


What is a Fluid ?




I. What is a fluid-2 -

I.1 The Fluid approximation:

The fluid is an idealized concept in which the matter is described as a
continuous medium with certain macroscopic properties that vary as
continuous function of position (e.g., density, pressure, velocity,
entropy).

That is, one assumes that the scales | over which these
quantities are defined is much larger than the mean free path @ of the
individual particles that constitute the fluid,

| > A; /1:L

on

Where n is the number density of particles in the fluid and o is a
typical interaction cross section.
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Furthermore, the concept of local fluid quantities is only useful if the
scale | on which they are defined is much smaller than the typical
macroscopic lengthscales L on which fluid properties vary. Thus to use the
equations of fluid dynamics we require

L>1> A

Astrophysical circumstances are often such that strictly speaking not
all criteria are fulfilled.



I. What is a fluid-2—

Astrophysical circumstances are often such that strictly speaking not
all fluid criteria are fulfilled.

Mean free path astrophysical fluids (temperature T, density n):

A=10°(T*/n)cm
(T*/n)

1) Sun (centre): T=10'K, n=10*cm> = A1~10" cm
A< R, =7x10" cm fluid approximation very good

2) Solar wind: T=10K, n=10 cm> = A1~10" cm
A> AU =1.5x10" cm  fluid approximation does not
apply, plasma physics
3) Cluster: T=3x10'K, n=10"cm> = A1~10* cm
A ~1Mpc fluid approximation marginal



Solid vs. Fluid

By definition, a fluid cannot withstand any tendency fo}*_ applied forces
to deform it, (while volume remains unchanged). Such deformation may
be resisted, but not prevented.
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Gauss's Law Stoke's Theorem



Lagrangian vs. Eulerian-View

There is a range of different ways in which we can follow the evolution of
a fluid. The two most useful and best known ones are:

1) Eulerian view

Consider the system properties Q - density, flow velocity,
temperature, pressure - at fixed locations. The temporal

changes of these quantities is therefore followed by
partial time derivative:
aQ

ot
2) Lagrangian view
Follow the changing system properties Q as you flow along

with a fluid element. In a way, this “particle” approach is

in the spirit of Newtonian dynamics, where you follow the
body under the action of external force(s).

The temporal change of the quantities is followed by means
of the “"convective” or "Lagrangian” derivative

bQ
Dt




Lagrangian vs. Eulerian-View

Consider the change of a fluid quantity Q(r,1) at alocation F

1) Eulerian view:

change in quantity Q in interval &t, aQ _ Q(F,t + 51:) B Q(Fat)
at location T: ot — St

DQ Q(r+or,t+ot)—-Q(r,t)

2) Lagrangian view: Dt B ot
change in quantity Q in time interval &t,
while fluid element moves from

_9Q
Fto F+0F 6t —+V-VQ

Convective/
E — 0 LV -V Lagrangian
Dt ot Derivative




Einstein Summation Convention

In the practice of having to deal with equations involving a large number of
vector and tensor quantities, we may quickly get overwhelmed by the large number
of indices that we have to deal with.

Take for example the inproduct of two vectors /K\ and é in 3-D space,
A-B= AB +AB, +AB; = Zizl AB,
The Einstein summation is a fransparent means of writing this more succinctly,
A-B=AB

By simply noting that in the case of an index occurring twice, it implies the
summation over that index (k=1 to 3).

Another example that occurs many times in a fluid dynamical context is that
of the divergence of a vector field |,
oF, oF,

?-ﬁ:ﬁl:l—l—alzz—l— _
OX, OX, OX;  OX,




Basic

Fluid Equations




Conservation Equa'l:ions

To describe a continuous fluid flow field, the first step is to evaluate the development
of essential properties of the mean flow field . To this end we evaluate the first 3 moment of the
phase space distribution function f(F,V) , corresponding to five quantities,

For a gas or fluid consisting of particles with mass m, these are

( )
1) mass density [ L ) m
2) momentum density ,OU = j mv f (F, \_i,t) dv
3) (kinetic) energy density \ ¢ ) \m ‘\7 — U‘z / 2)

Note that we use Uto denote the bulk velocity at location r,and V. for the particle velocity. The
velocity of a particle is therefore the sum of the bulk velocity and a “random” component W,

V=U+W

In principle, to follow the evolution of the (moment) quantities, we have to follow the
evolution of the phase space density f(I,V). The Boltzmann equation describes this
evolution.




