

Diffusion Equation

Imagine a quantity C(x,t) representing a local property in a fluid, eg.

- thermal energy densityconcentration of a pollutant
- density of photons propagating diffusively through a scattering medium

For a fluid at rest, V=0, the diffusive transport of the quantity C in the fluid is described by the Diffusion Equation,

$$\frac{\partial C}{\partial t} = \vec{\nabla} \cdot D \,\vec{\nabla} C$$

In this expression, D is the diffusion coefficient,

$$D = \frac{v_{\sigma}\lambda}{3}$$

with v_{σ} the velocity of the diffusing particles, and λ the mean free path.

Viscous Force

• In general, the viscous force f^{visc} includes 2 different aspects, that of

- shear viscosity η - bulk viscosity ζ

entailing the following full viscous force

$$\vec{f}^{visc} = \eta \, \nabla^2 \vec{v} + (\varsigma + \frac{1}{3}\eta) \, \vec{\nabla} \left(\vec{\nabla} \cdot \vec{v} \right)$$

which for incompressible flow, $\nabla\cdot\vec{v}=0$, is restricted to

$$\vec{f}^{visc} = \eta \nabla^2 \vec{v}$$

• There are only a few situations that allow analytical solutions for the NS equation, the remainder needs to be solved numerically/computationally.

Navier-Stokes Equation: analytical soln's

• Due to the high level of nonlinearity and complexity of the full compressible Navier-Stokes equations , there are hardly any analytical solutions known of the Navier-Stokes equation.

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \vec{\nabla} \vec{v} = -\vec{\nabla} p + \eta \nabla^2 \vec{v}$$

- One may try to find some specific configurations that would allow an analytical treatment. This involves simplifying the equations by making the following assumptions:
 - about the fluid
 - about the flow
 - geometry of the problem
- Typical assumptions are:
 - laminar flow steady flow
- 2-D configuration
- flow between plates
- incompressible flow
 Examples are:
 - parallel flow in a channel
 - Couette flow
 - Hagen-Poiseuille flow, ie. flow in a cylindrical pipe.

Navier-Stokes Equation: Channel flow - Given that $\frac{\partial u}{\partial x} = 0$ we immediately infer that u(x,y) must be independent of x. Hence $\eta \frac{\partial^2 u}{\partial y^2}$ can only be a function of y, i.e u(x,y)=u(y). This implies, via the relation, $-\frac{1}{\rho} \frac{\partial p}{\partial x} + \eta \frac{\partial^2 u}{\partial y^2} = 0$ that, $\frac{\partial p}{\partial x} = \frac{dp}{dx} = cst.$ and that the general solution for u(y) is given by $u(y) = \frac{1}{2} \frac{1}{\rho \eta} \frac{\partial p}{\partial x} y^2 + Ay + B$

