
the Cosmic Web:

Lecture 4: 
Cosmic Web Pattern Analysis

Rien van de Weijgaert, 
Cosmic Web, Caput Course, Oct. 2017



To assess the key aspects of the 

nonlinear cosmic matter and galaxy distribution:

● multiscale character                                   hierarchical structure formation
● weblike network                                          anisotropic collapse
● volume dominance voids                           asymmetry overdense vs. underdense

Cosmic Structure Analysis
The 
- overwhelming complexity of the individual structures,
- as well as their connectivity, 
- the lack of structural symmetries, 
- the intrinsic multiscale nature and 
- the wide range of densities that one finds in the cosmic matter distribution

has prevented the use of simple and straightforward instruments.



Despite the multitude of elaborate qualitative descriptions it has remained a major 
challenge to characterize the structure, geometry and topology of the Cosmic Web. 

Quantities as basic and general as the mass and volume content of clusters, filaments, 
walls and voids are still not well established or defined. Since there is not yet a 
common framework to objectively define filaments and walls, the comparison of 
results of different studies concerning properties of the filamentary network -- such as 
their internal structure and dynamics, evolution in time, and connectivity properties --
is usually rendered cumbersome and/or difficult. 

The overwhelming complexity of the individual structures as well as their connectivity, 
the lack of structural symmetries, its intrinsic multiscale nature and the wide range of 
densities that one finds in the cosmic matter distribution has prevented the 
use of simple and straightforward toolbox. 

Over the years, a variety of heuristic measures were forwarded to analyze specific 
aspects of the spatial patterns in the large scale Universe. Only in recent years these 
have lead to a more solid and well-defined  machinery for the description and 
quantitative analysis of the intricate and complex spatial patterns of the Cosmic Web. 

Nearly without exception, these methods borrow extensively from other branches of 
science such as image processing, mathematical morphology, computational 
geometry and medical imaging. 





If you want to 
know more...
Standard 

Reference:

Martinez & Saar



Ergodic  Theorem 

Spatial  Averages 
Ensemble  Averages                       over one realization 

of  random field      

• Basis for statistical analysis  cosmological large scale structure

• In statistical mechanics Ergodic Hypothesis usually refers to time evolution 
of system, in cosmological applications to spatial distribution at one fixed time



Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

Joint probability that 
in each one of 

the two infinitesimal volumes 
dV1 & dV2, 

at distance r,

lies a  galaxy 

mean density 



Infinitesimal Definition Two-Point Correlation Function: 

Correlation Functions

In case of  
Homogeneous & Isotropic
point process

then 

only dependent on 

mean density 
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Power-law  Correlations
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Correlation Functions

Clustering length/
“Correlation” length

Coherence length



Nonlinear DescriptionsAngular & Spatial  Clustering
2
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Two-point angular correlation 
function is the “projection” of

Limber’s  Equation:  
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p(x):    survey  selection  function 



Nonlinear DescriptionsAngular Clustering Scaling

Two-point correlation function:

small angles:    power-law

large angles                 0
ie.  to homogeneity

APM survey
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Nonlinear DescriptionsAngular Clustering Scaling

Projection of more layers leads to 
decreasing amplitude   w(q)

Angular size structures 
smaller when more distant

APM survey



sky-redshift space 
2-pt correlation function ( , )

Correlation function determined 
in sky-redshift space:

( , )  

sky position:               
redshift coordinate:  

( , )  
cz 

Close distances:  
distortion due to non-linear
Finger of God

Large distances:
distortions due to large-scale 
flows



Redshift Space Distortions 
Correlation Function

Large distances:
distortions due to large-scale 
flows

On average,            gets amplified 
wrt.            

