even the Coma cluster appears to be marked by a heavy infalling group
(Neumann et al., 2003). Also galaxies bear the marks of their hierarchical forma-
tion. The most visible manifestation concerns the presence of streams in their dark
halos, remnants of infalling dwarf galaxies (e.g. Helmi & White, 1999; Freeman &
Bland-Hawthorn, 2002).
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3.2 Mass scale fluctuations

We now generalize the integrated rms power o, (k, z) to rms fluctuations associated
with general filters W(kR) (Bardeen et al., 1986):

ow(R) = f dInk |WkR)P* doy (k)/d Ink. (21)

For example, if the density field is smoothed with a tophat or Gaussian filter, then
W(x) is

W = % (sin x — x cos x) Tophat
. X
Wx) -
Ws = exp(—x%/2) Gaussian

respectively. The Fourier transforms of the filters define smoothing functions W in
real space,

Wru(r) = 9(Rru — 1)/ V1H, Vru = 4nR3/3

Ws(r) = eXp(—rz/ZRzG)/Vg, Vg = (2n)32R3

Here, J(x) is the Heaviside function, unity if x > 0 zero if x < 0. The smoothing filter
that defines 0',% ; (kg) is called the “sharp k-space” filter, simply a top hat in k-space,
W = (1 — kRy), where R; = 1/kg. Its Fourier transform is W(r) = WTH(rkR)/ Vi,
with Vy = (4n/ 3)k,;3 /(2m)3.

The nature of top hat smoothing is clear: around each point r, we volume-average
the field over a spherical region of radius R around it. There is a clear mass assign-
ment we can make, M7y = ﬁma3 V1u. For the other filters, the relation between the
scale R and an appropriate mass is trickier. The obvious values, p,,a’ Vg and p,,a’ Vi
turn out not to be applicable to objects.

(From the discussion about the nonlinear wavenumber above, it should be clear
that 0,1 (k) defines a clock whose ticks march out the development of the hierarchy.
Indeed Bond et al. (1991) showed that the square,

S=o, (22)

is the most appropriate. A convenient way to define a filter-independent mass is to
determine the “trajectory” Ryg(S) by inverting § = 0'% y(Rry) and using Mty for ev-
ery filter. The trajectories Ry (S) and Rg(S) then define functional relations Rx(M7y)
and Rg(Mry) among filter scales. There are more sophisticated ways of defining the
mass relations among filters using profiles around density field peaks, but this ap-
proach gives similar answers. It turns out that the inversion for Gaussian and sharp-k
space gives Rry/Rg = 2, with a similar result Rty /R = 2.
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3.3 Collapse and Virialization: Density Barriers

The correspondence between mass and filter scale, M o R?, suggests that if one
wishes to model (proto)objects of mass M one should study the initial density fluctu-
ation field when it is smoothed on (comoving) spatial scale R oc M'/3, with the exact
coeflicient depending on filter choice (eqn. 22):

S(r,f|R) = f dr’ §(r', 1)) W((r = ¥')/R) . (23)

For the pure power-law spectra P(k) o k"// the fluctuations S on a mass scale
M scale as
S(M) oc Mt (24)

The monotonocity of S (M) with M is generally valid, even with the n,¢(k) we have
seen arise in ACDM and other theories. The Cold Dark Matter spectrum (eq. 11) has
ness(kga) ¥ —2 on galaxy scales and n.sr(keis) ® —1.3 on clusters scales.

Spherical Haloes: Collapse & Virialization

We now review the extremely instructive nonlinear evolution of a spherically sym-
metric density peak, which turns around and collapses, with complete collapse
to a point predicted to occur when the linearly-extrapolated (primordial) density,
or(r,tlR) = D(6)/D(t;)o.(r, t;|R) (egs. 12, 13), reaches a critical density excess f,
(Gunn & Gott, 1972). No singularity in fact develops, rather shells of mass pass
through the origin and oscillate relative to each other finally settling down to a virial
equilibrium in which kinetic and gravitational forces are balanced. In more realistic
3D collapses the inevitable non-spherical perturbations enhance the approach to viri-
alization. Thus we can identify smoothed linear overdensities f,, f,; as well as f;, as
well their nonlinear overdensity counterparts, Oy 14, ONLyir @S Well as Oyp . = oo: The
collapse and subsequent virialization of a spherical and isolated overdensity is solely
dependent on such a critical - and universal - threshold level f., and independent of
the mass scale M. The same holds true for its decoupling from the Hubble expansion
and turnaround. The corresponding characteristic density thresholds for turnaround
fu collapse f, and virialization f,; can be derived from the spherical model.

The critical value for an Einstein-de Sitter 22,, = 1 Universe has the well-known
value derived by Gunn & Gott (1972),

fo = 2%(1271)2/3 ~ 1.686, (25)

while the corresponding critical nonlinear virialization value is given by

Pir
Pu

= 187° ~ 178.0. (26)

Similar values can be easily derived for turnaround: the linear turnaround threshold
value f;, = 1.08, while the nonlinear turnaround density values is dnz ., = 5.55.
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For a general FRW Universe with ©,,0 # 1 and/or 2,0 # 0 the values de-
pend upon the cosmic epoch at which turnaround, collapse or virialization of the
density perturbation takes place, i.e., it is a function of the values of ©Q,, and Q, at
the corresponding cosmic epoch. For open cosmologies with A = 0 solutions to the
problem were computed by Lacey & Cole (1993). Lahav et al. (1991) adressed the
issue for FRW universes with a cosmological constant A # 0, while Eke et al. (1996)
computed the explicit solutions for flat Q,, + 24 = 1 FRW universes. The general
expressions for these situations were summarized by Kitayama & Suto (1996). The
case for Dark Energy models with w # —1 were assessed by Percival (1995). While
the linear collapse threshold value f. does depend somewhat on the cosmological
background, the values for plausible cosmologies are only marginally different from
those for an Einstein-de Sitter Universe. As may be seen in fig. 3.3 the values for
f. in generic open matter-dominated cosmologies or flat cosmologies with a cos-
mological constant A turn out to have only a weak dependence on Q,,o: in an open
Q0 = 0.1 Universe f.o ~ 1.615. We note that the nonlinear virialization threshold
OnLvir displays a considerably stronger variation as a function of cosmology.
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Fig. 5. Left frame: Critical threshold for collapse, f,, as a function of Q,,, in the spherical
collapse model. Results are plotted for open models with A = 0 (dotted line) and flat models
with Q,, + 2, = 1 (dashed line). Righthand panel: the (nonlinear) virial density of collapsed
objects in units of critical density. From Eke et al. 1996. Image courtesy of Vincent Eke.

Useful fitting formulae for the linear spherical model collapse value oy, were
obtained by Bryan & Norman (1998) for 2, = 0 FRW universes and for flat Uni-
verses:
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187 + 82(Qp — 1) = 39(Q, — 1) Qu+Q,=1

ONLc
27
1872 + 60(Q, — 1) — 32(Qy — 1)2 Q,=0

ONLc

Spherical Collapse and Primordial Density Field

Given the primordial density field d;(x, t), linearly interpolated to the present epoch,
at any one cosmic epoch ¢ (redshift z) one may identify the peaks that have condensed
into collapsed objects by tracing the regions for whom the filtered primordial density

€XCess
fe@)
D(z2)

where the index sc refers to “spherical collapse”. For a Gaussian random field, the
statisistical distribution of d,(r, #|R), is

oL(x, 1IR) > = f5c(2), (28)

P(5,)d6;, = exp[—62(r, 1|R)/2S (R, 1)] 6./ \27S (R, 1) = exp[—v?/2] dv/ V2x,
v =00, 1R [ow(R, D), SR, =0} (R,1). (29)
The number of ¢ is v, which is a Gaussian random deviate (i.e., is distributed as

the unit-variance normal). The threshold on scale M is therefore achieved when the
height v in o units is
Je

ow(M)’

High mass objects are very rare because oy (M) is at low, hence v(M) is high.

V(M) =

(30)

Collapse and Halo Shape

While the above is based upon spherical collapse, in realistic circumstances primor-
dial density perturbations will never be spherical, nor isolated (Bardeen et al., 1986).
In Bond & Myers (1996a); Sheth & Tormen (2002), the dependence upon the shape
of the density peak as well as on the tidal influences of the surrounding matter fluc-
tuations were worked out. (See Sec. 4.5 for a detailed description of anisotropic
ellipsoidal collapse).

In a spherical collapse, the evolution of the outer radius depends only upon the
average interior properties of the perturbation, and does not depend upon what the
external matter is doing. Non-spherical perturbations such as ellipsoids of course col-
lapse anisotropically. An ellipsoidal overdensity will first collapse along its shortest
axis, subsequently along its medium axis and finally along its longest axis. However,
the evolution of the outer shell depends upon the details of the interior distribution
and on the exterior through the tidal forces acting upon the shell so it is not as clean
a case as spherical collapse. There has been a long history of using homogeneous el-
lipsoids to model anisotropic collapses. Isolated ellipsoids were considered by (Icke,
1973; White & Silk, 1979; Peebles, 1980). The extension to a cosmological setting
where the exterior tidal forces were accurately included formulating it by its relation
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Fig. 6. Evolution of an ellipsoidal perturbation in an Einstein-de Sitter universe. Symbols show
the expansion factor when the longest axis collapses and virializes as a function of initial e and
p with the same initial overdensity ¢;. The circles correspond to different values of p (see text).
The time required to collapse increases monotonically as p decreases. Right axis: associated
collapse overdensity required for collapse. Top axis: estimate of mass resolution o-(m) based
on the corresponding most probable ellipticity e. From Sheth et al. 2001. Image courtesy of R.
Sheth.

to the linear deformation tensor of the interior was made by Bond & Myers (1996a).
This paper showed the collapse along the shortest axis will occur more rapidly than
the collapse of comparable spherical peak, that of the medium axis will not dif-
fer too much from the spherical value while full collapse along all three axes will
be slower than that of its spherical equivalent. This was applied to filtered density
peaks by Bond & Myers (1996a), who determined the critical density threshold f,
for complete collapse as a function of the linear tidal field environment or deforma-
tion described below, and to random filtered-field points by Sheth et al. (2001).
Similar considerations concerning the effect of the non-spherical collapse of den-
sity peaks on the mass function of bound objects had been followed in a number of
other studies. Monaco (1995, 1997a,b), Audit et al. (1997) and Lee & Shandarin
(1998) studied models in which the initial (Zel’dovich) deformation tensor was used
to find estimates of the collapse time. However, when following the nonlinear evo-
lution of the same configuration by means of a corresponding (homogeneous) el-
lipsoidal collapse model Bond & Myers (1996a); Eisenstein & Loeb (1995) found
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marked differences. Fig. 13 in section 4.4 shows a telling comparison between the
corresponding collapse time estimates for all three axes of a density peak.

The collapse of a spherical peak depends only upon the density, which is the trace
of the deformation tensor, hence f. = f,. is constant. For a non-spherical peak, the
deformation tensor has an anisotopic part as well, with two (normalized) eigenval-
ues, the ellipticity e and its prolateness p and the collapse threshold depends upon
these values, f..(e, p) (Bardeen et al., 1986; Bond & Myers, 1996a). An impression
of the sensitivity to e and p of the collapse time a (e, p) and corresponding collapse
threshold f..(e, p) may be obtained from fig. 3.3, which depicts these for an ellip-
soidal perturbation in an Einstein-de Sitter Universe. For an ellipsoidal overdensity
with the same initial overdensity o; the symbols show the expansion factor when the
longest axis of the ellipsoid collapses and virializes, as a function of e and p. The
axis on the right shows the associated critical overdensity required for collapse. At
a given e, the large, medium and small circles show the relation at p = 0, |p| < e/2
and |p| > e/2, respectively. The solid curve and dashed curves depict the analytical
relation specified in Sheth et al. (2001) for p = 0 and |p| = ¢/2. The time required to
collapse increases monotonically as p decreases. The top axis shows the related mass
scale o-(m) when identified with the value of e as the corresponding most probable
value for p=0 (see Sheth et al., 2001).

