
Bernoulli Applications  



A Venturi meter is used to measure the flow rate through a tube.

It is based on the use of the Venturi effect,  the reduction of fluid pressure that results when a
fluid runs through a constricted  section of pipe. It is called after Giovanni Battista Venturi (1746-1822),
an Italian physicist.

Look at the construction in figure: 

- we assume the flow is smooth and 
effectively inviscid, ie. friction is 
negligible.

- the fluid is incompressible, and has 
density r throughout the pipe. 

- downstream we have a flow through
a pipe section of area A1, with a 
flow velocity v1, and pressure p1. 

- in the narrow section with area A2, 
the fluid flows with flow speed v2,
and has accompanying pressure p2.

- as a result the two meters 
indicate the difference in pressure  
by means of a height difference h. 

Venturi Meter



To find the pressure difference between the downstream flow and the pipe narrow, 
we invoke 1) the Bernoulli theorem and 2) the continuity equation. The latter assures that 
the rate of fluid flow through any section remains constant, ie. mass is preserved. 

1) Bernoulli Theorem:   

as the flow is horizontal, we do not have 
to take into account the gravity term.

2) Continuity equation:   

Combining both equations, we find for the
pressure difference in the two parts of 
the pipe:
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To read of the pressure difference between the two locations 1 and 2 in the fluid, we use 
the height difference h between the fluid level in the vertical tubes. To connect this 
height difference h to the pressure difference p1 and p2, we invoke the Euler equation: 

3) Euler equation 
(for a static medium):   

With the outside atmosphere pressure being 
Patm, we then directly infer for the pressure
P1 and p2, 
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Air Flow along Wing

airflow along the wing of an airplane:

note the condensation over the upper 
part of the wing, where the higher flow 
speeds corresponds to a lower pressure 
and thus lower temperature.    



One of the most interesting applications of the Bernoulli equation, 
is the flight of aeroplanes.

Here we will provide a simplified explanation, based on the 
Bernoulli equation (reality is somewhat more complex). 

Aeroplanes can fly because of the pressure difference between 
the flow below the wing and the flow over the wing*. This pressure 
difference results in a lift force that opposes the weight of the 
aeroplane (note that similar lifting forces work on many different
objects, eg. wings of mills or wind turbines, sails on a sailboat, 
propellors). 

Air Flow along Wing

Forces working on a wing – airfoil. 

• Jet fighters often are not kept aflight by   
Bernoulli.   Instead, they  have the thrust 
of the jet motor, with vertical component, 
to keep them in the air. 

Flow around an airfoil: the dots move with 
the flow. Note that the velocities are much 
higher at the upper surface than at the 
lower surface. The black dots are on 
timelines, which split into two — an upper and 
lower part — at the leading edge. The part of 
a timeline below the airfoil does not catch up 
with the one above ! Colors of the dots 
indicate streamlines.
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One of the most interesting applications of the Bernoulli equation, is the flight of aeroplanes.
Here we will provide a simplified explanation, based on the Bernoulli equation (reality is somewhat 
more complex). 

Aeroplanes can fly because of the pressure difference between 
the flow below the wing and the flow over the wing*. This pressure 
difference results in a lift force that opposes the weight of the 
aeroplane (note that similar lifting forces work on many different
objects, eg. wings of mills or wind turbines, sails on a sailboat, 
propellors). 

Air Flow along Wing
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Along the wing, the flow over the 
upper (longer) edge of the wing has 
a (considerably) higher velocity uu
than below the wing, ul *.

As a result (Bernoulli), the pressure
pl at the lower end of the wing is 
higher than the pressure pu at the 
upper end.

The resulting pressure difference 
generates a lift force Flift 

The usual assumption of equal crosstime
of upper and lower flow is not correct. 

According to Bernoulli, 
the Bernoulli function B is constant along any streamline.
Thus, for a horizontally flying plane, we have that

1) 

2)                                                      (Continuity eqn.)       
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CL is the lift coefficient, dependent on 
various factors, including the angle of 
wing wrt. air. 