Linear perturbation theory
(Kaiser 1987):   
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Structural  Insensitivity
2-pt correlation function is 
highly insensitive to the geometry & morphology
of weblike patterns:

compare 2 distributions with same 
(r), cq.  P(k), 

but totally different phase distribution

In practice, some sensitivity in terms of distinction 
Field, Filamentary, Wall-like and Cluster-dominated 
distributions:

because of different fractal dimensions



Structural  Sensitivity

Wall-
dominated

Filamentary

Cluster-like



Power Spectrum



P(k) specifies the relative contribution of different scales to the density 
fluctuation field.   It entails a wealth of cosmological information.

Formal definition: 

Power  Spectrum 
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Gaussian random field fully described by 2nd order moment:

- in Fourier space:                                    power spectrum
- in Configuration (spatial) space:            2-pt correlation function 

Power  Spectrum – Correlation Function 
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Random Field Phases
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When a field is a Random Gaussian Field, its phases ϕ(k) are uniformly 
distributed over the interval  [0,2π]:      

As a result of nonlinear gravitational evolution, we see the phases acquire a 
distinct non-uniform distribution. 

( ) [0,2 ]k U 











Schaap & van de Weygaert 2000
Van de Weygaert & Schaap 2007
Cautun & van de Weygaert 2012



• Density  Estimate:
Voronoi Tessellation   (contiguous)

• multi-D  field interpolation:
Delaunay Tessellations

DTFE
Delaunay Tessellation Field Estimator  



Voronoi Tessellations



Dual  Tessellations

Voronoi Vertices          Centers Circumscribing Spheres 4 nuclei       

Delaunay Tetrahedron

Voronoi                                      Delaunay



Sensitivity of 
Delaunay Tessellations

to weblike geometry of 
particle distribution:

suggestion for 
exploiting this to 
explore the topology 
of the cosmic mass 
distribution 

DTFE
Alpha Shapes 



DTFE
• Delaunay  Tessellation  Field  Estimator

• Piecewise Linear representation 
density  &  other discretely sampled fields

• Exploits  sample density & shape sensitivity of 
Voronoi & Delaunay Tessellations

• Density Estimates from contiguous Voronoi cells

• Spatial piecewise linear interpolation by means of 
Delaunay Tessellation

Schaap & vdW 2000
vdW & schaap 2009
Cautun & vdW 2012



DTFE   Procedure
Summary 

I. Construction
Delaunay Tessellation

II.     Point Sampling  
III.    Determination Field Values
IV.     Calculation Field Gradient

in Delaunay cell
V.    ‐ Interpolation to locations x

‐ Image construction:
interpolation to
ordered locations

VI.    Processing of field





DTFE  website:

http://www.astro.rug.nl/~voronoi/DTFE/dtfe.html 





Classes    Identification & Classification   procedures

• Graph & Percolation techniques                                                 Minimal Spanning Tree

• Stochastic Methods                                                                      Bisous Bayesian sampling
geometric configurations

• Geometric, Hessian-based methods                                         Vweb - velocity shear  
gradient velocity field

Tweb - tidal field
Hessian potential field

Scale-space Multiscale Hessian-based methods                       MMF/Nexus

• Topological Methods  (Morse theory)                                         Watershed Void Finder / Voboz
Disperse
Spineweb

• Phase-Space (multistream) structure:                                       Phase-space sheet & flip-flop 
Origami
Multistream

Classes    Identification & Classification   procedures

• Graph & Percolation techniques                                                 Minimal Spanning Tree

• Stochastic Methods                                                                      Bisous Bayesian sampling
geometric configurations

• Geometric, Hessian-based methods                                         Vweb - velocity shear  
gradient velocity field

Tweb - tidal field
Hessian potential field

Scale-space Multiscale Hessian-based methods                       MMF/Nexus

• Topological Methods  (Morse theory)                                         Watershed Void Finder / Voboz
Disperse
Spineweb

• Phase-Space (multistream) structure:                                       Phase-space sheet & flip-flop 
Origami
Multistream



Aragon-Calvo, Jones, vdW, van der Hulst 2007
Cautun, vdW & Jones 2013



Scale Space Analysis
Inspiration from Medical Imaging:     
trace blood vessels, tumors, etc.

