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Diffusion & Viscosity:

Navier-Stokes Equation  
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Diffusion Equation
Imagine a quantity C(x,t) representing a local property in a fluid, eg. 

- thermal energy density
- concentration of a pollutant
- density of photons propagating diffusively

through a scattering medium

For a fluid at rest,  V=0, the diffusive transport of the quantity C 
in the fluid is described by the Diffusion Equation,   

In this expression, D is the diffusion coefficient,

with vσ the velocity of the diffusing particles, and λ the mean free path. 
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Navier-Stokes Equation

Viscous Force

• In general, the viscous force fvisc includes 2 different aspects, that of 

- shear viscosity η
- bulk viscosity ζ

entailing the following full viscous force

which for incompressible flow,               , is restricted to
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Navier-Stokes Equation
• For a fluid with (shear) viscosity η, the equation of motion is called the 

Navier-Stokes equation. In its most basic form, ie.for incompressible
media 

• Without any discussion, this is THE most important equation of
hydrodynamics. 

• While the Euler equation did still allow the description of many analytically
tractable problems, the nonlinear viscosity term in the Navier-Stokes 
equation makes the solving of the NS equation very complicated.

• There are only a few situations that allow analytical solutions for the NS
equation, the remainder needs to be solved numerically/computationally.
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Navier-Stokes Equation

• The general and full Navier –Stokes equation, 
for a fluid with

- shear viscosity η
- bulk viscosity ζ

is given by
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Reynolds Number

• The Reynolds number is the measure of the importance of viscous effects
of a flow – hereby assumming the bulk viscosity ζ=0 – and is defined as 

the ratio of the magnitude of the inertial force -
magnitude of the viscous force

• For large Reynolds number, the flow gets unstable, and finally becomes
turbulent. 
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Reynolds Number
• The Reynolds number is the ratio of the magnitude of

the inertial force to the magnitude of the viscous force

• We can find an order of magnitude rough estimate for the Reynolds 
number. With U the characteristic magnitude of the velocity in a system of 
characteristic size L, we have 
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Navier-Stokes Equation:  analytical soln’s
• Due to the high level of nonlinearity and complexity of the full 

compressible Navier-Stokes equations , there are hardly any analytical
solutions known of the Navier-Stokes equation.

• One may try to find some specific configurations that would allow an
analytical treatment. This involves simplifying the equations by making 
the following assumptions:

- about the fluid
- about the flow
- geometry of the problem

• Typical assumptions are:
- laminar flow                         - 2-D configuration
- steady flow                          - flow between plates
- incompressible flow

• Examples are:     
- parallel flow in a channel
- Couette flow
- Hagen-Poiseuille flow, ie. flow in a cylindrical pipe.
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Navier-Stokes Equation:  Channel flow
• Consider the following configuration:

- flow of a fluid through a channel
- steady flow
- incompressible flow
- axisymmetric geometry (2-D problem)

- the 2-D flow field is represented by a 2-D velocity field, 
with u the component in the x-direction, v in the y-direction

2v
v v p v

t
  

     


    

u
v

v

 
  
 





4/5/2018

7

Navier-Stokes Equation:  Channel flow

- the 2-D flow field is represented by a 2-D velocity field, 
with u the component in the x-direction, v in the y-direction

- the flow of the system is then described by the 
(a) continuity equation
(b) Navier-Stokes equation

- which for the system at hand simplify to:

continuity equation: 
(notice:  incompressibility)

x-momentum (NS):  

y-momentum (NS):                  
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Navier-Stokes Equation:  Channel flow
- Boundary condition: 

the flow is constrained by flat parallel walls of the channel, 

- Continuity equation:

- Using these relations, we end up with the Navier-Stokes equations:
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Navier-Stokes Equation:  Channel flow
- Given that

we immediately infer that u(x,y) must be independent of x. Hence

can only be a function of y, i.e u(x,y)=u(y).  This implies, via the 
relation,

that,  

and that the general solution for u(y) is given by
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Navier-Stokes Equation:  Channel flow
- The general solution for u(y) is given by

- Using the boundary conditions that the velocity u=0 at the border
of the channel, ie.  u(±R)=0, the constants A and B get fixed

which yields the complete solution for the flow velocity u(y) 
through the channel:
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-

- Flow through a channel thus displays a parabolic velocity
distribution, summetric about the central axis. The maximum 
velocity umax is attained along the central axis,

Navier-Stokes Equation:  Channel flow
221

( ) 1
2

R dp y
u y

dx R
      

   

2

max

1

2

R dp
u

dx
 