With the pressure difference between lower and 
upper wing being 

the total effective lift force  

is, with  A the “effective”  planform area , and 
CL the lift coefficient, 

In other words, we need a certain speed V and 
wing area A to get sufficient lift force to lift 
a plane into the air …  (see right) … 
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Air Flow along Wing

Reality, of course, is slightly more complex.
The accompanying movie gives an impression … 



Bernoulli Equation: compressible fluids.
A very interesting application of the Bernoulli equation, for compressible fluids, concerns 
the de Laval nozzle. 

A de Laval nozzle is a tube that is pinched in the middle, making a carefully balanced, asymmetric 
hourglass-shape. The nozzle was developed in 1888 by the Swedish inventor Gustaf de Laval for 
use on a steam turbine.  The principle was first used for rocket engines by Robert Goddard. 

The de Laval nozzle forms a nice platform to highlight the differences introduced by the 
compressibility of a gas when applying Bernoulli’s theorem.

De Laval Nozzle



The de Laval nozzle is used to accelerate a hot, pressurised gas passing through it to a supersonic 
speed.  

High-pressure gas coming from the combustion chamber enters the nozzle and flows into a region 
where the nozzle cross section decreases,  dA/dx < 0. The thermal energy is converted into 
kinetic energy of the flow, and the flow goes through a sonic point at the critical point where the 
nozzle cross section narrows to its minimum (dA/dx=0). At that point the flow speed reaches the 
sound velocity. The cross section increases again after the critical point, and the gas is further 
accelerate to supersonic speeds. 

The de Laval nozzle shapes the exhaust flow 
so that the heat energy propelling the flow 
is maximally converted into directed 
kinetic energy.  

Because of its properties, the nozzle is widely 
used in some types of steam turbine, it is 
an essential part of the modern rocket engine, 
and it also sees use in supersonic jet engines.

Astrophysically, the flow properties of the de Laval nozzle have been applied towards 
understanding jet streams, such as observed in AGNs (see figure), the outflow from 
young stellar objects and  likely occur in Gamma Ray Bursts (GRBs). 

De Laval Nozzle



De Laval Nozzle
If we make the approximation of steady, quasi-1-D 
barotropic flow, we may write Bernoulli’s theorem 
and the equation of  continuity as

where A is the local sectional area of the nozzle.

Note that because of the compressibility of the gas we 
no longer assume a constant density, and thus have to 
keep r in the integral. 

Gravitational potential variations are ignored, as for  
terrestrial applications the fast flow of jet gases is not 
relevant over the related limited spatial extent. 
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Two illustrations of the de Laval nozzle principle. 
The 2nd figure is a measurement of the flow speed 
in an experiment. 



De Laval Nozzle
The variation of the area A along the axis of the nozzle
will introduce spatial variations for each of the other 
quantities. 

To consider the rate of such variations, take the 
differential of the Bernoulli equation, 

Taking into account that the sound velocity cs associated
with the barotropic relation is

we find from the equations above that

We define the Mach number of the flow as the ratio of the 
flow velocity to the sound velocity,  
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Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
From the relation between velocity and density, 

we find that the fractional change of density r is related to 
the fractional change of the fluid velocity u via the equation

This equation states that the square of the Mach number 
provides a measure of the importance of compressibility. 

In particular, flow of air at subsonic speeds past terrestrial
obstacles can often be approximated as occurring at
incompressibility, because the fractional change of density r
is negligible in comparison with the fractional change of u if 
Má1. 

In contrast, supersonic flight past obstacles necessarily 
involves substantial compressions and expansions.   

Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
To relate the change of velocity u to the change of 
sectional area A in the nozzle, we take the logarithmic 
derivative of the continuity equation, 

To consider the rate of such variations, take the 
differential of the Bernoulli equation, 

which, taking into account the relation between density r and 
flow speed u, yields the following relation between u and A:

Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
the relation

has the following implications:

1) Subsonic speeds:  

this corresponds to normal experience, eg. the speeding
up of a river as the channel narrows.   Illustration of the run of flow speed u, pressure p 

and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
2)  Supersonic speeds:  

In other words, an increase in the velocity requires an 
increase  in the area of the nozzle, dA>0 !!! 