Florack, Kuijper et al.;  Lindeberg et al.
Sato et al. 1997; Lorentz et al. 1997
Frangi et al. 1998 Multiscale vessel enhancement filter
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Scale Space Pyramids

Gaussian  smoothing

keeping 

same number of pixels.

The ensemble of images is referred t
as a scale space stack: 

It is analysed as a single object.



Nexus Fields

• Nexus/Nexus+ 
fields relevant for cosmic web dynamics

• Identification on the basis of 6 different 
physical characteristics of the cosmic mass 
distribution:

- Density             
- Log(Density)
- Tidal field          
- Velocity Divergence
- Velocity Shear
- Nexus+   - log(density)

• from:   Cautun et al. 2013 



Scale Space Analysis
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• Smooth the field over the range 
of relevant scales

• with Gaussian filter

• Scale space: 
stacking  density maps  fn
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Input field Gaussian smoothing Log-Gaussian smoothing

Nexus/Nexus+ Scale Space



Scale Space Analysis
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• Smooth the field over the range 
of relevant scales 

• Density field around location 
to 2nd order determined by Hessian:

• Hessian  filtered Density field:



Scale Space Analysis
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• Morphology determined by 
eigenvalues of Hessian:

• 2
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Scale Space Analysis
• Smooth the field over the range of 

relevant scales 

• Select the characteristic scale of
a particular (local) morphological element

Nexus/MMF formalism:

Aragon-Calvo et al. 2007
Aragon-Calvo et al. 2010
Cautun et al. 2013
Cautun et al. 2014



Scale Space Analysis

sc
al

e

Nexus/MMF  Procedure 

• Smooth the field over the range 
of relevant scales 

• Hessian filtered density field

• Morphological characterization in 
terms of eigenvalues Hessian

• Select the characteristic scale 
of a particular (local)  
morphological element

• Nexus/MMF  morphology  
Filter Bank 



Nexus:    MMF Filter Bank



Scale Space Analysis

sc
al

e

• Scale Space Map Stack

maximum morphology response 
across full range of scales

• To filter out morphology noise:
morphology dependent thresholds,

value dependent on dynamical    
and/or structural (percolation) 
considerations

• Object Map 

( )x


, ,c f w  

( )x




Nexus 
Morphological Signatures

• a)   density field
• b)   blob/cluster node  signature
• c)   filament signature
• d)   wall signature

• from:   Cautun et al. 2013 



Nexus Signature & Thresholds



Colouring :
Local scale filament



Nexus Cosmic Web

Stochastic Spatial Pattern 

• Clusters,
•Filaments &
• Walls

around 
• Voids

in which matter & galaxies

have agglomerated 

through gravity

MMF/Nexus 
Cautun et al. 2013, 2014



Nexus Filaments

• Nexus identification of filaments (blue)

• Identification on the basis of 6 different 
physical characteristics of the cosmic mass 
distribution:

- Density             - Velocity Divergence
- Tidal field          - Velocity Shear
- Log(density)     - Nexus+



Nexus Walls

• Nexus identification of walls (orange)

• Identification on the basis of 6 different 
physical characteristics of the cosmic mass 
distribution:

- Density             - Velocity Divergence
- Tidal field          - Velocity Shear
- Log(density)     - Nexus+