Boltzmann Equation

In principle, to follow the evolution of these (moment) quantities, we have to follow the
evolution of the phase space density f (I,V) This means we should solve the
Boltzmann equation,

N v -Vo.v f =[O
ot ot

C

The righthand collisional term is given by
of VAR Vi Vi Vi Vi Vi Vi
(Ej :_ﬂv —V,|o(Q)] £ (V) f(v)-f(V)f(V,)]dadv,
in which i

o(Q)=0(V,%7,V,)

is The angle B-dependent elastic collision cross section.

On the lefthand side, we find the gravitational potential ferm, which according to the Poisson
equation V2®=47Z'G(,0+ peXt)

is generated by selfgravity as well as the external mass distribution Pext (X’t).




Boltzmann Equation

To follow the evolution of a fluid at a particular location x, we follow the evolution of a quantity
B(x,v) as described by the Boltzmann equation. To this end, we integrate over the full velocity

range,
of o oo 5
—— dv = dv
7 & T o T o v, jl(&tj

If the quantity y(X,V)is a conserved quantity in a collision, then the righthand side of the
equation equals zero. For elastic collisions, these are mass, momentum and (kinetic) energy of a
particle. Thus, for these quantities we have,

j;(@—:j dv =0

The above result expresses mathematically the simple notion that collisions can not contribute to
the time rate change of any quantity whose total is conserved in the collisional process.

For elastic collisions involving short-range forces in the nonrelativistic regime, there exist exactly
five independent quantities which are conserved:

mass, momentum (kinetic) energy of a particle,
m_,
X =Mm; A =MV, :_V‘




_ Boltzmann Moment-Equations

When we define an average local quantity,

(Q)=n""[Qfdv

for a quantity Q, then on the basis of the velocity integral of the Boltzmann equation, we get the
following evolution equations for the conserved quantities 2,

0 0 ob /O
5(“<Z>)+a(”<vk1>)+“5xk aji =0

For the five quantities

. . m,._,
X =m; X =MV ZZE‘V ‘
the resulting conservation equations are known as the
1) mass density continuity equation
2) momentum density Euler equation
3) energy density energy equation

In the sequel we follow - for reasons of insight - a slightly more heuristic path fowards inferring
the continuity equation and the Euler equation.




Continuity equation

To infer the continuity equation, we consider the
conservation of mass contained in a volume V
which is fixed in space and enclosed by a
surface S.

The mass M is

M:jvpdv

The change of mass M in the volume V is equal to
the flux of mass through the surface S,

%Lpde—(ﬁspﬁﬁdS

Where N is the outward pointing hormal vector.

=}

LHS: j pdV = jv P v

RHS,
using the divergence theorem (Green's formula):

(ﬁpu .dS = j pu dV




Since this holds for every volume, this
relation is equivalent to

op ) —
po +V-(pt)=0 (I1.1)

The continuity equation expresses
- mass conservation
AND

- flmd flow occurring in a

One can also define the mass flux density as

j = pu
which shows that egn. I.1 is actually a
continuity equation




_ Continuity Equation & Compressibility

From the continuity equation,

we find directly that ,

oap
ot

Of course, the first two terms define the Lagrangian derivative, so that for a moving fluid
element we find that its density changes according to

th

In other words, the density of the fluid element changes as the divergence of the velocity flow.
If the density of the fluid cannot change, we call it an incompressible fluid , for which ¥/ . {j = ()

+U- Vp+pV =0




~ Momentum Conservation

When considering the fluid momentum, ¥ = MV, via the Boltzmann moment equation,

%(”<z>)+%(n<vkz>)+”gj:<§i>:0

we obtain the equation of momentum conservation,

%(p(v&ﬁ%(p(mv&%pi—f =0

Decomposing the velocity v;into the bulk velocity u; and the random component w;,
we have
(VY ) = Uyu, + (W, w, )

By separating out the trace of the symmetric dyadic ww,, we write

P<WiWk> = POy — 7y




~ Momentum Conservation

By separating out the trace of the symmetric dyadic ww,, we write

/0<Wiwk> = POy — 7

where

1 )
P is the "gas pressure” P= 5,0 <‘W‘ >

B, is the "viscous stress tensor” T = ,0<

we obtain the momentum equation, in its conservation form,

- 5 oD
o P+ o (Pt POy = ) == p 2




~ Momentum Conservation

Momentum Equation

- 5 oD
P00, )= p

Describes the change of the momentum density PU; in the i-direction:

The flux of the i-th component of momentum in the k-th direction consists of the sum of