This counterintuitive result has a simple explanation:
for M>1, the density decreases faster than the area 
increases, so the velocity must increase to maintain 
a constant flux of mass. 

Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
3) A sonic transition , ie.

can be made smoothly, ie. With

only at the throat of the nozzle where

To obtain supersonic exhaust, therefore, we must 
accelerate the reaction gases through a 
converging-diverging nozzle, a fundamental feature 
behind the design of jet engines and rockets. 

4) Note that the converse does not necessarily hold:

M does not necessarily equal unity at the throat of 
the nozzle, where  dA=0.  If M∫1, the fluid velocity 
reaches a local extremum when the area does, i.e. 
du=0   where  dA=0. 

Whether the extremum corresponds to a local maximum
or minimum depends on whether we have subsonic or 
supersonic flow and whether the nozzle has a converging-
diverging shape. 

Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.
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De Laval Nozzle
Final Notes:

5)   whether supersonic exhaust is actually achieved in 
nozzle flow also depends on the boundary conditions.         
In particular, on the pressure of the ambient medium in 
comparison with the pressure of the reaction chamber.

If a sonic transition does occur, the flow behaviour
depends sensitively on the nozzle conditions, since the 
coefficient  1-M2 becomes arbitrarily small near the 
transition region. 

6) When external body forces are present, we do not need 
to have a throat to achieve the smooth transition of 
subsonic to supersonic flow. The external forces can 
provide the requisite acceleration. 

Illustration of the run of flow speed u, pressure p 
and temperature T, as the gas passes through the 
nozzle and its sonic point.



De Laval Nozzle

Werner von Braun:

father of the Saturn 5 moon 
rocket
(and the German V2 missiles 
WWII)

Standing near motor exhausts 
Saturn V 



Apollo 11: 
mission to the moon

Launch  Apollo 11

July 16, 1969

exhausts of motors
of the giant
Saturn 5 moon rocket

beautiful illustration
of workings 
De Laval nozzle



Potential Flow  



Many problems of practical importance, involving a large number of engineering and terrestria
conditions concern incompressible flows. 

For an incompressible flow, we have

which follows directly from the continuity equation on the basis of the conditions 

In other words, for an incompressible fluid (a liquid)  the variation of pressure p in the 
force (Euler) equation equals whatever it needs so that                . 

Note that for an incompressible medium, Kelvin’s circulation theorem is valid independent 
of the barotropic assumption: because               the vorticity equation is true independent of  

Incompressible Flow
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Many problems in hydrodynamics involve the motion of a solid body (eg., a ship) through 
water that is stationary at infinity. 

From the point of view of an observer fixed on the ship, the water flowing past 
the ship originates from a steady region of uniform conditions.

æ Uniform flow has no vorticity: 
Kelvin’s circulation then guarantees
that no vorticity will be generated 
in the flow around the ship.

Note: this is only true as long as 
the effect of viscosity can be 
ignored. 

æ If                          everywhere, 
the flow field can be derived from 
the gradient of a scalar, the 
velocity potential    

Incompressible Flow
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If we substitute the velocity potential definition 

into the continuity equation 

we obtain the condition for potential flow, 

This is nothing else than the Laplace equation. 

Thus, the solution of many problems in hydrodynamics boils down to a solution of the 
Laplace equation. The problem is well-posed , and there is a vast body of work on its solution.  

To solution of the Laplace equation is dictated by the boundary (and initial) conditions that 
are imposed.  

Potential Flow
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To solve the Laplace equation, we need to specify the boundary conditions. There are a 
Variety of boundary conditions.  Usually, these involve one (or more) of the following :

a) The value of       on the bounding surface of the fluid                 Dirichlet boundary conditio

b) The value of its normal derivatives on the boundaries                 Neumann boundary conditio

For the problem of a flow past a solid object like 
a ship or a sphere, we have the important 
condition that the water should not penetrate 
the object, ie. there should be no flow normal 
to its surface. This translates into the 
Neumann boundary condition:

a) for the object at rest:

b) if the object moves with velocity     , then  

Boundary Conditions
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To find the solutions to the Laplace equation,  

one can apply the mathematical machinery of potential theory. 
To provide an idea of the  solutions we concentrate on solutions for  

Spherical geometry (of object) and Axisymmetric flow

The general axisymmetric solution of Laplace’s equation 

is obtained by the separation-of-variables method in 
spherical polar coordinates, ie. 

which  yields    

Potential Flow
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r is the spherical radius
q the co-latitude (see figure):

An and Bn are arbitrary constants,
whose value is determined by 
the boundary conditions.  