• from:   Cautun et al. 2013 



Nexus+ tracing of filaments:

inherent multiscale 
character of filamentary web

Hidding, Cautun, vdW   2016   



Spine of the Cosmic Web



• Additional Analysis Step:

projection of  filament galaxies
to Medial Axis of Nexus/MMF filaments 

survey galaxy

galaxy
filament projection



Aragon-Calvo, vdW & Jones  2010
Cautun, vdW, Jones & Frenk  2014



Cosmic Web:
Density-Morphology Connection

Density distribution 

Individual morphologies 

Mass & Volume content 

Web morphologies

Cautun et al. 2014



Walls & Filaments
Internal Diameter & Density Distribution



Walls & Filaments
Density Profiles



Filament Segmentation



Hoffmann et al. 2012
Libeskind et al. 2013, 2014



Large  Scale  Flows
Large-Scale Flows:
• Structure buildup  

accompanied  
by displacement of matter:  
- Cosmic flows

• On large (Mpc) scales,  
structure formation 
still in linear regime

• Directly related to 
cosmic matter distribution 

• Note:  
redshift space distortion

cz = Hr + vpec

In principle possible to 
correct for this distortion, 
ie. to invert the mapping 
from real  to  redshift space

• Condition:
entire mass distribution 
within volume should be mapped



Flow in the Cosmic Web 



Supergalactic Plane
mean KIGEN - adhesion reconstruction

Hidding, Kitaura, vdW & Hess      2016/2017



Cosmic Web Flowlines: 

Stokes:                    flow field components    

Divergence              dominant in voids
Shear                        dominant along filaments

Vorticity:                   only in high-density         
multistream regions



Romano-Diaz & vdW 2007



Push of the Local Void
Sculptor Void 

Tully et al. 2008:
Local Void pushes with ~260 km/s against our local neighbourhood 



A velocity field can be decomposed into 3 basic components, according to the 
gradient of the flow field: 

the velocity divergence, shear and vorticity in each tetrahedron. 

Divergence

Shear

Vorticity

Stokes’ Flow Theorem



A velocity field can be decomposed into 3 basic components, according to the 
gradient of the flow field: 

the velocity divergence, shear and vorticity in each tetrahedron. 

Divergence:
Expansion/
Contraction

Shear:
Deformation

Stokes’ Flow Theorem



Wall
Inflow:        1 direction
Outflow:     2 directions

Shear Tensor:  
Eigenvalues & Deformation directions

Filament
Inflow:        2 directions
Outflow:     1 direction

Cluster node
Inflow:        3 direction
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PSCz
Divergence & Shear

Romano-Diaz & vdW 2007



Velocity Shear

Field 

Resolution:
RG=  3.0h-1 Mpc  (left)
RG=10.0h-1 Mpc (right)

Romano-Diaz & vdW 2007



CosmicFlows-3

Cosmic Web morphology:   
velocity shear based V-web identification flow pattern in cosmic web
(Pomarede et al. 2017)



Platen, vdW & Jones 2007



WVF:       Platen et al. 2007
ZOBOV:  Neyrinck 2008

Sutter, Lavaux, Wandelt, Weinberg   2012 



The Multiscale Watershed Void Finder

No exact definition of a void!
→ broad range and variety of 

void detection techniques

Our void finder:
 closely follows real geometry 

cosmic web
 no assumptions geometry void
 no user defined parameters

→ Watershed Void Finder by
Platen et al., 2007.

Figure from Colberg et al., 2008



Watershed  Void  IdentificationWatershed  Void  Identification

Void 
basin



WATERSHEDS: 
A cell is the union of points that are topological closer to 
a certain minimum

Topological Distance:
The path that connects two points via the steepest slope:
the path a water-droplet would take, when running down 
a landscape

Watershed Void Transform
Segmentation:
A division of space in individual cells



Following the water-
flow into the distinct
catchment basins.