The main conclusion is that for ellipsoidal collapse the density threshold f,. be-
comes a “moving barrier”, dependent on the ellipticity e and/or the mass scale o (m).
On the basis of such ellipsoidal dynamics calculations and normalized by means of
N-body simulations, Sheth & Tormen (2002) found that the density collapse barrier
may be reasonably accurate approximated by the expression

ﬁ(z)}_a
o2(M)

= fvc(z) {1 + IBV(Ma Z)_a}

with 8 ~ 0.485 and @ = 0.615. Figure 3.4 shows a few examples of moving barri-
ers for a slightly different context. In this expression, fs.(z) is the critical overdensity
required for spherical collapse at a redshift z and o"(M) the rms initial density fluctua-
tion smoothed on a mass scale M, both linearly extrapolated to the present epoch. The
parameters § and « are determined by ellipsoidal collapse: strictly speaking @ = 0
and S8 = 0 for spherical collapse, yielding the correct asymptotic value f,. = f;.. Cos-
mology enters via the relation f., while the influence of the power spectrum enters
via o(M). The corresponding modifications have been shown to lead to considerable
improvements in the predictive power of the excursion set formalism describing the
mass spectrum of condensed objects (Sheth & Tormen, 2002).

Eq. 32 shows massive objects with low o(M) have f,.(2) = f;.(z), well described
by spherical collapse, whereas less massive objects are increasingly affected by ex-
ternal tidal forces as o (M) rises and M decreases. Critical thresholds can also be
determined for other structural features, such as voids, using 2 thesholds (Sheth &
van de Weygaert, 2004) and walls and filaments (Sec. 3.3).

Jec(0,2) = fio(2) {l + 8

&1V
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3.4 Halo Excursions

The excursion set formalism, also known as extended Press-Schechter formalism
Press & Schechter (1974); Peacock & Heavens (1990); Bond et al. (1991); Sheth
(1998), evaluates the effects substructure over a range of scales has on the emergence
of objects in a cosmic density field. For an early paper on see Epstein (1983) and for
a recent review see (Zentner, 20006).

It elucidates the hierarchical development of structure using just the linear den-
sity and tidal fluctuations in combination with the knowledge of their fate once the
linear smoothed density exceeds the threshold values f. we have discussed. The idea
is that around a point r, d.1, #|R) defines a trajectory, starting from zero at very large
R to larger values at small R. We have seen that S (M) is a convenient clock increasing
from high mass to low, hence we can also consider the smoothed field as a function of
S = 3,(R): 6.(r,11S). Further, since S(R, 1) = D*(1)S (R, to), where £y is the current
time, oL (r, #|S (¥))/sqrtS (¢) is independent of ¢, a function only of S(#y) which acts
like a pseudo-time. For each r, we have a trajectory in resolution S, 6,(S). When 6,
reaches the f. barrier, we identify the scale R with the mass of a collapsed object
of mass M(S) at that position. The reader will realize that this prescription is unre-
alistic in that points very near to each other may have their density fields piercing
the barrier at different S, hence be indentified with objects of different mass even
though they collapse together. At best the prescription can be statistically valid but
not a true real space description. That requires a non-local treatment. Further, since
small-scale density peaks are embedded within larger regions which may or may not
have pierced the critical collapse threshold. If the larger region has collapsed this
will have involved the merging of the small scale peak with its neighbouring halos
and surrounding matter while it got absorbed into the more massive entity. Consider
the sharp-k filter with its S 5, = S (Ry) integrated power. If the linear primordial den-
sity field is a homogeneous random Gaussian field, the N-point correlation functions
are translation invariant and the Fourier components §(k) are independent, that is
uncorrelated in k. Sliding from a resolution S 5, to a higher resolution Sy, + 4S y,
the filtering process in essence involves the increment by a random Gaussian variate
5(k).

Figure 3.4 shows an example of a typical result: a jagged line representing the
linear overdensity centered on a randomly chosen position r in the initial Gaussian
random field as a function of the scale S j;. Because of the independence of each of
the Gaussian distributed Fourier components, the process turns into that of a Brow-
nian random walk. The density threshold f, for forming bound virialized objects is
given by the dashed line, assumed mass independent here hence the line is horizon-
tal. The largest scales, S ), = 0, are those of the homogeneous global FRW Universe
so that the random walk will start of at §(S = 0) = 0. In hierarchical models S ,
will increase as we zoom in on to an increasingly resolved mass distribution around
the chosen position x. As we move to a higher § 5, and smaller R fluctuations of an
increasing amplitude will get involved.

The distribution of masses of collapsed and/or virialized objects is equated to
the distribution of distances S ); which one-dimensional Brownian motion random
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Fig. 7. Excursion Set Formalism, illustrated for the formation of a halo. Random walk ex-
hibited by the average overdensity ¢ centred on a randomly chosen position in a Gaussian
random field, as a function of smoothing scale, parametrized by S ), (large volumes are on the
left, small volumes on the right). Dashed horizontal line indicates the collapse barrier f,. The
largest scale (smallest value of S) on which (S ) exceeds f, is an estimate of the mass of the
halo which will form around that region. From Sheth & van de Weygaert 2004.

walks travel before they first cross a barrier of constant height f.. In other words, one
should find the distribution of the first upcrossing of the random trajectory, the lowest
value of § for which o(r|vertS) = f.. The rate of first upcrossings at a threshold was
calculated by (Chandrasekhar, 1983). When the random walk is absorbed by the
barrier at the first upcrossing at S, the point r is identified with a collapsed object
of mass M(S). Here rate is per unit psuedo-time, or per unit resolution, dS. In the
absence of a barrier, the distribution of trajectories with a density value 6.(S) at S is
the usual Gaussian distribution:

1 62
I1(5.,8) = Vo exp{—ﬁ} (32)
Vir
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In the presence of a barrier f,, the probability distribution 77(6y, S |f;) of trajectories
which have a density ¢, at resolution S ), but did not cross the boundary at smaller
S < Su) follows from solving the Fokker-Planck equation (see Bond et al., 1991;
Zentner, 20006),

2 2
oI _ iim {((Aé) YORIT — (546) an}, 33

S 24S 0582 AS 06

where the next step in the trajectory, 46.(S) = 6.(S +45)—06.(S) as we increment the
resolution by A4S . The critical feature of sharp k-filter is that this step is uncorrelated
with the prior value, (6.(S)46.(S)) = 0, in which case the drift term vanishes and
simple diffusion remains,
o101
s 2 06
There is a simple graphical way of determining /7. Consider a trajectory which
has reached the threshold for some scale S < S j,. Its subsequent path is entirely sym-
metric and at S y; it is equally likely to be found above as well as below the threshold
(see fig. 3.4). In other words, for each of these trajectories there is an equally likely
trajectory that pierced the barrier at the same scale R but whose subsequent path
is a reflection in the barrier, ending up below the threshold. The probability /7 that
the threshold has never been crossed may be obtained by subtracting the reflected
distribution from the overall Gaussian distribution (eqn. 32),

1 52 5. —2£.)?
(6L, Smlfe) = S {exp (__ZSL ) — exp (——( L2S J) )} (33)
VLt m m m

Integrating this distribution over all values d; yields the probability that the threshold
has been crossed at least once, and the corresponding probability that the location is
enclosed in an object of mass < M,

(34)

PuSulf) = 1 - f as M) = 1 - et =} g
V20 (M, 1)

in which erf(x) is the conventional error function. In an entirely natural fashion this
probability takes care of the so-called fudge factor 1/2 which had been missed in
the original Press-Schechter result Press & Schechter (1974). They assumed that the
fraction of mass in objects of mass > M is given by the fraction of mass above the
threshold f. at resolution S ;. This fails to take into account that there are mass fluc-
tuations which did not reach the threshold at mass scale M, yet are part of a collapsed
structure on larger mass scale. Indeed, we will see that this is also an essential issue
in understanding the development of a void hierarchy (see accompanying notes, van
de Weygaert & Bond (2005)).

3.5 Halo Mass Distribution

Given the identification of mass, M(S), we may readily infer the number density
n(M) of objects of mass M from the mass excursion probability I7(M) (eq. 35):
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Fig. 8. Press-Schechter halo mass function at several different redshifts: z=0 (solid curve),
z=5 (dotted curve), z=10 (short-dashed curve) and z=20 (long-dashed curve). From Barkana
& Loeb 2001. Reproduced with permission of Elsevier.

Pm |dPs| dS
MydinM = — InM 7
n(M)dIn M s | damart™ 37)
which translates into
_ 2 pu v(M)? ‘dlna'(M)
n(M)dM = \/;MZ v(M) exp{ 5 In M (38)

For a pure power-law power spectrum, P(k) o k", one may readily observe that
the mass spectrum of virialized and bound objects in the Universe is a self-similar
evolving function

) 1 n pu (M (3+n)/6 AR
A(M)dM = ,/5 (1+§) = (M) expi-( o1 )
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The self-similar evolution of the mass distribution is specified via the time develop-
ment of the characteristic mass M,(),

M.(t) = DY M,, . (40)

whose present-day value is inversely proportional to f,,

3/(3+n)
2A) . (41)

7
For a ACDM Universe, with ©,, = 0.3, figure 3.4 depicts the predicted Press-
Schechter halo mass functions at several different redshifts (Barkana & Loeb, 2001):

z=0 (solid curve), z=5 (dotted curve), z=10 (short-dashed curve) and z=20 (long-
dashed curve).

M*,o = (

3.6 Hierarchical Evolution

Smaller mass condensations may have corresponded with genuine physical objects
at an earlier phase, while later they may have been absorbed into a larger mass con-
centration. It is straightforward and insightful to work out the evolving object distri-
bution within the context of the excursion set formalism.

Returning to the graphical representation in fig. 3.4 we may easily appreciate
what happens as the mass distribution evolves. The linear growth of fluctuations
implies a gradual uniform rise of the whole random walk curve as each mass fluctua-
tions increase by the linear growth factor D(z). Going back in time the random walk
curve would therefore have had a proportionally smaller amplitude. Linearly trans-
lated to the present epoch the density threshold barrier would gradually decrease in
amplitude, proportional to 1/D(z). Earlier barrier crossings would therefore have oc-
curred at a higher values of S (R), a smaller scale R and a smaller mass M: Location
x would have been incorporated within an object of a correspondingly smaller mass.

As we proceed in time the barrier f.(z) would descend further. Gradually the ran-
dom walk path will start to pierce through the barrier at lower S and correspondingly
larger values of the mass scale M. The halo into which the point may be embedded
will first accrete surrounding matter, thereby gradually growing in mass. Even later
the halo may merge with surrounding clumps into a much more massive halo. The
corresponding mass scale would reveal itself as the next peak in the random walk.
Fig. 3.4 does reveal such behaviour through the presence of three peaks, H1, H2 and
H3: H3 corresponds to an early small object that merged with surrounding mass into
the more massive peak H2. The latter would merge again with neighbouring peers
into the largest clump, object H1.

While the excursion set formalism manages to describe quantitatively the merg-
ing and accretion history of halos in a density field, it has opened up the analysis of
merging histories of objects in hierarchical scenarios of structure formation (Bower,
1991; Lacey & Cole, 1993, 1994) and the related construction of the merger tree of
the population of dark halos (Lacey & Cole, 1993; Kauffmann & White, 1993).
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3.7 Extension to the four mode two-barrier excursion set formalism

We have seen that the hierarchical nature of the cosmic structure formation process
plays a prominent role in the nonlinear evolution of and graudal buildup of galaxies,
galaxy halos and clusters. In the following sections we will see that it affects all
aspects of the nonlinear evolution of large scale structure, including the morphology
of filaments and the properties of the void population.

With respect to the void population, we will find that there is a distinct asym-
metry between the nonlinear hierarchical evolution of voids and that of haloes (see
accompanying review on morphology of the cosmic web). For the evaluation of the
hierarchical evolution of voids two processes need to be taken into account: the void-
in-void process avoids double counting of voids while the void-in-cloud process re-
moves voids within encompassing overdensities. What distinguishes voids from their
collapsing peers is that clusters will always survive when located within a void, while
the reverse is not true: voids within overdense clusters will be rapidly squeezed out
of existence.

Sheth & van de Weygaert (2004) have shown that the excursion set formalism
provides a mathematically properly defined context for describing the asymmetry
between void and haloes. The related extension of the formalism to a two-barrier
formalism culminates in a four mode formalism. In this section we summarize these
findings, while we refer to van de Weygaert & Bond (2005) for a more proper treat-
ment of the evolution of voids. Figure 3.7 illustrates the argument. There are four
sets of panels. The left-most of each set shows the random walk associated with the
initial particle distribution. The two other panels show how the same particles are
distributed at two later times.

Cloud-in-Cloud

The first set illustrates the cloud-in-cloud process. The mass which makes up the
final object (far right) is given by finding that scale within which the linear theory
variance has value S = 0.55. This mass came from the mergers of the smaller clumps,
which themselves had formed at earlier times (centre panel). If we were to center the
random walk path on one of these small clumps, it would cross the higher barrier
f:/D(@) > f. at S > 0.55, the value of D(¢) representing the linear theory growth
factor at the earlier time .