Pn is the Legendre Polynomial of 
degree n:
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I.14 Euler & Potential flow
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In the case of potential flow, we find from the fact that it is irrotational, 

and the velocity can be written as the gradient of a potential Fv that the Euler equation

for barotropic flow and potential external forces can be written as 
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I.14 Euler & Potential flow
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for barotropic flow and potential external forces can be written as 

from which we can immediately infer that the Bernoulli function is a function of time:

2

2

1 0
2

1 ( ) ( )
2

v

v v

u h
t

u h B t T t
t t





        


   
     

 

 





Hydrostatics  



Systems where motion is absent altogether, or at least has no dynamic effects, are 
in  hydrostatic equilibrium: 

In those situations, the fluid equations reduce to simple equilibrium equations. 

1) Continuity equation: 

2) Euler equation:

(the latter identity in the Euler equation is for the body force being the gravitational force).

We will shortly address four typical examples of hydrostatic equilibrium, all of major 
astrophysical interest

1) Archimedes’  Principle, bouyancy forces

2) Isothermal sphere

3) Stellar Structure equations

4)   Mass determination of clusters from their X-ray emission. 

Hydrostatics
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Archimedes’ 

Principle



Syracuse,  287‐211/212 BC,

Greatest mathematician & 
scientist of antiquity (all time ?):

∏ Probably studied in Alexandria, 
under followers Euclides

∏ Killed by Roman soldier, upon 
Roman conquest Syracuse

∏ Family Hieron II, king Syracuse ? 

∏ Inventions:
‐ war machines … 

‐ water screw 

‐ water organ (?) 
‐ burning mirrors  (???)

‐ planetarium !!!!!!!



Archimedes’  Principle
In the situation where an object is (partially) immersed in a fluid (see figure), 
Archimedes’ principle states, shortly, that 

Buoyancy  =  Weight of displaced fluid

Pressure by water on displaced volume:

This is called the buoyancy force, and underlies a large 
amount of practical applications – starting from ships 
floating on water.   
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Archimedes Principle

Buoyancy  =  Weight of displaced fluid

‘the principle is called after 
Archimedes of Syracuse (287-212 BC),
Antiquities’ greatest genius. 

He got the idea when ordered by 
King Hieron II of Syracuse to 
investigate whether the 

golden crown he had ordered to be 
manufactured contained the pure 
gold he had provided the goldsmith or 
whether the smith had been dishonest
and included silver … 

Immersing the crown in water, Archimedes
determined the volume. Comparing its weight
by a balance containing similar amount of 
pure gold, he found the density of the the
crown … which turned out not to be pure



Archimedes & Hieron’s Golden Crown



Archimedes Principle

Buoyancy  =  Weight of displaced fluid



Archimedes Principle: Iceberg
A telling example of how Archimedes’ principle 
works is the floating of icebergs. 

How much of an iceberg is visible over the 
water level depends on the density of ice wrt. 
the density of fluid water  ? 

rice     =0.9167   g/cm3 at    T=0o C

rwater=0.9998   g/cm3 at    T=0o C

With the volume of the iceberg =Vice, and the 
volume of the iceberg immersed in the water Vwater :

Determine the fraction of the iceberg’s volume 
immersed in the water ...



Archimedes Principle: Iceberg
A telling example of how Archimedes’ principle 
works is the floating of icebergs. 

How much of an iceberg is visible over the 
water level depends on the density of ice wrt. 
the density of fluid water  ? 

rice     =0.9167   g/cm3 at    T=0o C

rwater=0.9998   g/cm3 at    T=0o C

With the volume of the iceberg =Vice, and the 
volume of the iceberg immersed in the water Vwater :

Ie., only 8% of the iceberg is visible above the 
water, hence ...

