Shock Waves

Shocks

- 1. Shocks are sudden transitions in flow properties such as density, velocity and pressure;
- 2. In shocks the kinetic energy of the flow is converted into heat, (pressure);
- 3. Shocks are inevitable if sound waves propagate over long distances;
- 4. Shocks always occur when a flow hits an obstacle supersonically
- 5. In shocks, the flow speed along the shock normal changes from supersonic to subsonic

TIME Shock <u>must</u> form

Wave Breaking

High-pressure/density regions move faster

$$u = \frac{2c_{s0}}{\gamma - 1} \left[\left(\frac{\rho}{\rho_0} \right)^{(\gamma - 1)/2} - 1 \right]$$

$$pprox c_{s0} \left(\frac{\Delta \rho}{\rho} \right)$$

Figure 7.1: Diagram showing the space-time flow line, defined by $\mathrm{d}x = u \, \mathrm{d}t$, and the two characteristics \mathcal{C}_+ and \mathcal{C}_- defined by $\mathrm{d}x = (u + c_\mathrm{s}) \, \mathrm{d}t$ and $\mathrm{d}x = (u - c_\mathrm{s}) \, \mathrm{d}t$. From each point in the flow two characteristics originate along which \mathcal{C}_+ and \mathcal{C}_- are constant respectively. Note that the value of \mathcal{C}_\pm can be different on the different characteristics so that the characteristic variables \mathcal{C}_+ and \mathcal{C}_- are **not** global constants!

Chelyabinsk Meteorite (Feb. 2013): Sonic Boom

Examples of Astrophysical shocks

Hubble Heritage

0.1 parsec

0.25 light-year

Supernova Remnant Cassiopeia A

Tycho's Remnant (SN 1572AD)

X-Rays (CHANDRA Observatory)

Radio (21cm)

'Knots' in jet of Galaxy M87 are shocks!

Summary: Shock Physics

Across an infinitely thin steady shock you have, in the shock frame where the shock is at rest, the following Rankine-Hugoniot Jump conditions:

Mass-flux conservation

$$\rho_1 V_{n1} = \rho_2 V_{n2}$$

Momentum-flux conservation

$$\rho_1 (V_{n1})^2 + P_1 = \rho_2 (V_{n2})^2 + P_2$$

$$V_{t1} = V_{t2}$$

Energy-flux conservation

$$\frac{1}{2}(V_{n1})^2 + \frac{\gamma P_1}{(\gamma - 1)\rho_1} = \frac{1}{2}(V_{n2})^2 + \frac{\gamma P_2}{(\gamma - 1)\rho_2}$$

Summary: Rankine-Hugoniot relations (for normal shock)

Fundamental parameter: Mach Number

R-H Jump Conditions relate the up- and downstream quantities at the shock:

$$\mathcal{M}_s \equiv \frac{\text{shock speed}}{\text{sound speed}} = \frac{V_1}{c_{s1}}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)\mathcal{M}_s^2}{(\gamma - 1)\mathcal{M}_s^2 + 2} \implies \frac{\gamma + 1}{\gamma - 1}$$

$$\frac{P_2}{P_1} = \frac{2\gamma \mathcal{M}_s^2 - (\gamma - 1)}{\gamma + 1}$$

From normal shock to oblique shocks:

All relations remain the same if one makes the replacement:

$$V_1 \Rightarrow V_{n1} = V_1 \cos \theta_1$$
, $\mathcal{M}_S \Rightarrow \mathcal{M}_n = V_{n1} / c_{s1} = \mathcal{M}_S \cos \theta_1$

 θ is the angle between upstream velocity and normal on shock surface

Tangential velocity along shock surface is unchanged

$$V_{t1} = V_1 \sin \theta_1 = V_{t2} = V_2 \sin \theta_2$$

Example from Jet/Rocket engines

Supernova Remnants

Kepler's Supernova Remnant • SN 1604 NASA, ESA / JPL-Caltech / R. Sankrit & W. Blair (Johns Hopkins University)

ssc2004-15b

Cas A SNR flythrough

Theory of Supernova Blast Waves

Supernovae:	
Type Ia	Subsonic deflagration wave turning into a supersonic detonation wave in outer layers. Mechanism: explosive carbon burning in a mass-accreting white dwarf
Type Ib-Ic & Type II	<u>Core collapse</u> of massive star