Cloud-in-Void

The second series of panels shows the cloud-in-void process. Here, a low mass clump
(S > 0.85) virializes at some early time. This clump is embedded in a region which
is destined to become a void. The larger void region around it actually becomes a
bona-fide void only at the present time, at which time it contains significantly more
mass (S = 0.4) than is contained in the low mass clump at its centre. Notice that
the cloud within the void was not destroyed by the formation of the void; indeed, its
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Fig. 9. Four mode two-barrier excursion set formalism. Each row illustrates one of the four ba-
sic modes of hierarchical clustering: the cloud-in-cloud process, cloud-in-void process, void-
in-void process and void-in-cloud process (from top to bottom). Each mode is illustrated using
three frames. Leftmost panels show ‘random walks’: the local density perturbation §y(X) as a
function of (mass) resolution scale S, (cf. Fig. 3.4) at an early time in an N-body simulation
of cosmic structure formation. In each graph, the dashed horizontal lines indicate the collapse
barrier f. and the shell-crossing void barrier f,. The two frames on the right show how the as-
sociated particle distribution evolves. Whereas halos within voids may be observable (second
row depicts a halo within a larger void), voids within collapsed halos are not (last row depicts
a small void which will be squeezed to small size as the surrounding halo collapses). It is this
fact which makes the calculation of void sizes qualitatively different from that usually used to
estimate the mass function of collapsed halos. From Sheth & van de Weygaert 2004.

mass increased slightly from § > 0.85to S ~ 0.85. Such a random walk is a bona-
fide representative of S ~ 0.85 halos; for estimating halo abundances, the presence
of a barrier at f, is irrelevant. On the other hand, walks such as this one allow us
to make some important inferences about the properties of void-galaxies, which we
will discussess shortly.

Void-in-Void

The third series of panels shows the formation of a large void by the mergers of
smaller voids: the void-in-void process. The associated random walk looks very
much the inverse of that for the cloud-in-cloud process associated with halo mergers.
The associated random walk shows that the void contains more mass at the present
time (S ~ 0.4) than it did in the past (S > 0.4); it is a bona-fide representative of
voids of mass § ~ 0.4. A random walk path centered on one of these mass elements
which make up the filaments within the large void would resemble the cloud-in-void
walk shown in the second series of panels. [Note that the height of the barrier associ-
ated with voids which are identified at cosmic epoch ¢ scales similarly to the barrier
height associated with halo formation: f,(¢) = f,/D(¢).]

Void-in-Cloud

Finally, the fourth series of panels illustrates the void-in-cloud process. The particle
distribution shows a relatively large void at the early time being squeezed to a much
smaller size as the ring of objects around it collapses. A simple inversion of the
cloud-in-void argument would have tempted one to count the void as a relatively
large object containing mass S ~ 1. That this is incorrect can be seen from the fact
that, if we were counting halos, we would have counted this as a cloud containing
significantly more mass (S ~ 0.3), and it does not make sense for a massive virialized
halo to host a large void inside.

3.8 Peak Structure

While the extended Press-Schechter excursion set formalism does provide a good
description of the mass functions of cosmological objects, it basically involves an
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intrinsically local description and does not deal with the real internal structure of a
genuine collapsed and virialized peak in the mass distribution. Points which would
collapse together to form a virialized object of a given mass may be counted as be-
longing to objects of different mass (Bond et al., 1991). Another unappealing aspect
is that the derivation of the Press-Schechter formula requires the unphysical sharp
k-filter, a rather unphysical form of density smoothing, and a rather arbitrary mass
assignment scheme.

It is the nonlocal peak-patch description of Bond & Myers (1996a) that is able to
incorporate a more global description of evolving volume elements.

4 Anisotropic and Weblike Patterns

The second key characteristic of the cosmic matter distribution is that of a weblike
geometry marked by highly elongated filamentary, flattened planar structures and
dense compact clusters surrounding large near-empty void regions (see fig. 1). In
this section we focus on the backbone - or skeleton - of the Cosmic Web defined by
these anisotropic filamentary and sheetlike patterns.

The recognition of the Cosmic Web as a key aspect in the emergence of structure
in the Universe came with early analytical studies and approximations concerning
the emergence of structure out of a nearly featureless primordial Universe. In this
respect the Zel’dovich formalism (Zeldovich, 1970) played a seminal role. It led to
view of structure formation in which planar pancakes form first, draining into fila-
ments which in turn drain into clusters, with the entirety forming a cellular network
of sheets. As borne out by a large sequence of N-body computer experiments of cos-
mic structure formation, weblike patterns in the overall cosmic matter distribution do
represent a universal but possibly transient phase in the gravitationally driven emer-
gence and evolution of cosmic structure. The N-body calculations have shown that
weblike patterns defined by prominent anisotropic filamentary and planar features —
and with characteristic large underdense void regions — are a natural manifestation
of the gravitational cosmic structure formation process.

Interestingly, for a considerable amount of time the emphasis on anisotropic col-
lapse as agent for forming and shaping structure was mainly confined the Soviet
view of structure formation, Zel’dovich’s pancake picture, and was seen as the rival
view to the hierarchical clustering picture which dominated the western view. Here
we intend to emphasize the succesfull synthesis of both elements on the basis of the
peak patch description of Bond & Myers (1996a). It forms the most elaborate and
sophisticated analytical description for the emergence of walls, filaments and fully
collapsed triaxial halos in the cosmic matter distribution. Culminating in the Cos-
mic Web theory (Bond et al., 1996) it stresses the dominance of filamentary shaped
features instead of the dominance of planar pancakes in the pure Zel’dovich theory.
Perhaps even more important is its identification of the intimate dynamical relation-
ship between the filamentary patterns and the compact dense clusters that stand out as
the nodes within the cosmic matter distribution: filaments as cluster-cluster bridges.
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To appreciate the intricacies of the Cosmic Web theory we need to understand the re-
lation between gravitational tidal forces and the resulting deformation of the matter
distribution.

4.1 Anisotropic Collapse

The existence of the Cosmic Web is a result of this tendency of matter concentra-
tions to contract and evolve into anisotropic, elongated or flattened, structures. It is a
manifestation of the generic anisotropic nature of gravitational collapse, a reflection
of the intrinsic anisotropy of the gravitational force in a random density field.

Anisotropic gravitational collapse is the combined effect of internal and external
tidal forces. The internal force field of the structure hangs together with the flatten-
ing of the feature itself. It induces an anisotropic collapse along the main axes of
the structure. The resulting evolution can be most clearly understood in and around
a density maximum (or minimum) ¢, to first order corresponding to the collapse of
a homogeneous ellipsoid (Icke, 1973; White & Silk, 1979; Bond & Myers, 1996a;
Eisenstein & Loeb, 1995; Desjacques, 2007). The external *background’ force field
is the integrated gravitational influence of all external density features in the Uni-
verse, as such a manifestation of the inhomogeneous cosmic matter distribution. For
most situations the role of the large scale tidal forces in the early phases of the col-
lapse of a feature — the evolutionary phase in which most elements of the cosmic web
reside — may be succesfully described by the Lagrangian Zel’dovich formalism (Zel-
dovich, 1970).

The peakpatch formalism embeds the anisotropic tendency of gravitational col-
lapse within the context of a hierarchical mass distribution. It achieves this by com-
bining the nonlinear internal evolution of a particular region in the cosmic mass
distribution, and modelling this by means of the homogeneous ellipsoid model, with
a reasonably accurate description of the large-scale external tidal influence in terms
of the Zel’dovich approximation (Bond & Myers, 1996a; Sheth et al., 2001).

4.2 Force Field and Displacement
For the description of the dynamical evolution of a region in the density field - a
patch- it is beneficial to make a distinction between large scale “background” fluctu-
ations Jy, and small-scale fluctuations oy,

0(x) = op(x) + 6¢(x), (42)

in which

dk .
5% = f G B0 Wi Ry

dk .o
Op(X) = f 2 o(k) Wy (k; Rp) (43)
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Wf*(k; Rp) is a high-pass filter which filters out spatial wavenumber components
lower than k < 1/R. Wg(k;Rb) is the compensating low-pass filter. The small-scale
fluctuating density field dy exclusively contributes to the internal evolution of the
patch. Predominantly made up of spatial wavenumber components higher than 1/R;,
it determines the substructure within the patch, sets the corresponding merging times
while influencing the overall collapse time of the mass element (see fig. 22). For our
picture to remain valid the scale R; of the smooth large-scale field should be cho-
sen such that it remains (largely) linear, i.e. the r.m.s. density fluctuation amplitude
0o(Rp, 1) < 1. Note that the smooth large-scale field 6}, also contributes to the total
mass content within the patch.

The small-scale local inhomogeneities induce small-scale fluctuations in the
gravitational force field, g¢(x). To a good approximation the smoother background
gravitational force g,(x) (see eq. 2 in and around the mass element includes three
components (excluding rotational aspects). The bulk force gy(xpx) is responsible for
the acceleration of the mass element as a whole. The divergence (V - gy) encapsulates
the collapse of the overdensity while the tidal tensor quantifies its deformation,

3

1
8i(X) = gb,i(Xp) + a Z {g(v - 8p)(Xpk) Gij — Tb,ij}(xj = Xpkj) - (44)
=)

The tidal shear force acting over the mass element is represented by the tidal tensor
T;j,

1 0 i ng 1
Toij = —5— { 8bi —J} + %(V'gb)(sij

2a | O0x; Ox;j
(45)
1 &y 3
= — - ZQH?5,(x) 6y, 46
2 ox; 6xj 3 b(X) i (46)

in which the trace of the collapsing mass element, proportional to its overdensity Jy,
dictates its contraction (or expansion).

The force field induces displacements of matter in and around the mass element.
The resulting displacement s(q, 7) consists of a superposition of the small-scale and
smooth large-scale contributions, sy and s;,: matter initially at a (Lagrangian) position
q moves to a location x(q, ),

x(q,7) = q + s(q,0) = q + sp(q,?) + s¢(q, 7). 47)

The smooth large-scale displacement field sy, in and around the patch includes a bulk
displacement s, and a deforming strain &, jj,

3
/(@D ~ S + Y Epki (@ = ki) i=1,...3. (48)

=1

The bulk displacement of the (mass) center of the peak



36 Rien van de Weygaert & J. Richard Bond

Spk = So(dpk) » (49)

specifies the movement of the mass element as a whole. The large-scale strain field
&p,jj at the location of the patch, Epii = Epij(gpr),

1 (Osp;  Osbj
Enii(@) = 5 { a;} + aq;}m). (50)

embodies the (gravitationally induced) deformation, in volume and shape, of the
mass element,

, 1
Epkij = Eppii + g(V'Sh)(ka) 0j - (51)

The peak strain’s trace (V - s,)(qp) quantifies the shrinking volume of the mass
element while the tensor S;k!ij embodies the - mostly externally induced - anisotropic
deformation of the region.

The source for the external deformation S;t’i. is the external tidal field Ty ;. In
the early phases of gravitational collapse the role of the large scale tidal forces is
succesfully framed in terms of the by Zel’dovich formalism (Zeldovich, 1970). The
internally induced deformation, a reaction to the nonspherical shape of the mass

element, will rapidly enhance along with the nonlinear collapse of the peak.

4.3 Zel’dovich approximation

In a seminal contribution Zeldovich (1970) found by means of a Lagrangian per-
turbation analysis that to first order - typifying early evolutionary phases - the reac-
tion of cosmic patches of matter to the corresponding peculiar gravity field would
be surprisingly simple. The Zel’dovich approximation is based upon the first-order
truncation of the Lagrangian perturbation series of the trajectories of mass elements,

x(q,) = q + xq.0) + xPq,0) + ..., (52)

in which the successive terms x™ correspond to successive terms of the relative dis-
placement [0(x — q)/dq]|,

axV

oq

ox®
dq

ax?