1) a mean part: puU,
2) random part I, isotropic pressure part: POy

3) random part II, nonisotropic viscous part: ik




Force Equation—

Momentum Equation

- 5 oD
P00, )= p

By invoking the continuity equation, we may also manipulate the momentum equation so that
it becomes the force equation

pg—t::—pﬁcb—ﬁp+§ﬁ




Viscous Stress

A note on the viscous stress term 7i :
For Newtonian fluids:

Hooke's Law
states that the viscous stress 7Z'ikiS linearly proportional fo the rate of strain 8ui / 8xk ,

Ty = 2 M2 +ﬂ(v.u)5ik
where 2, is the shear deformation tensor,

Zik:l 5Ui+5uk —l(ﬁﬁ)é‘lk
210% oOx | 3

The parameters @ and @ are called the shear and bulk coefficients of viscosity.



Euler equation

In the absence of viscous terms, we may easily derive the equation for the conservation of

momentum on the basis of macroscopic considerations. This yields the Euler equation.

As in the case for mass conservation, consider an arbitrary volume V, fixed in space, and
bounded by a surface S, with an outward normal .

Inside V, the fotal momentum for a fluid with density o and flow velocity u is
J ou dV
Vv
The momentum inside V changes as a result of three factors:

1) External (volume) force,
a well known example is the gravitational force when V embedded in gravity field.

2) The pressure (surface) force over de surface S of the volume.
(at this stage we'll ignore other stress tensor terms that can either be caused by
viscosity, electromagnetic stress tensor, etfc.):

3) The net transport of momentum by in- and outflow of fluid into and out of V




Euler equation

V d

where ]? is the force per unit mass, known as the body force. An example is the
gravitational force when the volume V is embeddded in a gravitational field.

2) The pressure (surface) force is the integral of the pressure (force per unit area) over

the surface S
- c_‘SS pn dS

3) The momentum transport over the surface area can be inferred by considering at each
surface point the slanted cylinder of fluid swept out by the area element BS in time Bf,
where BS starts on the surface S and moves with the fluid, ie. with velocity (I . The
momentum transported through the slanted cylinder is

§(pi)=-p0(d-A)5tsS
so that the total transported momentum through the surface S is:

s (pu)=-¢ pu(u-n)ds




Euler equation

Taking into account all three factors, the total rate of change of momentum is given by

d—tjvpadv =ij fdv —cﬁspﬁdS—gﬁspa(a-ﬁ)ds

The most convenient way to evaluate this integral is by restricting oneself to the i-component
of the velocity field,

d—tjvpuidv :jvp f,dV —cﬁspnidS—@Spuiujnde

Note that we use the Einstein summation convention for repeated indices.
Volume V is fixed, so that d 0
dt v~ j vV ot
Furthermore, V is arbitrary. Hence,

(pu )+ (puu )———+pf




Euler equation-

Reordering some terms of the lefthand side of the last equation,
0 0 op
—(pu, )+ —(puu. )=——+p f
—A(pu) aXJ_(p Uy)=-5 e

leads to the following equation:

Slou  ou; +ui{ap+ : fpuj)}z_ﬁ_pwfi

ot @Xj\ O X.

From the continuity equation, we know that the second term on the LHS is zero. Subsequently,
returning to vector notation, we find the usual exprssion for the Euler equation,

Returning to vector notation, and using the we find the usual expression for the Euler equation:

0 ‘Z—‘:Hu*ﬁ)a - Vp+pf (1.4)




Euler equation—

An slightly alternative expression for the Euler equation is

ou ,
—+ (U -V ) =—- —+ f | .5
— ) (1.5)

In this discussion we ighored energy dissipation processes which may occur as a result of
internal friction within the medium and heat exchange between its parts (conduction). This
type of fluids are called ideal fluids.

Gravity:

—

For gravity the force per unit massis givenby f = —V @ where the
Poisson equation relates the gravitational potential @ to the density B&:

Vi =47Gp




Euler equation-

From eqgn. (I.4)

0 %—‘:HJ.?)J ——Vp+pf (1.4)

we see that the LHS involves the Lagrangian derivative, so that the Euler equation can
be written as

DU - -
= —VDp+ f | .6
P 57 p+ p (1.6)

In this form it can be recognized as a statement of Newton's 2" law for an inviscid
(frictionless) fluid. It says that, for an infinitesimal volume of fluid,

mass times acceleration = total force on the same volume,

namely force due to pressure gradient plus whatever body forces are being exerted.