0.92

water water ice ice

water ice

ice water

V g V g

V
V

 








 



Archimedes Principle: Iceberg



Isothermal 

Sphere



What is the equilibrium configuration of a spherically symmetric gravitating body ?

The two equations governing the system are the hydrostatic equilibrium (Euler) equation 
and the Poisson equation:

Because of spherical symmetry, we write the Laplacian in spherical coordinates:

Therefore, in spherical coordinates the hydrostatic and Poisson equation become:

Isothermal  Sphere
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Integration of the second equation gives:

where m(r) is the mass contained within the shell of radius r,

To solve this equation, we have to invoke the nature of the gas, ie. the equation of state 
p(r). We assume an ideal gas, for which

We make the assumption that it concerns a gas with constant molecular weight m and a 
constant temperature T  (an isothermal sphere). This yields the following equation: 

Isothermal  Sphere

2 ( )dr Gm r
dr



2

0

( ) 4 ( )
r

m r x x dx  

2
s

Rp T c 


 

2 2
24sr cd d Gr

dr dr
  


 

  
 



The equation for isothermal sphere hydrostatic equilibrium,

has the solution

This is the well-known isothermal sphere solution. 

Notice that the isothermal sphere solution is singular at the center. Nevertheless, 
it provides a useful analytic approximation for various astronomical problems 
(sometimes a core is added). 

Note: in real stars the temperature and, with it, the pressure increases with depth, 
Which provide enough support against self collapse without the need for a singularity at 
r=0

Isothermal  Sphere
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Cluster 
X-ray  Emission:

Hydrostatic Equilibrium



Clusters of Galaxies
• Assemblies of up to 1000s of galaxies within 

a radius of only 1.5-2h-1 Mpc.

• Representing overdensities of   δ~1000

• Galaxies move around with velocities  ~ 1000 km/s

• They are the most massive, and most recently, 
fully collapsed structures in our Universe. 



Clusters of Galaxies

Coma Cluster
HST/ACS



Cluster X-ray Emission



Cluster X-ray Emission



Clusters:
X-ray emitting Hot Gas Spheres 

M51

ROSAT X‐ray image Coma Cluster

‐ T ~ 10‐100 million Kelvin !!!

‐ in Hydrostatic Equilibrium:

Gravity =  Pressure

‐ assume perfect spherically 

symmetric gas sphere:
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Hydrostatic Equilibrium:

Pressure =  Gravity

where M(r) is the mass within radius r:

Hence, 

Clusters:
X-ray emitting Hot Gas Spheres 
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For an ideal gas:

Hence,

Which, after some algebraic manipulation, leads to ... 

Clusters:
X-ray emitting Hot Gas Spheres 
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Which, after some algebraic manipulation, leads to ... 

Clusters:
X-ray emitting Hot Gas Spheres 
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Cluster  Mass:
X‐ray emitting Hot Gas Spheres

M51

ROSAT  X‐ray image  Coma Cluster

Hydrostatic Equilibrium:

Determination  Mass from X‐ray observations:

‐assumption:              

Isothermal:                T(r)=To

‐ temperature:                T ~10‐100 million Kelvin

‐density profile: 

X‐ray emission Bremsstrahlung:     L(r) ~ ρ(r)2



• Clusters not only contain galaxies:

• in fact, galaxies & stars are a minor component:

I.    Clusters are  Halos  of  Dark Matter:

MDM/Mtotal ~  82%

II.   Clusters are Hot Balls of (highly ionized) Gas

MICM/Mtotal ~ 16‐17 %

III.  Galaxies are mainly raisins in a sea of 

dark matter & hot gas 

Mstars/Mtotal ~  2% 



Stellar Structure:

Hydrostatic Equilibrium



Stellar Structure



Continuity equation:

conservation of  mass
in shell (r,r+dr)

Hydrostatic Equilibrium:

Pressure =  Gravity

dP = pressure difference over  
shell mass dmr

Energy conservation & generation:

Energy generated by shell dmr:
‐ nuclear  energy en
‐ thermodynamic energy eg
‐ energy loss neutrinos en

Energy transport

radiative & conductive energy 
transport,  shell opacity k

Stellar Structure Equations
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Stellar Structure