1 >
oq

> ..., (53)

and embodies the solution of the Lagrangian equations for small density perturba-
tions (62 < 1). Assuming irrotational motion, in accordance with linear gravitational
instability, and restricting the solution to the growing mode leads to the plain ballistic
linear displacement of the Zel’dovich approximation,

X =q - D0 V¥q = q- DO yYq). (54)

dictated by the Lagrangian displacement potential ¥(q) and its gradient, the Zel’dovich
deformation tensor ¥,,. The path’s time evolution is specified by the linear density
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growth factor D(a) (Peebles, 1980) (eqn. 14). An essential aspect of the Zel’dovich
approximation is the 1 — 1 relation between the displacement potential ¥(q) and the
(primordial, linearly extrapolated) gravitational potential &(q, t)

Y(q) = do(q), (55)

— = ¥, =
3DH*Q @

3H; Q
where @, is the linearly extrapolated gravitational potential at the current epoch
(a=1). The tensor ¢y, directly related to the strain tensor Eyy = D(#)Ymn, describes
the deformation of the mass element,
2 FP 2 . 1 .
= = Tom + =QH*56
Y = SO 94n 04, 3QH2a( ™2 m)

(56)

m Tmn,O + %50 6mn

The relation establishes the intimate connection between the deformation of an ob-
ject and the tidal shear field Ty, expressed in terms of the linearly extrapolated pri-
mordial values of these quantities, 7, and 6. These evolve according to 8(¢) oc D(f)
and Ty, o D/a>. On the basis of this relation we immediately see that the (linearly
extrapolated) tidal shear field Ty, is directly related to the traceless strain tensor &/,

- 1.
Tin(®) = 4ﬂGpu(t) {amn - géémn} = 477Gpu(t) 8;nn (57

Anisotropic Zel’dovich Collapse

The resulting (mildly nonlinear) local density evolution is entirely determined by the
eigenvalues A1, A, and A3 of the deformation tensor {y,, ordered by A3 > A, > 1),

-1 -1

ox

px.n _ ||0x
oq

Pu

6mn - D(t)lﬁmn

1
= s 58
(1= DO = DO = D] (>8)

where p(x, 7) is the local density at time ¢ and p,(#) the global (FRW) cosmic den-
sity. Dependent on whether one or more of the eigenvalues A; > 0, the feature will
collapse along one or more directions. The collapse will proceed along a sequence
of three stages. First, collapse along the direction of the strongest deformation A3.
If also the second eigenvalue is positive, the object will contract along the second
direction. Total collapse will occur only if 4; > 0.

The time sequence of four frames in Fig. 10 portraits the success, and shortcom-
ings, of the Zel’dovich scheme. The four frames reveals the gradual morphological
procession along pancake and filamentary stages. A comparison with the results of
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Fig. 10. Zel’dovich displaced particle distributions inferred from a unconstrained random real-
ization of a primordial matter distribution for a SCDM cosmological scenario in a 504~ Mpc.
Time sequence from top left to bottom right, frames corresponding to cosmic epochs a =
0.10,0.15,0.20 and 0.25.

full-scale N-body simulations shows that in particular at early structure formation
epochs the predicted Zel’dovich configurations are accurately rendering the non-
linear matter configurations. The spatial configurations predicted by the Zel’dovich
approximation form a reasonably accurate approximation to the linear and mildly
nonlinear phases of structure formation. The approximation breaks down when the
orbits of migrating matter elements start to cross. Towards this phase the linearly ex-
trapolated gravitational field configuration no longer forms a reasonable reflection of
the genuine nonlinear gravitational field. The self-gravity of the emerging structures
becomes so strong that the initial “ballistic” motion of the mass elements will get
seriously altered, redirected and slowed down.
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4.4 Ellipsoidal Collapse

Full-scale gravitational N-body simulations, and/or more sophisticated approxima-
tions, are necessary to deal self-consistently with more advanced nonlinear stages.
While the Zel’dovich approximation is relatively accurate in describing the large-
scale “background” induced deformation of mass elements, the internal evolution
of a mass element quickly assumes a highly nonlinear character and will strongly
amplify the externally induced anisotropic shape. Aspects of the subsequent evolu-
tion and anisotropic collapse can be reasonably approximated by the homogeneous
ellipsoid model.

Quintessential is the observation that gravitational instability not only involves
the runaway gravitational collapse of any cosmic overdensity, but that it has the ad-
ditional basic attribute of inevitably amplifying any slight initial asphericity during
the collapse.

The Ellipsoidal Approximation

The Homogeneous Ellipsoidal Model assumes a mass element to be a region with a
triaxially symmetric ellipsoidal geometry and a homogeneous interior density, em-
bedded within a uniform background density py,.

The early work by Icke (1972, 1973) elucidated the key aspects of the evolution
and morphology of homogeneous ellipsoids within an expanding FRW background
Universe, in particular the self-amplifying effect of a collapsing and progressively
flattening isolated ellipsoidal overdensity. Translating the formalism of Lynden-Bell
(1964) and Lin, Mestel & Shu (1965) to a cosmological context he came to the con-
clusion that flattened and elongated geometries of large scale features in the Universe
should be the norm. White & Silk (1979) managed to provide an elegant analytic ap-
proximation for the evolution of the ellipsoid that is remarkably accurate. However,
these early studies did not reduce, as they should, to the Zel’dovich approximation
in the linear regime. Bond & Myers (1996a); Eisenstein & Loeb (1995) emphasized
that this was because they either ignored any external influences or because they did
not include the effects of the external tidal (quadrupolar) influences self-consistently.
Once these effects are appropriately included the resulting ellipsoidal collapse model
is indeed self-consistent. (See also the recent detailed study of (Desjacques, 2007) of
the environmental influence on ellipsoidal collapse).

For moderately evolved structures such as a Megaparsec (proto)cluster the ellip-
soidal model represents a reasonable approximation at and immediately around the
density peak. In the case of highly collapsed objects like galaxies and even clusters of
galaxies it will be seriously flawed. One dominant aspect it fails to take into account
are the all-important small-scale processes related to the hierarchical substructure
and origin of these objects. Nonetheless, the concept of homogeneous ellipsoids has
proven to be particularly useful when seeking to develop approximate yet advanced
descriptions of the distribution of virialized cosmological objects within hierarchical
scenarios of structure formation (Bond & Myers, 1996a; Sheth et al., 2001; Shen et
al., 2000).
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Fig. 11. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio a; :
a, 1 a3 = 1.0 : 0.9 : 0.9, embedded in an Einstein-de-Sitter background Universe. The
two frames show a time sequel of the ellipsoidal configurations attained by the object, starting
from a near-spherical shape, initially trailing the global cosmic expansion, and after reaching a
maximum expansion turning around and proceeding inexorably towards ultimate collapse as a
highly elongated ellipsoid. Left: the evolution depicted in physical coordinates. Red contours
represent the stages of expansion, blue those of the subsequent collapse after turn-around.
Right: the evolution of the same object in comoving coordinates, a monologous procession
through ever more compact and more elongated configurations.

In many respects the homogeneous model is a better approximation for under-
dense regions than it is for overdense ones. Overdense regions contract into more
compact and hence steeper density peaks, so that the area in which the ellipsoidal
model represents a reasonable approximation will continuously shrink. By contrast,
for voids we find that the region where the approximation by a homogeneous ellip-
soid is valid grows along with the void’s expansion. While voids expand their interior
gets drained of matter and develops a flat “bucket-shaped” density profile: the void’s
natural tendency is to evolve into expanding regions of a nearly uniform density. The
approximation is restricted to the interior and fails at the void’s outer fringes because
of its neglect of the domineering role of surrounding material, such as the sweeping
up of matter and the encounter with neighbouring features.

Ellipsoidal Gravitational Potential

The model describes the evolution of a homogeneous ellipsoidal region with a triax-
ially symmetric geometry, specified by its principal axes C(f), C»(¢) and C3(¢). The
ellipsoid has a uniform matter density p(), and density excess 6(f).

In the presence of an external potential contribution the total gravitational poten-
tial @) (r) at a location r = (|, r2, r3) in the interior of a homogeneous ellipsoid
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may be decomposed into three separate (quadratic) contributions,
P (r) = P, (r) + D (r) + P(r). (59)

A necessary condition for the ellipsoidal formalism to remain self-consistent is that
each of the three separate contributions retains a quadratic form. Higher order contri-
butions, also of the external potential, are ignored. The three separate contributions
are:

e Homogeneous Cosmic background
The potential contribution of the homogeneous background with universal density

ou(D),

2
D,(r) = EﬂGpu (r% + r% + r%) . (60)

e [nternal Ellipsoidal Potential
The interior ellipsoidal potential @ (r), superimposed onto the homogeneous back-
ground,

: 2 1 :
@) = 3nGpu 6@ (r} + 75+ 1) + 5 D Tl i

in which T,(r’;’f) are the elements of the traceless internal tidal shear tensor. The
quadratic expression for @ assumes a simplified form in the coordinate system
defined by the principal axes of the ellipsoid.

"(r) = 71Gpu§ ) awr, (61)

where the coefficients a,(7) are

00

da

. (62)
o R0+ [ (Ro+a)"”

am(®) = Ri(OR(DR3(1) f

The Poisson equation implies the a,,’s obey the constraint anzl @y = 2. In the case
of a spherical perturbation all three a,,’s are equal to 2/3, reproducing the well-
known fact that it does involve a vanishing internal tidal tensor contribution,

. P ] ) 2
T(lm) = — = _V2®(ml) mn — 2 u m= 3 mn -
L T 0 G pud(D) \an = 3]0

o External Tidal Influence

The external gravitational potential @“*), Assuming that the external tidal field does
not vary greatly over the expanse of the ellipsoidal mass element, we may limit the
external contribution to its quadrupolar components,

1
) = 2 > T rara. (63)

m,n
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are the components of the external (traceless) tidal shear tensor. By default the

latter is limited to its traceless contribtuion, the corresponding (background) density
is implicitly included in the (total) internal density, p,(£)(1 + 8(¢)).

The external field is taken to be the smooth large-scale tidal field 7', 1, The latter
is directly related to the traceless large scale (background) strain tensor (eq. 57), with
eigenvalues 7, given by (see eq. 71),

where A;,, are the eigenvalues of the background anisotropic strain tensor 8;},c j atthe

Tm = 4nGp,(1) A, (1) . (64)

location of the mass peak.
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Fig. 12. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio a; : a; :

as

= 1.0 : 0.8 : 0.6, in an Einstein-de-Sitter background Universe. Left: expansion factors

for each individual axis; right: axis ratios a,/a; and as/a;. The ellipsoid axes are depicted
as red curves. For comparison, in blue, the evolution of an equivalent homogenous spherical
overdensity.

Ellipsoidal Evolution

The anisotropy of an initially spherically symmetric matter element in the primordial
cosmic matter distribution is a direct effect of the external tidal force field. As a result
the principal axes of the configuration are the ones defined by the external tidal tensor
Tfrff). Both the external large-scale tidal forces inducing the anisotropic collapse and
the resulting internal one do strongly enhance the anisotropic shape of the ellipsoid.

The evolution of the ellipsoid is specified by three scale factors R;, one for each

of the three principal axes. The boundary of the ellipsoid and the overdensity evolve

as

0.8

0.6

0.4

0.2
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(13

RRR; |
in terms of the initial (Lagrangian) radius R . The evolution of the scale factors R;
are determined by the gravitational acceleration along each of the principal axes (see
eq. 59). Including the influence of the cosmological constant A, this translates into

Ci() = RORp,  6(1) = (65)

d*Rn
dar*
with an () the ellipsoidal coefficients specified by the integral eqn. 62 and 7, the
eigenvalue of the external (large-scale) tidal shear tensor T,(If,f’).

The collapse of the three axes of the ellipsoid will happen at different times.
The shortest axis will collapse first, followed by the intermediate axis and finally
by the longest axis. The shortest axis will collapse considerably faster than that of
the equivalent spherically evolving perturbation while full collapse along all three
axis will be slower as the longest axis takes more time to reach collapse. In fact, the
longest axis may not collapse at all. An illustration of this behaviour can be found
in figure 4.4. It shows the evolution of a slightly overdense isolated ellipsoid, with
initial axis ratios a; : a; : a3 = 1 : 0.9 : 0.8, embedded in a background Einstein-de
Sitter Universe. Quantitatively the expansion and subsequent contraction of each of
the three axes can be followed in fig. 4.4. The superimposed blue curve represents
the evolution of the equivalent spherical overdensity. The righthand frame shows that
this development involves a continuous decrease of both axis ratios.