Energy Conservation

In terms of bulk velocity U and random velocity W the (kinetic) energy of a particle is,

The Boltzmann moment equation for energy conservation

%(n<z>)+%(n<vw>)+n 2;1) <§\7/i>=0

becomes

%[?(‘UZMQWV»} + &[g«uk + W, Hu, + W, )2>} Jr\pg%uk =0

Expanding the term inside the spatial divergence, we get

<(uk +w ) (U +w, )2> = [d]" u, +2u, (ww, ) +u, <\W\2>+<Wk \VT/\2>



Energy Conservation

Defining the following energy-related quantities:

1,2\ 3

1) specific internal energy: 0O& = P E‘W‘ ZE P
1 2
2) "gas pressure” P= §p<‘W >
| BT

3) conduction heat flux Fk = P\ Wy E‘W

1,2
4) viscous stress tensor Tlik :,0<§‘W 5.k _WiWk>




Energy Conservation

The total energy equation for energy conservation in its conservation form is

_(ﬁ‘u +pgj +6—[§‘U‘2 uk+ui(P5ik—7zik)+pguk+Fk} = —pU,

oD

OX,

This equation states that the total fluid energy density is the sum of a part due to
bulk motion U and a part due to random motions W.

The flux of fluid energy in the k-th direction consists of

1) the translation of the bulk kinetic energy at the k-th component of the mean velocity,

(il /2)u,

2) plus the enthalpy - sum of internal energy and pressure - flux,
(pe+P)u

3) plus the viscous contribution _uiﬂ'ik

4) plus the conductive flux Fk




Work Equation

Internal Energy Equation

For several purposes it is convenient fo express energy conservation in a form that involves
only the internal energy and a form that only involves the global PdV work.

The work equation follows from the full energy equation by using the Euler equation,
by multiplying it by U; and using the continuity equation:

21 )+ (L u)= - S0 Fovu 2
ot OX OX. OX. OX,

Subtracting the work equation from the full energy equation, yields the
internal energy equation for the internal energy g

0 0 ou, OF
Z(pe) + —(peu )= —P—k —Zk 4
ot (p2) OX, (pet) ox,  Ox,
. . o ou;
where B is the rate of viscous dissipation Y= Ty

evoked by the viscosity stress 7T,

8xk




o Internal energy-equation

If we use the continuity equation, we may also write the internal energy equation in the form of
the first law of thermodynamics,

D _pY.G-V-E P

ko)
\
|

in which we recognize

-~ _ ~ [);)
—PV-li=-P| p' =
[p Dt}

as the rate of doing PdV work, and

+¥

—

_V-F

cond

as the time rate of adding heat (through heat conduction and the viscous conversion of ordered
energy in differential fluid motions to disordered energy in random particle motions).



Energy Equation

On the basis of the kinetic equation for energy conservation

0 _ 0 _
a(g‘u‘z_'_pgj+a_xk|:§‘u‘2uk+Ui(P5ik_7Tik)+pEUk+Fk:| = pu,g,

we may understand that the time rate of the change of the total fluid energy in
a volume V (with surface area A), i.e. the kinetic energy of fluid motion plus internal energy,
should equal the sum of

1) minus the surface integral of the energy flux (kinetic + internal)

2) plus surface integral of doing work by the internal stresses P;

3) volume integral of the rate of doing work by local body forces (e.g. gravitational)
4) minus the heat loss by conduction across the surface A

5) plus volumetric gain minus volumetric losses of energy
due to local sources and sinks (e.g. radiation)




Energy Equation

The total expression for the time rate of total fluid energy is therefore

d | BT I
prey ( p‘u‘ +p5jdV——<J‘>AH§p‘u‘ +pgju]ndA+

+$ uPndA + | pU-gav -

~ Fong -AdA+ [ (T—A)dV

P, is the force per unit area exerted by the outside on the inside in the ith
direction across a face whose normal is oriented in the k™ direction.
For a dilute gas this is

By = _P<WiWk> =— POy + 7,

& [ is the energy gain per volume, as a result of energy generating processes.
® [ is the energy loss per volume due to local sinks (such as e.g. radiation)



Energy Equation

By applying the divergence theorem, we obtain the fotal energy equation:




Heat Equation-

Implicit to the fluid formulation, is the concept of local thermal equilibrium. This allows us
to identify the trace of the stress tensor P, with the thermodynamic pressure p,

Py = —Po + 7

Such that it is related to the internal energy per unit mass of the fluid, &,
and the specific entropy s, by the fundamental law of thermodynamics

de=Tds—pdV =Tds—pd (o)

Applying this thermodynamic equation and subtracting the work equation, we obtain the
Heat Equation,

pTB—::—VIfcond +¥Y+T-A

ou,
where @ equals the rate of viscous dissipation, ¥ =r; 8—I
Xy



Fluid Flow
Visualization




Flow Visualization:

" Streamlines, Pathlines & Streaklines

Fluid flow is characterized by a velocity vector field in 3-D space.