Core-Collapse SN

- In the last stages of its life, high-mass star:
 - iron-rich core
 - surrounded by concentric shells, hosting the various thermonuclear reactions
- The sequence of thermonuclear reactions stops here:
 - formation of elements heavier than iron requires
 - input of energy rather than causing energy to be released

Pre-supernova star

Collapse of the core

neutrinos emitted

Interaction of shock with collapsing envelope

light emitted

Explosive ejection of envelope

Expending remnant emitting X-rays, visable light, and radio waves. The collapsed stellar remnant may be observable as a pulsar.

Star brightens by № 10 8 times

Supernova II Explosion: SN1054

Thermonuclear SN (Supernova Ia)

Supernova SN1006: brightest stellar event recorded in history

SN1006

Supernova SN1006:

- brightness:

m = -7.5

distance:

d=2.2 kpc

recorded:

China, Egypt, Iraq, Japan, Switzerland, North America

Supernova SN1006: brightest stellar event recorded in history

SN1006

Supernova SN1006:

- brightness:

m = -7.5

- distance:

d=2.2 kpc

recorded:

China, Egypt, Iraq, Japan, Switzerland, North America

Supernova SN1006: brightest stellar event recorded in history

The progenitor of a Type Ia supernova

Two normal stars are in a binary pair.

The more massive star becomes a giant...

...which spills gas onto the secondary star, causing it to expand and become engulfed.

The secondary, lighter star and the core of the giant star spiral inward within a common envelope.

The common envelope is ejected, while the separation between the core and the secondary star decreases.

The remaining core of the giant collapses and becomes a white dwarf.

The aging companion star starts swelling, spilling gas onto the white dwarf.

The white dwarf's mass increases until it reaches a critical mass and explodes...

...causing the companion star to be ejected away.

Supernova Ia Explosion

Blast Waves

Hiroshima, the Shockwave

Sedov-Taylor Expansion Law

Blast waves

Main properties:

- 1. Strong shock propagating through the Interstellar Medium, or through the wind of the progenitor star;
- 2. Different expansion stages:
 - Free expansion stage (t < 1000 yr) $R \propto t$
 - Sedov-Taylor stage (1000 yr < t < 10,000 yr) $R \propto t^{2/5}$
 - Pressure-driven snowplow (10,000 yr < t < 250,000 yr) $R \propto t^{3/10}$

STANDARD SNR EVOLUTION

Free-expansion phase

Energy budget:

$$|E_{\text{grav}}| = \frac{3}{5} \frac{GM_c^2}{R_c} \approx 10^{53} \text{ erg } \Rightarrow \begin{cases} 99\% \text{ into neutrino's} \\ 1\% \text{ into mechanical energy} \end{cases}$$

Expansion speed:

$$V_{\text{exp}} \simeq \sqrt{\frac{2E_{\text{mech}}}{M_{\text{ej}}}} = 3000 \left(\frac{E_{\text{mech}}}{10^{51} \text{ erg}}\right)^{1/2} \left(\frac{M_{\text{ej}}}{10 M_{\odot}}\right)^{-1/2} \text{ km/s}$$

Sedov-Taylor stage

- -Expansion starts to decelerate due to swept-up mass
- Interior of the bubble is <u>reheated</u> due to <u>reverse shock</u>
- Hot bubble is preceded in ISM by strong blast wave

$$V_{s} = \sqrt{\frac{2E_{\text{snr}}}{M_{\text{ej}}}} \times \left(\frac{1}{1 + (R/R_{\text{d}})^{3}}\right)^{1/2} = V_{0} \left(\frac{1}{1 + (R/R_{\text{d}})^{3}}\right)^{1/2}$$

Shock relations for strong (high-Mach number) shocks:

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)\mathcal{M}_s^2}{(\gamma-1)\mathcal{M}_s^2+2} \implies \frac{\gamma+1}{\gamma-1}$$

$$\frac{P_2}{P_1} = \frac{2\gamma \mathcal{M}_s^2 - (\gamma - 1)}{\gamma + 1} \implies \frac{2\gamma}{\gamma + 1} \mathcal{M}_s^2$$

$$\Leftrightarrow P_2 = \frac{2}{\gamma + 1} \rho_1 V_1^2$$
as $\mathcal{M}_s^2 \equiv \left(\frac{V_1}{c_{s1}}\right)^2 = \frac{\rho_1 V_1^2}{\gamma P_1} \Rightarrow \infty$

$$\Rightarrow$$
 as $\mathcal{M}_s^2 \equiv \left(\frac{V_1}{c_{s1}}\right)^2 = \frac{\rho_1 V_1^2}{\gamma P_1} \Rightarrow \infty$

Hot Interior P>> P_{ism} Shocked ISM

$$P_2 \approx \frac{2\gamma}{\gamma + 1} \mathcal{M}_s^2 P_1 = \frac{2}{\gamma + 1} \rho_{\text{ism}} V_s^2$$

Pressure behind strong shock (blast wave)

$$P_{\rm i} = (\gamma - 1)e_{\rm i} \approx (\gamma - 1)\frac{E_{\rm SNR}}{\frac{4\pi}{3}R_{\rm S}^3}$$

Pressure in hot SNR interior

At contact discontinuity: equal pressure on both sides!

$$\frac{2}{\gamma + 1} \rho_{\text{ism}} V_s^2 \approx (\gamma - 1) \frac{E_{\text{SNR}}}{\frac{4\pi}{3} R_s^3}$$

This procedure is allowed because of high sound speeds in hot interior and in shell of hot, shocked ISM:
No large pressure differences are possible!

At contact discontinuity: equal pressure on both sides!

$$\frac{2}{\gamma + 1} \rho_{\text{ism}} V_s^2 \approx (\gamma - 1) \frac{E_{\text{SNR}}}{\frac{4\pi}{3} R_s^3}$$

$$V_s = \frac{dR_s}{dt} \simeq \sqrt{\frac{8\pi}{3(\gamma^2 - 1)}} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/2} R_s^{-3/2}$$

Relation between velocity and radius gives expansion law!

$$R_{\rm s}^{3/2} dR_{\rm s} \simeq \sqrt{\frac{8\pi}{3(\gamma^2 - 1)}} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/2} dt$$

Step 1: write the relation as difference equation

$$R_{\rm s}^{3/2} dR_{\rm s} \simeq \sqrt{\frac{8\pi}{3(\gamma^2 - 1)}} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/2} dt$$

$$\frac{2}{5}d\left(R_{\rm s}^{5/2}\right) \simeq \sqrt{\frac{8\pi}{3\left(\gamma^2 - 1\right)}} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/2} dt$$

Step 2: write as total differentials and.......

Interstellar

$$R_{\rm s}^{3/2} dR_{\rm s} \simeq \sqrt{\frac{8\pi}{3(\gamma^2 - 1)}} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/2} dt$$

$$P_{\text{ism}} < < \rho_{\text{ism}} V_s^2$$

$$\frac{2}{5} d(R_s^{5/2}) \simeq \sqrt{\frac{8\pi}{3(\gamma^2 - 1)}} \left(\frac{E_{\text{snr}}}{\rho_{\text{ism}}}\right)^{1/2} dt$$

$$R_{\rm s}(t) \simeq C_{\gamma} \left(\frac{E_{\rm snr}}{\rho_{\rm ism}}\right)^{1/5} t^{2/5}$$
,

$$C_{\gamma} = \left(\frac{5}{2}\right)^{2/5} \left(\frac{8\pi}{3(\gamma^2 - 1)}\right)^{1/5} \approx 1.96$$

integrate to find the Sedov-Taylor solution

Sedov & Taylor