1
2

= —47Gpu(0) % + = (- %)5 R — T R + ARm.  (66)

4.5 Ellipsoidal Collapse and External Influences

In order to properly model the nonlinear collapse of the features in the Cosmic Web it
is essential to embed the nonlinear anisotropic collapse of mass elements within the
large-scale environment. A proper approximation, following Bond & Myers (1996a),
is that of assuming the large-scale tidal influence to be largely linear and assuring
that the initial conditions for the ellipsoid asymptotically approach the Zel’dovich
equation,

Rm(t) = a(®) {1 — D) An}
(67)

dRn
T(ti) = H{t)Rn(t) — a®)H®) f(Q) D) Am , .

in which A, are the eigenvalues of the Zel’dovich deformation tensor ¥y, and D(t)
is the linear density growth factor and f(£2) the corresponding linear velocity factor
(Peebles, 1980).

By using the implied relation between the eigenvalues of the external tidal tensor
Tm and the large-scale tidal strain tensor &, (eqn. 64) the following equation of
motion is obtained,

d*Ren
dr

1
2

146 2
= —47Gpu() % + 5@ =)0 + L | R + ARy (68)
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HOMOGENEOUS ELLIPSOID DYNAMICS

| with Linear External Tides
(for F=2,p,=0,EdeS)

o
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Fig. 13. The collapse redshifts for the three ellipsoidal axes of the initial external tidal shear
ellipticity e,, assuming zero prolaticity p,, a linear extrapolated density 6o = 2 and a linear
external tide approximation (eqn. 68). The dashed curve shows how poorly the Zeldovich
approximation fares: only for the extreme elongations does it get the collapse redshift along
the third axis right, while it is far off for the other two directions. Also shown, by dotted
lines, are the redshifts at which an equivalent spherical overdensity reaches overdensity 170
(upper dotted line) and complete collapse (lower dotted line). From Bond & Myers 1996a.
Reproduced with permission of AAS.

While the smooth large-scale tidal field induces the anisotropic collapse of the mass
element, the subsequent nonlinear evolution differs increasingly from the predictions
of the linear Zel’dovich formalism (eqn. 58). As can be seen in Figure 13 for nearly
all conceivable (external) tidal shear ellipticities the nonlinear ellipsoidal collapse in-
volves a considerably faster collapse along all three axes of an ellipsoid than that fol-
lowing from the Zeldovich approximation (eqn. 58). Only for extremely anisotropic
tidal configurations the Zel’dovich formalism would find the same collapse time for
the longest axis of the mass element.
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4.6 Primordial Structural Morphology

The values of the (Zeld’ovich) deformation eigenvalues 4,;, 4,» and 4,3 basically
determine the (asymptotic) morphology of the resulting features, roughly along the
lines specified in table 1: they function as cosmic shape parameters.

Structure eigenvalue signatures
Peak 1>0; 2,>0; 23>0
Filament A1>0; 1,>0; A13<0
Sheet A1>0; 1, <0; A13<0
Void A1<0; <03 A3<0

Table 1. Asymptotic Morphology: deformation eigenvalue conditions for different asymptotic
structural morphologies in the Cosmic Web.

To get insight into the prevailing morphology in the cosmic matter distribution it
is necessary to assess the statistical and spatial distribution of the shear eigenvalues.
This will determine the overall morphology and geometry of the cosmic density field
at the “quasi-linear” stage — i.e. the prominence of mutually interconnected flattened
structures, denser elongated filaments and dense compact clumps.

The first assessment of the statistical properties of the deformation tensor in a pri-
mordial Gaussian random density fluctuation field is the seminal study by Doroshke-
vich (1970). He derived the (unconditional) pdf for the eigenvalues 4, A, and A3,

P(A1,22,3) ~ (41 = )41 — A3)(A2 — A3)

*P 207

1
B+ 3+25- E(Mq + 40+ 1243)}} . (69)

This yields a probability of 8% that all of the eigenvalues are negative, 4; < Ay <
A3 < 0, predisposing the formation of a void. The probability that matter elements
have one or more positive eigenvalues is filament-dominated weblike morphology
is the generic outcome during the moderate quasi-linear evolutionary phase for any
scenario with primordial Gaussian perturbations marked by relatively strong pertur-
bations on large scales. The signs of the eigenvalues will determine the (asymptotic)
local geometry along the lines specified in table 1.

For the purpose of understanding the geometry of large scale structure we also
should take note of the fact that the values of the deformation tensor eigenvalues are
directly constrained by the local density,

5 = (lvl + Ay + /lVB) P (70)
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in which § is the (linearly extrapolated) initial density contrast. In other words, when
we see a supercluster or other interesting feature we should assess the conditional
probability of the shape parameters for the relevant range of density values. To this
end it is helpful to introduce the shear ellipticity e, and shear prolateness py (see
Bardeen et al., 1986; Bond & Myers, 1996a),

/lvl - /lv3 _ /lvl - 2/lv2 + /lv3

by = ———

2 Zi Avi , = 2 Zi Ayi .

By implication e, and py are constrained to e, > 0 and —e, < p, < e,. The evolution
of a patch is spherically symmetric when the shear is isotropic (1y3 = Ay = 4y1), ie.
when e, = py = 0. When the collapse is predominantly along one axis (43 > 0, 4y2 ~
Ay1 < 0), the initial evolution is towards a classical pancake by e, = p,. When a
second axis is also collapsing (1y3 ~ Adyzs > 0,4y < 0) the result is filamentary,
ey = —py. In other words, extreme sheet-like structures would have p, = ey, extreme
filaments p, ~ —ey.

Via the quantities e, and p, we may get an idea of the prominence of filamentary
and sheetlike structures in the cosmic matter distribution by assessing their condi-
tional distribution in the primordial density field for a given 6 = v 0. The combined
statistical distribution P(ey, py|vy) of ey and p, and of the prolaticity, P(py|vy), at an
arbitrary field location with density are (Wadsley & Bond, 1996; Bond, 2006),

P({Ay1, Av2, /lv3}|vf) = P(ev,th’f)
_225%5
V2

Fig. 14 shows the iso probability contours of P(ey, pylvy) for a set of 6 different
vr values. It manifestly demonstrates the distinct tendency of overdense regions, in
particularly those of moderate density, to be filamentary: py < 0 or, equivalently,
eigenvalue signature (1;, Ay, A3) = (— + +). The figure also underlines the fact that
higher peaks tend to be more spherical. This may be quantitatively appreciated from
the corresponding expectation values for the the ellipticity and prolaticity of an ar-
bitary field patch with local density 6 = vyo (Bond, 2006),

(71)

_ 2 _ 2
ev(el = pyvie 0T 22300 2 ey dp, . (72)

(evlvy,field) ~ 0.54v;';  de, ~ 0.18v,",
(73)
(pvllvs.field) = 0.18v,';  Ap, ~ 0.22v',

which express the strongly declining nature of ellipticity and prolateness as a func-
tion of patch density.

The gross properties of the Cosmic Web may therefore already be found in the
primordial density field. In this light it is particularly illuminating to study the dis-
tribution of the deformation eigenvalue signatures as a function of density threshold
vy = 0r/o. Fig. 15 looks at two aspects of this question (Pogosyan et al., 1998). The
dependence of structural morphology on the density threshold is given by the prob-
ability of the eigenvalue signature on the threshold ¢ = vo, P(sign|d). The left panel
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Fig. 14. The 95%, 90% and 50% contours of the conditional probability for ellipticity e, and
prolateness p, subject to the constraint of a given field density value v = §/0. The figure
demonstrates that even for high v the shapes are triaxial and that for lower density values there
is a tendency towards filamentary configurations.

of Fig. 15 shows that for Gaussian fields at overdensties above a critical § = 1.560
one encounters predominantly spherical-like mass concentrations (+ + +). By con-
trast, at lower density contrast 0 < 6 < 1.5607, most of the initial density enhance-
ments are in elongated filamentary bridges (— + +). Planar configurations (- — +)
are less likely for any positive overdensities 6 > 0. The related quantity P(d|sign)
gives us the density distribution within different types of structure. While the aver-
age density of the filaments in the initial configuration is equal to 6 = 0.60, it is
the 6 ~ 1.5 — 20 excursions which are precursors of the rare prominent filaments.
By contrast, rare planar membrane-like configurations are expected only at lower
overdensities of § ~ 0.5 — lo. Mean densities for the given shear signatures are
(0) = 1.660,0.60 , —0.60, with dispersion 46 = 0.55¢0.

4.7 Evolving Filamentary Morphology

Evidently, the primordial density field analysis only provides a superficial impres-
sion of the emerging morphology of the Cosmic Web. What it does emphasize, and
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Fig. 15. Left panel: probability of the eigenvalue signature given the overdensity threshold
P(sign|v), v = 6/0. Right panel: density distribution given the signature type of shear tensor,
P(v|sign). From: Pogosyan et al. 1998.

strongly so, is the prevalence of proto-filaments and protoclusters in the primordial
density field.

This impression will only become more pronounced as nonlinear evolution sets
in. The salient filamentary nature of the nonlinear mass distribution seen in large
N-body simulations (see e.g. fig. 1) can already be noticed when following the early
nonlinear evolution by means of the Zel’dovich mapping (eqn. 54). A telling illus-
tration of this can be seen in fig. 16. The left panel shows an initial linear CDM
overdensity field §; smoothed on a Gaussian scale R, = 3.5h~'Mpc, with o, = 0.65.
The chosen density threshold is 6; = 1o, the level at which 6;(r) percolates. The
right panel shows dz(r, ), the overdensity of the resulting Zel’dovich map at a con-
tour threshold ¢ = 2, just above where percolation occurs.

The Zel’dovich map in fig. 16, evolved to og = 0.7, clearly shows the dominant
filamentary morphology. It disproves the conventional tenet of pancakes represent-
ing the dominant overdensity features. Also, it underlines the observation that the
prominent filaments already existed in an embryonic - and fattened - form in the
initial conditions. As the nonlinear evolution proceeds the cluster regions will col-
lapse even further and occupy even less volume. This will enhance the filamentary
character of the cosmic matter distribution even further.

Having argued and illustrated the principal filamentary nature of the Cosmic
Web, largely on the basis of a local evaluation of the deformation eigenvalues, we
need to assess the apparent coherence of these weblike structures and their mutual
relationship. Their overall geometry and topology can be understood by adressing
the relationship between the local values of the deformation tensor, responsible for
the local morphology, and the global density field.

This makes it necessary to turn to the concept of conditional multi-point cor-
relation functions in Lagrangian space (also see Bond (2006b)), ie. the statistically
averaged density and displacement fields subject to various constraint on the (tidal)
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Fig. 16. Cosmic Web and Clusters. (Mean) constrained density field reconstructions
(6L120peaks) on the basis of the 20 most massive cluster peaks (patches) in a CDM density
field in a (50h~'"Mpc)® box with periodic boundary conditions. Lefthand: initial linear CDM
overdensity field d,(r), smoothed on a Gaussian scale Rz = 3.5h 'Mpc with (iso)density
threshold level 6; = 1o, with o, = 0.65, the level at which ¢, percolates. The location,
size and shape of the cluster patches is indicated by means of the black ellipsoids, whose size
is proportional to the peak scale R, and orientation defined by the shear tensor orientation.
Righthand: the corresponding Zel’dovich map density field 6, of the smoothed initial condi-
tions at a contour threshold 6, = 2. Based on Bond, Kofman & Pogosyan 1996. Reproduced
with permission of Nature.

shear at multiple points in the cosmic volume. The mathematical language needed
for evaluating the implied “protoweb” in the initial density field is that of constrained
random field theory, first introduced by (Bertschinger, 1987). In the next section 4.8
we will describe this formalism in some necessary detail.

4.8 Constrained Random Field Formalism

A major virtue of the constrained random field construction technique (Bertschinger,
1987; Hoffman & Ribak, 1991; Sheth, 1995; van de Weygaert & Bertschinger, 1996)
is that it offers the instrument for translating locally specified quantities to the corre-
sponding implied global matter distribution.