There are various distinct types of curves/lines commonly used when visualizing fluid motion:
streamlines, pathlines and streaklines.

These only differ when the flow changes in time, ie. when the flow is not steady ! If the flow
is not steady, streamlines and streaklines will change.

1) Streamlines

Family of curves that are instantaneously tangent to the velocity
vector U. They show the direction a fluid element will travel at
any point in fime.
If we parameterize one particular streamline FS (S),with FS (s=0)=X,,
then streamlines are defined as
dly Tl ) =
—x 0 (lg) =0




Flow Visualization:

_/j E

Streamlines

Definition Streamlines:
dr

ds

If the components of the

x T (lg) =0

streamline can be written as

. = (X,Y,2)

and R

dii = (dx,dy,dz)

then




Flow Visualization:

_/j -

Pathlines

2) Pathlines

Pathlines are the trajectories that individual fluid particles follow. These can be thought

of as a "recording" of the path a fluid element in the flow takes over a certain period.

The direction the path takes will be
determined by the streamlines of
the fluid at each moment in time.

Pathlines TP (1) are defined by

dr, -
—=u(l,,t
\I_’P(to):)_(PO

where the suffix P indicates we are following the path of particle P. Note that at location
the curve is parallel to velocity vector Ip , Where the velocity vector [j is evaluated at
location IP at time t.



Flow Visualization:

Streaklines

3) Streaklines

Streaklines are are the locus of points of all the fluid particles that have passed

continuously through a particular spatial point in the past.

Dye steadily injected into the fluid
at a fixed point extends along a
streakline. In other words, it is
like the plume from a chimney.

—

Streaklines |T can be expressed as

dI =
=U(l, 1)
dt
(TT ) =X
where U(|T ,t) is the velocu‘ry at loca‘rlon| at tfime t. The parameter 7;
parameterizes the streakline | (t,7;) and 0 <z, <t,witht, fime of interest.

\




Flow Visualization:

" Streamlines, Pathlines, Streaklines

The following example illustrates the different concepts of

streamlines, pathlines and streaklines:

15

red: pathline
blue: streakline

- —_— — R — e — —_— — -_— —_— — —_— —— p— — e — _—

short-dashed:
evolving streamlines

LU0 o o s o s s i . e e e . . e . e . e

3 C— —— - — —— —_ —_— —— _ -—— - — — — —— -

Dl o et e e e e e B e e e e e e

" " i " 1 i i i " L " " i " L
0.0 0.5 1.0 15




Steady flow

Steady flow is a flow in which the velocity, density and the other fields
do not depend explicitly on time,namely 6 / 0t = 0
Steady va. Non-Steady Flow
Steady

Unsteady

iﬂlwi

FThe COMET Puogpram

In steady flow streamlines and streaklines do not vary with time and coincide with
the pathlines.



Kinematics
of Fluid Flow




_ Stokes' Flow Theorem

Stokes' flow theorem:

The most general differential motion of a fluid element corresponds to a

1)  uniform translation

2) uniform expansion/contraction divergence term
3) uniform rotation vorticity term
4) distortion (without change volume) shear term

The fluid velocity U (Q ) at a point Q displaced by a small amount R from a point P will
differ by a small amount, and includes the components listed above:

0(Q)=0(P)+HR+VS+QxR
Vv v

Divergence Vorticity

uniform uniform rotation
expansion/contraction

uniform translation Shear term
distortion



Stokes' Flow Theorem

Stokes' flow theorem:

the terms of the relative motion wrt. point P are:

2)| Divergence term: H _lﬁ i
uniform expansion/contraction 3
3)| Shear term: 1
S=—2;RR
uniform distortion 2
. shear deformation scal 1 |ou ou 1/, = _
S ear deformation scalar 2|k :_{ L Ol __(V.u)é,lk
2. : shear tensor 20X, OX 3
l- _ 1.
4)| Vorticity Term: Q= EV xU = Ew
uniform rotation &= ¥ x




Stokes' Flow Theorem

Stokes' flow theorem:

One may easily understand the components of the fluid flow around a point P by
a simple Taylor expansion of the velocity field U (X ) around the point P:

Su, =u,(X+R,t)—u, (X,t)= ou, R,
0X,

Subsequently, it is insightful to write the rate-of-strain tensor gu . / ox, in
terms of its symmetric and antisymmetric parts:

ou; 1 8ui+auk +1 ou;, 0u,
0X, 20X, O0X, 2\ O0X, 0X,
The symmetric part of this tensor is the deformation tensor, and it is convenient

-and insightful - to write it in terms of a diagonal trace part and the traceless
shear tensor ¥ .