Each basin belonging
to one individual
minima defines one
region



Surface of Density Field

Local
Minima

Local
Minima

Pierce the local 
minima, and let the 

landscape sink 
slowly in a tub of 

water 



Every time two different flooding 
basins meet we draw a dividing 
wall

Flooding the 
Density Field



Final
segmentation

lines

Void
Patches



The Multiscale Watershed Void Finder

 local height → local density
 mountain ridges → walls and filaments

 watershed basins → voids 



WVF:  Watershed Void Finder



COSI Columbus Science Center:

Hands-On Voids by Watershed 



Void persistence and merger trees

Adhesion model

Void evolution in idealized 
adhesion model:

 self gravity of walls and filaments 
modelled by artificial viscosity  ν

 discards nonlinear evolution on smaller 
scales

 models hierarchical evolution very good

Zel’dovich, 1970
Gurbatov, Saichev and Shandarin, 1989
Hidding et al., 2012

2 adhesion models 
• ܲ ݇ ∝ ݇ଵ
• ܲ ݇ ∝ ݇ିଵ

Image courtesy: Johan Hidding





Void persistence and merger trees

• Merger tree is only based  
on one parent void!

• Combine information of  all 
merger trees into 

Persistence Diagram

(Edelsbrunner et al. 2000)

 Information w.r.t. formation 
and disappearance of voids 
due to hierarchical 
evolution

 Not only mathematical 
principle. 

ܲ ݇ 	 	݇ଵ

݇ଵ

݇ିଵ

ܲ ݇ 	 	݇ିଵ



Aragon-Calvo, Platen, vdW et al. 2010



Spine of  the Cosmic Web Spine of  the Cosmic Web 



SpineWeb
filaments

walls



Cosmic Spine Cosmic Spine 

Cosmic Spine:
• Network of filamentary edges & sheetlike walls
• Connection of Cluster Nodes via filamentary

bridges



Density  Field Density  Field 



Density  Field  Flow LinesDensity  Field  Flow Lines

f

Density  Field Density  Field 



Density  Field  Flow LinesDensity  Field  Flow Lines

f



Critical Points:
- Maxima
- Minima
- Saddle  Points (of various signatures)

0f 

Density  Field  Flow LinesDensity  Field  Flow Lines



Density  Field  
Critical Points:

Ridges:

Connections
Saddles-
Maxima

Density  Field  
Critical Points:

Ridges:

Connections
Saddles-
Maxima



Morse Complex & Field Singularities Morse Complex & Field Singularities 

Topological structure well-behaved C2 field:

• “flow” field
• singularities - minima, maxima, saddles
• critical   integral   lines:   connection singularities
• saddles-maxima:              spine of field - filaments, sheets 
• basin minima:                   voids

Practical  Computation:
• Watershed   Transform
• Pseudo Morse complex !!!!



Density Field  &  Landscape 



Segmentation & Flowlines



Watershed Segmentation 



Watershed Segmentation Watershed Segmentation 



SpineWeb  Formalism SpineWeb  Formalism 
Extension  of  Watershed  Transform:

• determination boundary regions between the 
watershed basins (the “voids”).

• Identification of boundary pixels

• Topological Identity determined 
on the basis of # neighbouring voids/basins,   



SpineWeb  Procedure SpineWeb  Procedure 

Local   Neighbourhood:
Counting Number Adjacent Voids: 

Nv =  2                wall
Nv =  3                filament                

Local   Neighbourhood:
Counting Number Adjacent Voids: 

Nv =  2                wall
Nv =  3                filament                

void pixels
wall pixels filament pixels

wall pixels



SpineWeb Morphology Dissection









3-D SpineWeb Segmentation

Colour:  density contours
White:    watershed segmentation lines

(cosmic spine) 



Density Levels vs. Spine
density field level sets

Spinal Components:
- walls
- filaments 



Spinal  
Walls



Spinal  
Filaments



Spine Hierarchy



Spine of  the 
Cosmic Web:

directly on 
Delaunay grid

Spine of  the 
Cosmic Web:

directly on 
Delaunay grid



Cosmo Topology



Topology

Study of the 

(multiscale) 
shapes, complexity and connectivity 

of the Cosmic Web



Geometry &  Topology

Minkowski Functionals:
- Volume
- Surface area 
- Integrated mean curvature
- Genus/Euler Characteristic

• (Mecke, Buchert & Wagner 1994)