Bertschinger (1987) described how a set I” of functional field constraints C;[ f] =
ci, (i=1,..., M) of a Gaussian random field f(r, #) would translate into field config-
urations for which these constraints would have the specified values c;. Any such con-
strained field realization f, can be written as the sum of a mean field f(x) = (f(X)|I"),
the ensemble average of all field realizations obeying the constraints, and a residual
field F(x), embodying the field fluctuations characterized and specified by the power
spectrum P(k) of the particular cosmological scenario at hand,
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fe®) = fx) + F(x) (74)

Bertschinger (1987) showed the specific dependence of the mean field on the nature
C;[f] of the constraints as well as their values c;. In essence the mean field can be
seen as the weighted sum of the field-constraint correlation functions &;(x),

&i(x) = (fC) (75)

(where we follow the notation of Hoffman & Ribak (1991)). Each field-constraint
correlation function encapsulates the repercussion of a specific constraint C;[ f] for a
field f(x) throughout the sample volume V. For example, the field-constraint corre-
lation function for a constraint on the peculiar velocity or gravity is a dipolar pattern,
while a tidal constraint T;; effects a quadrupolar configuration (see van de Weygaert
& Bertschinger, 1996).The weights for each of the relevant &;(x) are determined by
the value of the constraints, c,,, and their mutual cross-correlation &,,, = (C,,,C,),

fx) = & & ¢ (76)

In practice, it is usually beneficial to evaluate the constraint correlation function &;(r,
&i; and the mean field in Fourier space. For a linear cosmological density field with
power spectrum P(k) we have

dk .
i(r) = | — Hi(Kk) P(k) e
&i(r) f(27r)3 (k) P(k) e
7
ko
= | —H®HKP
&ij f(27r)3 i (K) H (k) P(k)

with H;(k) the constraint i’s kernel (the Fourier transform of constraint C;[ fDandc;
the value of this constraint.

The additional generation of the residual field F' is a nontrivial exercise: the
specified constraints translate into locally fixed phase correlations. This renders a
straightforward random phase Gaussian field generation procedure unfeasible: the
amplitude of the residual field is modified by the local correlation with the specified
constraints. Hoffman & Ribak (1991) pointed out that for a Gaussian random field
the sampling is straightforward and direct, which greatly facilitated the application
of CRFs to cosmological circumstances. This greatly facilitated the application of
CRFs to complex cosmological issues (Klypin et al., 2003; Mathis & White, 2002;
Romano-Diaz et al., 2007).

Van de Weygaert & Bertschinger (1996), following the Hoffman-Ribak formal-
ism, worked out the specific CRF application for the circumstance of sets of local
density peak (shape, orientation, profile) and gravity field constraints. With most
calculations set in Fourier space, the constrained field realization for a linear cosmo-
logical density field with power spectrum P(k) follows from the computation of the
Fourier integral

dk 132 N )
fx) = f [f(k)+P(k>H,-(k)f,-—,-1 (cj—gple™ (78)

@2n)?
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Fig. 17. Constrained primordial density field (6(r)|1;, 42, 43) as a function of distance r in
units of the filter scale Ry, in the three eigendirections. Left frame shear constraint signature
(+ + +). Right frame: shear constraint signature (— + +). The “filamentary” behaviour of the
density in the neighbourhood of the point manifests itself particularly in the density profile
along the x-direction (top curve). From: Pogosyan et al. 1998.

where the tilde indicates it concerns a regular unconstrained field realization f.

One of the major virtues of the constrained random field construction technique
is that it offers the instrument for translating locally specified quantities into the cor-
responding implied global matter distributions for a given structure formation sce-
nario. In principle the choice of possible implied matter distribution configurations is
infinite. Nonetheless, it gets substantially curtailed by the local matter configuration.
The influence of local constraints is set by the coherence scale of matter fluctuations,
a function of the power spectrum of fluctuations.

While the CRF formalism is rather straightforward for idealized linear con-
straints reality is less forthcoming. If the constraints are based on measured data
these will in general be noisy, sparse and incomplete. Wiener filtering will be able to
deal with such a situation and reconstruct the implied mean field, at the cost of losing
signal proportional to the loss in data quality (see e.g. Zaroubi et al. (1995)). A ma-
jor practical limitation concerns the condition that the constrained field is Gaussian.
For more generic nonlinear clustering situations the formalism is in need of addi-
tional modifications. For specific situations this may be feasible (Sheth, 1995), but
for more generic circumstances this is less obvious (however, see Jones & van de
Weygaert (2008)).

4.9 Shear Constraints

The Megaparsec scale tidal shear pattern is the main agent for the contraction of mat-
ter into the filaments which trace out the cosmic web (see fig. 19). For a cosmological
matter distribution the close connection between local force field and global matter
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Fig. 18. Constrained field construction of initial quadrupolar density pattern in a SCDM cos-
mological scenario. The tidal shear constraint is specified at the box centre location, issued on
a Gaussian scale of R = 2h~'Mpc and includes a stretching tidal component along the x- and
y-axis acting on a small density peak at the centre. Its ramifications are illustrated by means of
three mutually perpendicular slices through the centre. Top row: the “mean” field density pat-
tern, the pure signal implied by the specified constraint. Notice the clear quadrupolar pattern
in the y- and z-slice,directed along the x- and y-axis, and the corresponding compact circular
density contours in the x-slice: the precursor of a filament. Central row: the full constrained
field realization, including a realization of appropriately added SCDM density perturbations.
Bottom row: the corresponding tidal field pattern in the same three slices. The (red) contours
depict the run of the tidal field strenght |T'|, while the (green) tidal bars represent direction and
magnitude of the compressional tidal component in each slice (scale: Rg = 24~'Mpc). From
van de Weygaert 2002
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Fig. 19. The emergence of a filament in an SCDM structure formation scenario. Lefthand col-
umn: density/particle distribution in z-slice through the centre of the simulation box. Right-
hand column: the corresponding tidal field configurations, represented through the full tidal
field strength |T'| contour maps (red), as well as the corresponding compressional tidal bars
(scale: Rg = 2h~'Mpc). From top to bottom: primordial field, @ = 0.2 (visible emergence
filament), present epoch. Note the formation of the filament at the site where the tidal forces
peaked in strength, with a tidal pattern whose topology remains roughly similar. From van de
Weygaert 2002
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distribution follows from the expression of the tidal tensor in terms of the generating
cosmic matter density fluctuation distribution 6(r) (van de Weygaert & Bertschinger,
1996):

3QH? 3 =) =) - I =1 6] 1
Tij(r) = = f dr'6(r’){ Jlr’—JrIS ! —E.Qsz(r,t)é,-j.

Constrained random field realizations immediately reveal the nature of the density
field realizations 6(r) that would generate a tidal field T';; at particular location ry. The
effect of the local shear constraints on the density profile around a position ryp may be
seen in fig. 17. The shape of the density contours clearly depends on the signature of
the eigenvalues. The righthand frame does reveal an increase in the density along one
axis while falling off along the remaining two. This is symptomatic of filamentary
bridges that connect the higher density regions where the shape of the density profile
is more spherical. In effect, the local shear signature defines the curvature of the
density isocontours up to a distance of several filter radii R /*

Pursuing the filamentary configuration implied by the specified (— + +) signature
tidal shear, the 3-D density distribution around the location of the specified constraint
is shown in figure 19. The specified shear tensor is oriented along the box axes. The
field is Gaussian filtered on a (rather arbitrary) scale of 24~'Mpc. The implied mean
field f is shown in the 3 top panels. Each panel looks along one of the main axes.
The constraint clearly works out into perfect global quadrupolar mass distribution. A
representative realization of a quadrupolar (CDM) cosmic matter distribution which
would induce the specified shear is shown in the second row of panels.

The corresponding maps of the tidal shear in the same region are shown in the
bottom row. Included are contour maps of the total tidal field strength. Also we in-
clude bars indicating the direction and strength of the tide’s compressional compo-
nent> Along the full length of the filament in figure 19 we observe a coherent pattern
of strong compressional forces perpendicular to its axis.

Filaments and Peaks

The dynamical evolution in and around the (proto)filament is depicted in Fig. 19.
It shows the emergence of a (CDM) filament with the density/particle distribution
along the spine of the emerging filament (lefthand column) and the corresponding

* The information contained in the density curvature tensor itself is much more local and less
representative of the density behaviour at large distances from the constraint point.

> On the basis of the effect of a tidal field, we may distinguish at any one location between
“compressional” and “dilational” components. Along the direction of a “compressional”
tidal component 7', (for which 7. < 0.0) the resulting force field will lead to contraction,
pulling together the matter currents. The “dilational” (or “stretching”) tidal component T,
on the other hand, represents the direction along which matter currents tend to get stretched
as T, > 0. Note that within a plane, cutting through the 3-D tidal “ellipsoid”, the tidal field
can consist of two compressional components, two dilational ones or — the most frequently
encountered situation — of one dilational and one compressional component.
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Fig. 20. The relation between the cosmic web, the clusters at the nodes in this network and
the corresponding compressional tidal field pattern. It shows the matter distribution at the
present cosmic epoch, along with the (compressional component) tidal field bars in a slice
through a simulation box containing a realization of cosmic structure formed in an open,
Q, = 0.3, Universe for a CDM structure formation scenario (scale: Rg = 2h~'Mpc). The frame
shows structure in a 54~ Mpc thin central slice, on which the related tidal bar configuration is
superimposed. The matter distribution, displaying a pronounced weblike geometry, is clearly
intimately linked with a characteristic coherent compressional tidal bar pattern. From: van de
Weygaert 2002

tidal configuration (righthand column). The top row corresponds to the primordial
cosmic conditions, the central row to a = 0.2 and the bottom row to a = 0.8. At
a = 0.2 we recognize the first vestiges of an emerging filament, at a = 0.8 it has
indeed condensed as the most salient feature in the mass distribution. Also, we see
that the filament forms along the ridge seemingly predestined by the primordial tidal
configuration (fig. 20, 19).

The figure also clarifies the essence of the link between filaments and clusters. At
the tip of the evolving filament we observe the emergence of massive cluster patches.
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They naturally arise in and around the overdense peaks in the primordial quadrupolar
mass distribution implied by the tidal shear constraint. These overdense protoclus-
ters were the source of the specified shear. A quadrupolar matter configuration will
almost by default evolve into the canonical cluster-filament-cluster configuration so
prominently recognizable in the observed Cosmic Web.

The two main conclusion from these observations are the embryonic presence of
the weblike features in the primordial density field and the intimate link between the
cluster distribution and the filigree of filaments as most outstanding structural aspect
of the Cosmic Web (see fig. 20).

4.10 Nodes of the Cosmic Web: Peak Patches

Clusters represent the rare events in the cosmic matter distribution. In the above we
have established that they are the ultimate source for the anisotropic contraction of
filaments and form the nodes that weave the cosmic web throughout the Universe.

The study of local one-point shear constraints has lead to the conclusion that
filaments are indeed the naturally dominant structural feature in the cosmic matter
distribution. The remarkable size of the filaments is not, however, derivable from
constraints at a given single point. To learn more about the strength, structure and
connections of the weblike features we need to investigate their dependence on the
location, nature and structure of clusters. For this we need to turn to correlations
constrained by at least two rare peak-patches. In order to fully grasp their impact on
the overall morphology of the cosmic web we first need to delve into their internal
structure.

Clusters at any cosmic epoch are the product of a hierarchical buildup of structure
in and around the primordial protocluster, peaks in the primordial mass distribution.
In section 3.3 we have discussed in some detail how the anisotropic nature of col-
lapse of (sub)clumps can be included by means of a moving collapse barrier in a
local extended Press-Schechter description of hierarchical evolution. A more phys-
ical image would also try to take into account the matter distribution in and around
the primordial peak. This is achieved by the peak patch formalism of Bond & Myers
(1996a).

The peak-patch formalism exploits the full potential of the peaks formalism
(Bardeen et al., 1986) by using adaptive spatial information on both small and large
scales to construct the hierarchical evolution of collapsing protocluster peak patches.
The entire patch moves with a bulk peculiar velocity and is acted upon by external
tidal fields, determined by long-wavelength components of the density field.

Peak Patch: Hierarchical & Anisotropic Collapse

The formation of a cluster around an overdensity is approximated as the combination
of the linear evolution of a smooth large-scale background field and the coupled non-
linear evolution of the mass element itself, and its substructure. Clusters are identified
with the peaks in the primordial Gaussian field on an appropriately large smoothing
scale Rg. This scale is determined by filtering the field around a particular peak’s
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Fig. 21. The distribution of peak patches for a realization of a SCDM density field in a
1004~ Mpc box. The lefthand image is a slice through the 3-D matter distribution. The blobs
are collapsed peaks, their size related to their spatial extent/mass. Each patch is moved from
its Lagrangian position by means of the Zel’dovich formalism. The gray edges are the paths
followed by each of the patches. The bottom insert zooms in on one of the regions, offering a
more distinct impression of the size of each of the patches. Image courtesy of Erwin Platen.
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location over a range of radii. By means of the ellipsoidal collapse model, including
the influence of the external tidal field, the collapse time of the ellipsoidal configu-
ration is determined. At any one cosmic epoch the peak’s scale R is identified with
the largest scale R, on which, according to the homogeneous ellipsoidal model, it
has collapsed along all three dimensions.