Su = —(V -J)éik + X, + o,




Stokes' Flow Theorem

where

1) the symmeftric (and traceless) shear tensor X ;, is defined as

5= 1 aui+ ou, —~L(§'4T)5w
2 OX, 0 X 3

2) the antisymmetric tensor @ i as

1 du, ou,
@ = -
2 OX, 0X,

3) the trace of the rate-of-strain tensor is proportional to the velocity divergence term,

_L(§ JT)5W::1 au1+ au2+au3 5.
3 3\ 0OX, oX, 0 X,




Stokes' Flow Theorem

Divergence Term
1_(6.0,)5”( _ 1 5U1 N 8u2 +@U3 5”(
3 3\ 0X, o0X, 0X,

We know from the Lagrangian continuity equation,

I Dp _
p Dt

-V -a

that the term represents the uniform expansion or contraction of the fluid
element.




Stokes' Flow Theorem

Shear Term

The traceless symmetric shear term,

1 (ou, @
Zikzz[ark UKJ__(V ")

represents the anisotropic deformation of the fluid element. As it concerns a
traceless deformation, it preserves the volume of the fluid element (the
volume-changing deformation is represented via the divergence ’rerm)

.

(intention of illustration is that the volume of the sphere

and the ellipsoid to be equal)



Stokes' Flow Theorem

Shear Term

Note that we can associate a quadratic form - ie. an ellipsoid - with the shear
tensor, the shear deformation scalar S,

1
S=—2 RR
2 ik MYk

such that the corresponding shear velocity contribution is given by

ou . -
" OR

We may also define a related quadratic form by incorporating the divergence term,

=2 Ry
1 1 /=
P, = DR, R =5{zmk +§(V-u)§mk}RmRk

ob, 1]ou ou,
=— + R,
OR. 2| 0%  OX

Evidently, this represents the irrotational part of the velocity field. For this reason,
we call d the velocity potential:

—

G=VDd. = Vx0i=0

v



Stokes' Flow Theorem

Vorticity Term

The antisymmetric term,

1| ou, ou,
i T o ax,
X 0X,

represents the rotational component of the fluid element’s motion, the vorticity.

With the antisymmetric @ ;, we can associate a (pseudo)vector, the vorticity vector

—_

o =V x U

where the coordinates of the vorticity vector, @ = (601 s Wy, 603) , are related to
the vorticity tensor via

ou, ou, ou,
@Dy = €nik o x = 20, = ox ox
i K i

where ¢ . is the Levi-Cevita tensor, which fulfils the useful identity
€ kim gmps = §kp5is B 5ks5ip

— 8kima)m




Stokes' Flow Theorem

Vorticity Term

The contribution of the antisymmetric part of the differential velocity
therefore reads,

ou, ;= 1 (SUi - aaUijk = ;_gkima)mRk = Eim Q n Ry
’ Xy X,

The last expression in the eqn. above equals the i-th component of the rotational
velocity 1

V..=QOxR szﬁxu*

of the fluid element wrt to its center of mass, so that ‘rhe vorticity vector can
be identified with one-half the angular velocn‘ry of the fluid element,




Linear Momentum Fluid-Element

The linear momentum P of a fluid element equal the fluid velocity U (Q ) integrated
over the mass of the element,

p=[u(Q)dm
Substituting this into the equation for the fluid flow around P,
0(Q)=0(P)+HR+VS+QxR
we obtain:
ﬁzJ(P)jdm + ﬁxjﬁdm +Hj§dm + _[ﬁSdm

If P is the center of mass of the fluid element, then the 2" and 3 terms on the RHS
vanhish as

jﬁdmzo
Moreover, for the 4th term we can also use this fact to arrive at,

jViS dm = jzikRk dm:Ziijk dm=0



Linear Momentum Fluid-Element

Hence, for a fluid element, the linear momentum equals the mass times the
center-of-mass velocity,

p = [G(Q)dm = m G (P)