Complete quantitative characterization of local geometry in terms of 

Minkowski Functionals

Conventional Cosmological Topology Measure: 

(Reduced) Genus

• # holes - # connected regions
• (Gott et al. 1986;  Hamilton et al. 1986;  Choi et al. 2010)



Minkowski functionals

• Weyl’s Tube formula:

Minkowski functionals Qk are the parameters specifying the contribution of 
volumes rk to the volume of a cube Mr with rounded edges of radius r: 

  2 3
0 1 2 3Vol rM Q Q r Q r Q r   



Topology, Homology & Cycles
Topology:
Study of connectivity and spatial relations that remain invariant under 
homeomorphisms (= continuous mapping between two topological objects)

Homology:
Description of topology of a space in terms of the relationship between 
cycles and boundaries.

p-chain:   sum of p-simplices
p-cycle:   boundary of (p+1) chain

0-cycle:    closed component
1-cycle:    closed loop of edges,

or finite union
2-cycle:    closed surface, 

or finite union 

adding two p-cycles         p-cycle

Group of p-cycles:

Homology group  Hp

Torus:    one  0-cycle:        rank group H0:    1 :

two  1-cycles:      rank group H1:    2
one  2-cycle         rank group H2:    1



0, 1, 2:
on islands, tunnels & voids

0



0, 1, 2:
on islands, tunnels & voids

2



0, 1, 2:
on islands, tunnels & voids

1



Euler-Poincare  

3-manifold :

boundary 2-manifold  :

  0 1 2 3

0 1 2

M    

  

   

  

  0 1 2b b bM      

Euler Characteristic  is alternating sum of Betti Numbers



the Rule of Euler  
from:  Robert Adler



Random Field
Topology:

Morse Complex



Density  Field  Flow LinesDensity  Field  Flow Lines

f



Critical Points:
- Maxima
- Minima
- Saddle  Points (of various signatures)

0f 

Density  Field  Flow LinesDensity  Field  Flow Lines



Betti  &  Morse  
Relation to Morse Theory:

Topological Structure Continuous Field 
determined by singularities:

- maxima
- minima
- saddle points 



Betti  &  Morse  
Number of singularities in field 
determines Euler characteristic:

minima
saddle 1
saddle 2
maxima
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Density Field  &  Landscape 



Segmentation & Flowlines



Topological Hierarchy:
Excursion Sets & Filtrations

Superlevel Sets
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Pranav et al. 2013a



Filtrations
Important source of information about topology of a field/point distribution:

Filtrations

Filtration provides view of topology as a function of scale. 

Formally, given a space , a filtration is a nested sequence of subspaces

Nature of filtrations depends (amongst others) on representation of the 
mass distribution. 

0 1 2 m    M M M M M



C

E

Persistence Diagram



Topological Hierarchy 
Persistent Homology:
“Cycling” over density  filtration 

Edelsbrunner & Harer 2010

field value filtration
tree hierarchy

Topology Tree



Cosmic Web

Homology & Persistence



Voronoi   Elements:  
Filaments

Filaments:

Pisces-Perseus chain  



Voronoi Element Models:
Persistence Diagrams

Clusters

Filaments

Walls

d=2d=1d=0



Voronoi Kinematic Models:
Persistence Diagrams

Stage 1

Stage 2

Stage 3

d=2d=1d=0



LCDM Persistence

Nevenzeel & vdW 2015



LCDM Persistence

Morse-Smale simplification



LCDM:
Persistence & Morse Simplification

Nevenzeel & vdW 2017



LCDM: 
Betti Curves & Morse Simplification

Nevenzeel & vdW 2017



Betti Curve Stability

Nevenzeel & vdW 2015



LCDM Persistence

Nevenzeel & vdW 2017



LCDM: 
Evolving Persistence 

Nevenzeel & vdW 2017



Homology of evolving 
LCDM cosmology

2
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-shape homology



Betti2:
evolving void populations

Z=0.0