The mass of the peak is

4
My = gnpucﬁ R,. (79)

Because the formalism works within the spatial mass distribution itself it allows the
identification and dissection of overlapping (collapsed) peak patches. Usually this
concerns peaks of a different scale. Small-scale peaks may be absorbed/merged with
larger peaks with which they largely overlap (half-exclusions). If they only partially
overlap, with their centers outside each others range, one may seek to define a proper
prescription to divide up the corresponding mass (binary exclusion/reduction). The
resulting mass spectrum of clumps adheres closely to the predictions of the extended
Press-Schechter formalism and to the results of N-body simulations.

A major virtue of the peak-patch formalism is that the spatial distribution of the
patches may be followed in time. Upon having identified the patches at their original
Lagrangian location, they are subsequently displaced towards their Eulerian position
(most conveniently by means of the Zel’dovich formalism). A typical result is shown
in fig. 21 (from Platen, van de Weygaert & Jones, 2008), a nice illustration of how
narrowly collapsed peaks trace the cosmic web.

Anatomy of a Peak

Following the differentiation between nonlinearly evolving short wavelength contri-
butions d¢(x) and linearly evolving long-wavelength contributions dy(x) (see eq. 42),
we can distinguish three contributions to a peak’s structure and dynamics,

6(x) = 0p(x) + Fy(x) + Fr(x)

6b(X) + Fp(x) + 6¢(x) (80)

One concerns the mean field structure op(x) of the cluster peak specified on a scale
R;, and formally corresponds to the ensemble average of all peaks with the specified
properties. Because the peak is embedded within a fluctuating (large-scale) field,
there is also a residual fluctuating large-scale contribution F,(x). In and around the
peak the latter is heavily affected by the peak’s presence in that it is hardly existent
or at least extremely quiescent in its neighbourhood. The internal substructure of the
peak patch mainly consists of the short wavelength contribution d¢(x). The latter is
hardly affected by the presence of the peak. While formally constrained by the peak’s
presence, the resulting residual contribution F(x) is mostly a pure unconstrained
Gaussian random field.

The individual components contributing to the total density field around a pri-
mordial cluster peak are shown in Figure 22 (from Bond & Myers (1996a)). The
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Fig. 22. The individual contributions to the structure (density field contours) and peculiar
velocity field (arrows) in and around a density peak. The first three panels show the (a) large-
scale mean field 6y, (b) the large-scale variance field Fy, which is extremely quiescent in the
neighbourhood of a peak, and (c) the small-scale field ;¢ responsible for subclumps within
the medium. Adding them altogether produces (d) the total field around the density peak. In
(a) and (b) the contours increase by factors of 2 from the minimum contour at f,/2, where
f- = 1.69 is the critical contour for spherical tophat collapse. The displacement arrows are
scaled for appearance, and only one in 12 are sampled. Panels (c) and (d) start at the f. contour
level for positive densities and at 2f. for negative ones. The peak was constrained to have
Vok = 2.45, ey px = 0.14 and v, 5 = 0.460, on a Gaussian smoothing scale of R = Sh’lMpc.
The circle at at 102" Mpc is the average R, associated with Gaussian peaks at this filter scale.
From: Bond & Myers 1996. Reproduced with permission of AAS.
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structure of the peak on a is shown by means of density field contours and pe-
culiar velocity field vectors. The peak’s structure was specified on a Gaussian
scale of Rz = 5h™'Mpc. The solid circle indicates the corresponding peak scale
R, = 10h~"Mpc. The overall triaxial structure of the peak is determined by the bakc-
ground mean field shown in the top lefthand panel. The velocity vectors delineate the
expected shear flow around the peak. Because the specified peak constraints essen-
tially fully specify the structure of the peak on the smoothing scale the background
variance field Fy(x) is extremely quiescent (top righthand frame). The small-scale
residual field (bottom lefthand frame) includes two subclumps, one of them rather
extended. Adding all components together yields the total structure in and around
the peak (bottom righthand frame).

The small-scale structure in and around the peak may vary considerably from
one realization to another even though the cluster’s large scale structure remains the
same. The global history and fate of the peak, however, are largely specified by the
large-scale anisotropic tidal shear and bulk flow.

4.11 Molecular View of the Cosmic Web

In the observed galaxy distribution “superclusters” are often filamentary cluster-
cluster bridges and the most pronounced ones will be found between clusters of
galaxies that are close together and which are aligned with each other. Very pro-
nounced galaxy filaments of which the Pisces-Perseus supercluster chain is a telling
example are almost inescapably tied in with a high concentration of rich galaxy clus-
ters. The Cosmic Web theory expands the observation of the intimate link between
clusters and filaments, described in some detail in Sec. 4.9, to a complete framework
for weaving the cosmic web in between the clusters in the cosmic matter distribution.

The Cosmic Web Theory

In the language of the crf formalism discussed in section 4.8 the filamentary bridges
in between two peak patches should be regarded as “correlation” bridges. The im-
plied constraint correlation function (or mean field) &;(r) = (d|2pks) defines a
protofilament, along the lines seen in fig. 18. These correlation bridges will be
stronger and more coherent as clusters are nearer than the mean cluster separation.
Because clusters are strongly clusters and statistically biased (Kaiser, 1984; Bardeen
et al., 1986) there are many cluster pairs evoking strong filamtary bridges.

The filament bridge will break if the separation of the clusters is too large, due
to diminishing amplitude of the correlation &;(r) = (J|2pks). Such clusters will be
isolated from each other, unless there is a cluster in between to which both have
extended their filamentary bridges. As a result, the typical scale of a segment of the
filamentary network in a CDM type scenario will be in the order of ~ 30h~'Mpc.

This brings us to the aspect of establishing the weblike network characterizing
the observed galaxy distribution and matter distribution in computer simulations.
Consider laying down the rare cluster peaks in the cosmic matter distribution ac-
cording to the clustering pattern of peak-patches which become clusters when they
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Fig. 23. Building the Cosmic Web with clusters. How adding clusters gradually defines the
details of the Cosmic Web. (Mean) Constrained density field reconstructions (6. |Npeaks) on
the basis of the N most massive cluster peaks (patches) in a CDM model of cosmic structure
formation. The volume is a (50h~'Mpc)® box with periodic boundary conditions. The lefthand
column frames contain the initial linear CDM overdensity field §,(r), smoothed on a Gaussian
scale Rg = 3.5k~ 'Mpc with (iso)density threshold level 6; = lo,, with o, = 0.65, the level at
which §;, percolates. The location, size and shape of the cluster patches are indicated by means
of the black ellipsoids, whose size is proportional to the peak scale R, and orientation defined
by the shear tensor orientation. The righthand column contain the corresponding Zel’dovich
map density field d; of the smoothed initial conditions at a contour threshold 6 = 2. Top row:
the constrained field (6,|5peaks) for 5 peaks, (6,.|10peaks) for 10 peaks and (6,|20peaks) for
20 peaks. Based on Bond, Kofman & Pogosyan 1996. Reproduced with permission of Nature.

evolve dynamically. The correlation bridges arche from cluster to cluster in much
of the domain, and tehse dynamically evolve to filaments, creating the network and
containing the bulk of the mass.

The order in which the physically significant structures arise is basically the in-
verse of that in the classical pancake picture: first, high-density peaks, then filaments
between them and, possibly, afterwards the walls. The latter should be seen as the
rest of the mass between the voids.

Outlining the Web

Fig. 23 convincingly demonstrates the viability of the cosmic web theory by illus-
trating the excellent reconstruction of the primordial density field implied by the
presence of a set of selected protocluster peaks. The figure concerns a CDM sce-
nario realization within a comoving region of 50h~!Mpc (the same box as in fig. 16).
Within this volume the peak patches are identified and rank-ordered in mass.

Of each peak patch the value of the overdensity, the shear tensor &;; and dis-
placement s; are measured, at their location r,; and averaged over the peak-patch
size R,;. In addition to the in total 9N constraints for N peak patches, the extremum
requirement of a vanishing density gradient V6, = 0 at rj; adds a further 3N con-
straints. On the basis of the selection of the N rarest and most massive peak patches
the mean (primordial) field realization is determined following the constrained field
formalism outlined in Sec. 4.8. The 12N peak constraints and the locations of the N
peaks result in a mean initial field (d;|Npeaks) (eqn. 76).

We compare the mean field realizations implied by the 5 most massive peak
patches, that by the 10 most massive peaks and for the 20 most peaks. In the boxes in
the lefthand column of fig. 23 we have indicated their locations by black ellipsoids
of overall size proportional to R and shape defined by the shear tensor orienta-
tion, with the shortest axis corresponding to the highest shear eigenvalue. The cor-
responding mean field density field is represented by isodensity contours at a level
6r = lo,, where 07 is smoothed on a scale of 3.5h’1Mpc. The righthand frames
show the Zel’dovich maps of these smoothed initial conditions.
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Fig. 24. Cluster Shear and the Cosmic Web. How cluster tidal shear defines the filigree of the
Cosmic Web. Comparison between a (mean) cosmic density field generated by the 10 most
massive cluster peaks with shear constraints (top show) and without shear constraints (bottom
row), for a CDM simulation in a (504~'Mpc)? box with periodic boundary conditions. Left
row: isodensity contours of the linear CDM overdensity field ¢, (r), smoothed on a Gaussian
scale Rg = 3.5h"'Mpc with (iso)density threshold level 6, = lo,, with o, = 0.65. The
location, size and shape of the cluster patches are indicated by means of the black ellipsoids,
whose size is proportional to the peak scale R, and orinetation defined by the shear tensor
orientation. The righthand column contain the corresponding Zel’dovich map density field 6
of the smoothed initial conditions at a contour threshold d; = 2. Both initial density field and
Zel’dovich map for the non-shear constraint situation (bottom row) do have a more bloblike
character, and does hardly contain the matter bridges characterizing the Cosmic Web. Based
on Bond, Kofman & Pogosyan 1996. Reproduced with permission of Nature.
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A comparison with fig. 16 shows the excellent reconstruction obtained by adding
in the 20 most massive peaks. Also we see that the reconstruction improves contin-
uously as more and more peaks are added. Some strong bridges seen in the 20 peak
reconstruction (d;|20pks) are not as evident in the (d.|10pks) field, although they
emerge at lower thresholds.

Web Bridges: Shear, Distance and Orientation

The observations discussed above show that a list of rank-ordered peak-patches is a
powerful way to maximally compress the information stored in the initial conditions.
They also show what is essential for defining structures on the basis of a modest set
of local measuremtns. That the specification of the tidal shear at the peak patches
is of fundamental importance for the succesfull reconstruction of the Cosmic Web
may be appreciated from fig. 23. By discarding the tidal shear measurements at the
peak patches and only taking into account their overdensity and velocity the implied
mean field loses its spatial coherence. Instead of being marked by strong filamen-
tary bridges the mean field will have a more patchy character. It demonstrates our
earlier arguments that the tidal shear evoked by the inhomogeneous cosmic mass
distribution is of crucial and fundamental importance in defining the Cosmic Web.

The strength and the coherence of the correlation bridges depend strongly on
the mutual distance of the clusters and their alignment. The strongest filaments are
between close peaks whose tidal tensors are nearly aligned. This may be inferred
from the illustration of the 2-point correlation function in fig. 25: a binary molecule
image with oriented peak-patches as the atoms. The initial conditions in this figure
have been smoothed and Zel’dovich mapped, producing a telling illustration of the
molecular picture of large scale structure.

The bridge between two clusters will gradually weaken as the separation between
the clusters increases. Strong filaments extend only over a few Lagrangian radii of the
peaks they connect. It is in the nonlinear mass distribution that they occur so visually
impressive because the peaks have collapsed by about a factor 5 in radius, leaving the
long bridge between them, which themselves have also gained more contrast because
of the decreases in its transverse dimension.