_,‘_,Angular' Momentum Fluid Element

With respect to the center-of-mass P, the instantaneous angular momentum of a
fluid element equals

<
Il

j[ﬁxJ(Q)] dm

We rotate the coordinate axes to the eigenvector coordinate system of the
deformation tensor D, (or, equivalently, the shear tensor X ), in which
the symmetric deformation tensor is diagonal

1 1

. / / r r D2 / r2 / r2
D, _EDmkRm R _E(Dan + D5, R+ DysR; )
and all strains D . are extensional,
5 U o o,
11_8’, 22_8’, 33_8’
X X, X3

Then

J/ = [[Ryus(Q) = Riuj(Q)]dm




_Angular Momentum Fluid Element

In the eigenvalue coordinate system, the angular momentum in the 1-direction is

[[R3u(Q) - R{uj(Q)]dm

where

us(Q) =u;(P)+ (QR; - Q)R/)+ DR
U3 (Q) =u;(P)+ (QiR/-QRj)+ DR,

with Q =V x 0 /2 and D evaluated at the center-of-mass P. After some
algebra we obtain

r ! ! ! ! / / ! ! !
‘]1 — |11Q1+ Izzﬂz + |33Q3 + |23(D22 o D33)

where | |, is the moment of inertia tensor
1! = j(‘R’ S - R;R,')dm
Notice that 1, is not diagonal in the pmmed frame unless the principal axes of |

happen to coincide with those of D



_Angular Momentum Fluid-Element

Using the simple observation that the difference

/ / . / . 4
D22_D33—222 Z33

since the isotropic part of | !, does not enter in the difference,
we find for all 3 angular momentum components

‘J1’: 1’|Q;+|2’3(2’22_2’33)
‘J2’: 2’|Q;+I?:1(2,33_2{1)
J3’:|3’|Q;+|1’2(Z{1_2'22)

with a summation over the repeated I's.

Note that for a solid body we would have
r ' '
J il Q)
For a fluid an extra contribution arises from the extensional strain if the principal
axes of the moment-of-inertia tensor do not coincide with those of D ., .

Notice, in particular, that a fluid element can have angular momentum wrt. its
center of mass without possesing spinning motion, ie.evenif Q =V x 0 /2 = 0!



Inviscid Barotropic

Flow




Inviscid Barotropic Flow

In this chapter we are going to study the flow of fluids in which we ignore
the effects of viscosity .

In addition, we suppose that the energetics of the flow processes are
such that we have a barotropic equation of state

P =P(p,5)=P(p)

Such a replacement considerably simplifies many dynamical discussions, and
its formal justification can arise in many ways.

One specific example is when heat transport can be ignored, so that we
have adiabatic flow,

s _0s V-V )s=0
Dt ot

with s the specific entropy per mass unit. Such a flow is called an isentropic flow.
However, barotropic flow is more general than isentropic flow. There are also
various other thermodynamic circumstances where the barotropic hypothesis

is valid.



Inviscid Barotropic Flow

For a barotropic flow, the specific enthalpy h

dh =T ds + Vdp

becomes simply

and




Kelvin Circulation-Theorem

Assume a fluid embedded in a uniform gravitational field, i.e. with an external
force N

so that - ignoring the influence of viscous stresses and radiative forces - the
flow proceeds according to the Euler equation,

a_u_|_ Uﬁ)ﬂ':g__p
ot Jo,

To proceed, we use a relevant vector identity

LS\ - - . - (1 .2
(0-V)a=(Vxd)xd+V ?\u\
which you can most easily check by working out the expressions for each of the

3 components.
The resulting expression for the Euler equation is then

ou 1 .2 = . . #p
——I-V(Z—‘U‘ j+(VXU)XU:g—7

ot




Kelvin Circulation-Theorem

If we take the curl of equation

we obtain
@—w + V x (03 x U ] .
ot yo,
where @ is the vorticity vector,
w =V xU
and we have used the fact that the curl of the gradient of any function equals
zero,

— —

vxv(;—mzj:o; VxV(p)=0

Also, a classical gravitational field § = -V ¢ satisfies this property,

—_

Vxg=20

so that gravitational fields cannot contribute to the generation or destruction
of vorticity.



Vorticity Equation

In the case of barotropic flow, ie. if
Pp=p(p) = Vp:(—JVP
so that also the 2" term on the RHS of the vorticity equation disappears,

1 = - 1 (ap | = -
—VpopxVp = 2( ijprzO
P p-\0op

The resulting expression for the vorticity equation for barotropic flow
in a conservative gravitational field is therefore,

a@—?+§x(c§xﬁ)20

which we know as the Vorticity Equation.




_ Kelvin Circulation-Theorem

Interpretation of the vorticity equation:
ow = .
8—t+ V x (a) x U ): 0

Compare to magnetostatics, where we may associate the value of B
with a certain number of magnetic field lines per unit area.

With such a picture, we may give the following geometric interpretation of
the vorticity equation, which will be the physical essence of the

Kelvin Circulation Theorem

The number of vortex lines that thread any element of area, that
moves with the fluid , remains unchanged in time for
inviscid barotropic flow.




Kelvin Circulation-Theorem

To prove Kelvin's circulation theorem, we define the circulation & around a
circuit C by the line integral,

Transforming the line integral to a surface integral over the enclosed area A
by Stokes' theorem,

r = jA(ﬁxJ).ﬁdA

we obtain

r:jAas.ﬁdA

This equation states that the circulation @ of the circuit € can be calculated
as the number of vortex lines that thread the enclosed area A.



Kelvin Circulation-Theorem

Time rate of change of =

Subsequently, we investigate the time rate of change of @ if every point on
C moves at the local fluid velocity U .

Take the time derivative of the surface integral in the last equation.
It has 2 contributions:

dI J 0w

- = — N dA + | o -(time rate of change of area
dt A Ot I ( ) )

where 1 is the unit normal vector to the surface area.



Kelvin Circulation-Theorem

Time rate of change of =
dI" J‘ 0w
dt A Ot
The time rate of change of area can be expressed mathematically with the help of
the figure illustrating the change of an area A moving locally with fluid velocity

-ndA + ja?-(time rate of change of area)

change in area = (udt x d£)

FIGURE 6.2 ‘ . )
The time-rate change of an area A moving locally with t]lle fluid velocity u

comes from the parts swept up or left behind by the motion of the boundary C.
Each line element d£ on C contributes u x d€ to the time rate of change of the

On the basis of this, we may write, e, an expresion Lt contains b the magntuds ofth fct s vell o e
dI J‘ 0w
dt A Ot
We then interchange the cross and dot in the triple scalar product

@ (0xdl )= (axa)-dl

AdA + @C@-(der)



Kelvin Circulation-Theorem

Time rate of change of =

Using Stokes' theorem to convert the resulting line integral

dI ow L -
F: jAa—tndA + CﬁC(Q)XU)'dI

to a surface integral, we obtain:

dd—l’;: IA[%—Cf+§x(éxJ)}-ﬁ dA

The vorticity equation tells us that the integrand on the right-hand side equals zero,
so that we have the geomeftric interpretation of Kelvin's circulation theorem,

dI
dt

= 0




Kelvin Circulation-Theorem

Time rate of change of =

Using Stokes' theorem to convert the resulting line integral

dI’ ow L =
W: jAa—tndA + CﬁC(Q)XU)'dI

to a surface integral, we obtain:

dd—l’;: IA[%—Cf+§x(éxJ)}-ﬁ dA

The vorticity equation tells us that the integrand on the right-hand side equals zero,
so that we have the geomeftric interpretation of Kelvin's circulation theorem,

dI
dt

= 0




the Bernoulli Theorem

Closely related to Kelvin's circulation theorem we find Bernoulli's theorem.

It concerns a flow which is steady and barotropic, i.e.

ou _
and ot
Pp=p(p)

Again, using the vector identity,
= = - (1 2
u-v)u=(UxV )xuo+V|—U
(59 )0 = (5% )0+ 9 [ Lo
we may write the Euler equation for a steady flow in a gravitational field
- VD




the Bernoulli Theorem

The Euler equation thus implies that

2
where h is the specific enthalpy, equal to
d

h= [ =2
yo,
for which _
= \%

Vh=_YP
yo,

We thus find that the Euler equation implies that

@xuz—ﬁ(;—\a\2+h+¢j



the Bernoulli Theorem

Defining the Bernoulli function B
| B
B — ?‘U ‘ + ¢ + h

which has dimensions of energy per unit mass. The Euler equation
thus becomes

Now we consider two situations, the scalar product of the equation with and

—

U ando,

1) (U-v)B =20 B is constant along streamlines
this is

Bernoulli's streamline theorem

2) (w -V)B =0 B is constant along vortex lines
ie. along integral curves @ ( X)

* vortex lines are curves tangent to the vector field @ (X))