Another important factor influencing the coherence and strength of the connect-
ing filamentary bridges are the mutual alignments between the shear tensors of the
cluster peaks. When we vary the shear orientation from perfect alignment towards
misalignment the strong correlation bridge between two clusters will weaken ac-
cordingly. The top two panels of fig. 25 show the difference as two peaks, of equal
mass and orientation, are oriented differently. In the lefthand panel they are perfectly
aligned, evoking a strong filamentary bridge in between them. When the same clus-
ters are somewhat misaligned, each by +30° with respect to their connecting axis,
the bridge severely weakens. The bridge would break at an isodensity level of §; = 1,
althougn it would remain connected at a lower level, for a misalignment of ~ +45°.
In the most extreme situation of a misalignment by +90° the bridge would be fully
broken, no filament would have emerged between the two clusters. The reason for
the strong filaments between aligned peaks is that the high degree of constructive
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Fig. 25. The molecular picture of large scale structure: “bonds” bridging clusters. Shown are
isodensity contours of the Zel’dovich map of the smoothed initial density field. The upper
panels show a two-point mean (constrained) field (d,|2peaks) constrained by two oriented
clusters separated by 40h~'Mpc. Left one is fully aligned, the right pair is partially aligned.
The next four panels show three-point (middle row) and four-point mean fields for different
peak-patch orientations taken from the simulation. Notice the lower density contrast webbing
between the filaments. From Bond et al. 1998.

interference of the density waves required to make the rare peak-patches, and to
preferentially orient them along their connecting axis leads to a slower decoherence
along that axis than along the other axes. This in turn corresponds to a higher density.

Important for the overall weblike structure in the matter distribution is the fact
that there is a distinct tendency of clusters to be aligned with each other. The align-
ment of the orientations of galaxy haloes and clusters with larger scale structures
such as clusters, filaments and superclusters have been the subject of numerous stud-
ies (see e.g. Binggeli, 1982; Bond, 1987; Rhee et al., 1991; Plionis & Basilakos,
2002; Basilakos et al., 2006; Trujillo et al., 2006; Aragén-Calvo et al., 2007; Lee &
Evrard, 2007; Park & Lee, 2007b; Lee et al., 2007). The peak-patch theory (Bond &
Myers, 1996a) offers a natural explanation for these alignments by showing that it
is statistically likely that, given a specific orientation of the shear tensor for a clus-
ter peak, neighbouring cluster peaks will be aligned preferentially along its axis and
have shear tensors aligned with it.

Walls and Voids

Upon expanding our inspection in fig. 25 from 2-peak correlations to three-point and
four-point mean fields we see the emergence of low density contrast webbing be-
tween the filaments, membrane-like sheets. Stronger membranes will be seen in the
regions between the filaments when a number of clusters is close together. Although
these are sheetlike structures they are not the classical pancakes. In the molecular
view of cosmic structure formation the walls are a mere secondary product.

Voids also do play a significant role in the cosmic web. The formalism is sim-
ilar, be it reversed, when concentrating on the voids. Void patch constraints create
high mean field regions in between them, just where less rare peak patches reside.
However, using voids are not as precise a way to get the filamentary structure evoked
by the peaks. An upcoming study (Platen, van de Weygaert & Jones, 2008) adresses
their role and structure in considerably more detail.

Cosmic Scenario

Overall, it is the highly clustered and mutually aligned nature of the cluster distribu-
tion which ascertains the salient and coherent weblike nature of the cosmic matter
distribution. In turn, this suggests a dependence of the morphology and structure of
the cosmic web on the cosmological scenario.



Clusters and the Theory of the Cosmic Web 67

Its pattern and prominence does indeed depend upon the shape of the primordial
power spectrum, in particular on the power spectrum index n(k) = dIn P(k)/d Ink.
The examples which are shown in the figures concern a CDM spectrum with
nerr = —1.2 on cluster scales. When the spectrum is steepened clusters become
less clustered and the coherence of the web is lost. Although some filaments will
remain they will be weaker and shorter. On the other hand, when we flatten the spec-
trum to n(k) < —2, the clusters become more clustered, so that the coherence is more
pronounced and the filaments are both strengthened and widened.

4.12 Hierarchical Filament Assembly

In the previous sections we have delved in great depth into the nature and origin of
filamentary and sheetlike features in the cosmic web. We have not yet paid a lot of
attention to their hierarchical development. In the reality of the nonlinear world the
collapse and formation of weblike patterns is considerably more complex. Taking
the specific example of an emerging filament, its formation will involve the gradual
assembly of small-scale filaments and virialized low mass clumps into a coherent
elongated feature.

Figure 26 gives an impression of the intricacies of filament formation Aragén-
Calvo (2007). It involves a ACDM scenario. The initial configuration consists of
a myriad of small-scale filaments, with a large scatter in orientation. As time pro-
ceeds these small filaments start to merge into larger filaments, preceded by a grad-
ual change of orientation along that of the gradually unfolding large-scale elongated
mass concentration running along the diagonal of the box. Finally, all structure ends
up in the massive filamentary feature that emerged out of the initially merely faintly
visible large-scale overdensity. The figure not only shows the hierarchical character
of the process, but also the dominant tidal influence of the large-scale filament which
first appears to orient substructures along its main axis before gradually absorbing
them. It illustrates the tendency of matter to contract into a sharp filamentary network
already defined in the primordial tidal shear field.

The morphology of the emerging filaments strongly depend on the generalized
power spectrum slope n(k) at the corresponding mass scale (also see sec. 4.11). For
high values n ~ —0.5 —ie. for subgalactic scales within the ACDM scenario — a rather
grainy feature will emerge. Many small scale clumps will have fully collapsed and
virialized before they get absorbed into the larger contracting filament. In a scenario
with n(k) = -2, on the other hand, the contracting filament will be collapsing while
the small scale objects within its realm may not yet have fully settled. Often these
have not yet even fully virialized and may still reside in a stage with a pronounced
anisotropic geometry. Such scenarios will produce a coherent large-scale filaments
in which the internall small-scale structure will not have a pronounced appearance.
Most dramatic will be the situation for n(k) = —3, the asymptotic situation in which
fluctuations over the full range of scale will undergo contraction and collapse at the
same time.

The morphology of filaments, as well as sheets, will also be influenced by an ad-
ditional effect, that of the diffusion of relative dynamical timescales between different
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Fig. 26. The hierarchical evolution of weblike features: the formation of a filament in an N-
body simulation of structure formation in a LCDM Universe. Following the emergence of
small-scale filaments, we observe the gradual merging into ever larger entities, culminating in
a large massive and dense filament running along the diagonal of the simulation box. Image
courtesy of Miguel Aragén-Calvo.

mass scales. Anisotropic collapse will involve a speeding up of the one-dimensional
collapse of an object, and even often a faster collapse along the medium axis as the
object contracts into a filament, but a considerably slower formation time in terms of
full three-dimensional collapse and virialization. This will bring the formation time
of halos closer to that of the embedding elongated filaments. As a result, the latter
will appear to be more coherent than a simple hierarchical analysis on the basis of
clump formation would imply.

Finally, the morphology of filaments will also be considerably affected by non-
linear effects. The (extended) Press-Schechter type descriptions involve highly ideal-
ized local approximations. They discard the nonlinear interactions between the fea-
tures forming at different scales.

One particular aspect is that of the consequence of alignments between peaks and
the surroundings. The primordial alignments get significantly amplified by the sub-
sequent infall of clumps from the surroundings. A few nonlinear effects may be iden-
tified. The filaments act like transport channels of the emerging cosmic web: matter
and clumps of matter migrate along the axis of filaments towards highly compact
clusters at the nodes of the web. The morphology and nature of filaments — strong,
dominating, large and coherent or having the appearance of short, weak, and erratic
hairlike extensions connected to nearby peaks — will be of decisive influence over
aspects like the angular distribution of clumps which fall into a cluster. van Haarlem
& van de Weygaert (1993) found that clusters appear to orient themselves towards
the direction along which the last substantial clumps fell in. The exclusive and con-
tinuous infall of clumps along the spine of dominating filament will therefore induce
a strong alignment of cluster orientation, its substructure and the surroundings.

4.13 Anisotropic Excursions

Some aspects of the hierarchical assembly of filaments may be understood within the
context of the excursion set formalism described above (Sec. 3.4). Shen et al. (2006)
did seek to extend the excursion formalism to filamentary and planar structures by
defining critical density thresholds for the collapse of filaments and walls. In this
they invoked the moving barrier description for nonspherical collapse of ellipsoidal
halos that was introduced by (Sheth et al., 2001) (see eq. 32).

Their description invokes the homogeneous ellipsoid model to obtain estimates
for the collapse times of walls and filaments. In addition to the full three-dimensional
ellipsoidal collapse of halos this involves the specification of collapse times and bar-
riers for the one-dimensional collapse of sheets and two-dimensional filaments. Col-
lapse along the shortest axis of an ellipsoid proceeds more rapidly than the equiva-



70 Rien van de Weygaert & J. Richard Bond

lent spherical collapse (Icke, 1973; White & Silk, 1979). The corresponding moving
barrier for the formation of a sheet does reflect this in involving the lowest density
threshold values (see fig. 27). The threshold would decrease towards smaller masses,
implying the rapid formation of low mass sheetlike objects. By contrast the barrier
for filament formation would almost be constant over a sizeable range of mass while
the barrier for full three-dimensional collapse does reflect the strong influence of
tidal influences for small mass halos: with respect to their higher mass peers they
form relatively late (see fig. 27).
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Although this description may provide a reasonable impression of the hierarchical
buildup of the cosmic web, it almost certainly involves a strong oversimplification.
The implicit local description of the excursion set formalism may break down for
features whose collapse is thoroughly influenced by the surrounding matter distribu-
tion, so strongly emphasized by the Cosmic Web. Also the strong nonlinear effects
that play a role in the shaping of filamentary features van Haarlem & van de Weygaert
(1993) may not be sufficiently included in this description. Finally, recent work has
shown that a definition of filaments on the basis of density arguments is hazardous:
filaments have a considerable range of densities, at least in the present day universe
Aragén-Calvo (2007); Aragén-Calvo et al. (2007); Hahn et al. (2007). An analytical
framework that implicitly includes nonlocal effects will offer a better understanding
of the hierarchical formation of filaments, bringing us back to the peakpatch formal-
ism (Bond & Myers, 1996a).

4.14 Filaments versus Walls

In N-body simulations as well as in galaxy redshift distributions it are in particular
the filaments which stand out as the most prominent feature of the Cosmic Web. It
even remains unclear whether walls are even present at all. Some argue that once
nonlinear clustering sets in the stage in which walls form is of a very short dura-
tion or does not occur at all: true collapse would proceed along filamentary struc-
tures (Sathyaprakash, Sahni & Shandarin, 1996; Bertschinger& Jain, 1994; Hui &
Bertschinger, 1996). Indeed, it may be argued that in the primordial density field
overdense regions subject to tidal shear constraints are more filamentary than sheet-
like, and become even more so in the quasi-linear regime (Bond et al., 1996). There
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Fig. 27. Example of an excursion random walk (solid curve) crossing the barriers (dotted
curves) associated with sheets, filaments and haloes (bottom to top, see eqn. 82). Plotted is the
density perturbation (M) on a mass scale M versus the corresponding o (M) (recall that o-(M)
is a decreasing function of mass M). The fraction of walks that first cross the lowest (sheet)
barrier at o"(M;), then first cross the filament barrier at o"(M) and finally cross the highest
(halo) barrier at o"(M;) represents the mass fraction in halos of mass M), that are embedded
in filaments of mass M, > M,, which themselves populate sheets of mass M, > M. The
precise barrier shapes depend on the collapse model. From Shen et al. 2006. Reproduced with
permission of AAS.

is also a practical problem in identifying them: walls have a considerably lower sur-
face density than filaments. This is exacerbated by the lack of available objective
feature detection techniques. Very recent, the analysis of an N-body simulation by
means of the new Multiscale Morphology Filter technique did manage to identify
walls in abundance (Aragén-Calvo et al., 2007). Another indication is that the dissi-
pative gaseous matter within the cosmic web partially aggregates in walls with low
overdensities (Kang et al., 2005). This argues for the presence of moderate potential
wells tied in with dark matter walls.

5 Conclusion: Clusters and the Cosmic Web

In these notes we have reviewed the theoretical framework for the formation of the
Cosmic Web in hierarchical scenarios of structure formation. Particular attention was

ag(m)
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given to the crucial role of clusters within defining the weblike network. They are the
main source for the tidal shear field responsible for the spatial outline and dynam-
ical evolution of the prominent filaments and their less pronounced peers, sheetlike
membranes. The

We wish to conclude our exposé on the connection between the Cosmic Web and
the spatial distribution of the with the quote from Bond & Myers (1996a) summariz-
ing the essence of what the intrinsic role and identity of clusters is:

“flowing peak patches at which grand constructive
interferences in density and velocity waves mark out the
sites of collapse. ... radiating outward from the peak-
patch core are filaments and sheets that too are rare.
The structure may finally fade into the root-mean-square
fluctuations in the medium as coherence in the phases
fades into randomness. Or the structure may blend into
another peak patch, for rare constructive interferences
tend to be clustered.”
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