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1 Bow Shock

We will determine the shock front between two binary stars with masses M; and M, rotating in circular
orbits around their common barycenter. Star 1 produces a wind with speed w; that emits mass (from the
star) at a rate M, = dM, /dt and likewise for star 2. The winds will collide in a so called ‘bow shock’. The
surface of the bow shock is defined by the momentum flux condition

pruiy = paud (1)

where the L denotes that the velocities perpendicular to the shock front’s surface are considered.
Here we assume a ‘cold flow’, i.e. the pressure can be ignored. This is a fine approximation for O stars.
For completeness, the Rankine-Hugoniot Jump conditions are:

P1ULIL = P2U2| (2)
p1ui, + Py =paus, + Py (3)
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These are (respectively) the conditions for mass-flux conservation (2), momentum-flux conservation (3)
and energy-flux conservation (4). In this exercise, however, we will only use the second equation, and in a
simplified form (as mentioned, without the pressure term).

1. Rotational Forces

Choose a coordinate system in which star 1 is fixed at the center and star 2 orbits at fixed distance
D around star 1. This must be a rotating coordinate system that moves in the opposite direction to
star 1; see the top images in figure 1. Due to this, there will be two fictitious rotational forces, the
centrifugal and Coriolis forces, that cause accelerations (in the rotating system) given respectively by:

—QAx (2x7r). (5)

and
—2Q xu (6)

a. Consider a fluid element in the wind from star 1. Derive two expressions for the displacement
or = %at2 due to the accelerations of the two rotational forces, as a function of only r, u and .
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Figure 1: The top-central image depicts a rotating coordinate system with star 1 at the center. €2 points
out of the paper, towards the reader. At the bottom a sketch of the situation for question 2 is drawn.



b. We can approximate the wind as being a purely radial flow (i.e. we can ignore the rotational forces)
if the displacement due to rotational forces is very small compared to the total displacement r
from the initial position (the star’s position). What condition on r does this imply?

c. If we assume u; = ug = 2000 km s~ !, M} = My = 10Mg, and D = 10R, where R, = 3R, is the

individual stellar radius, is the condition fullfilled? Express your (numerical) estimate in units of
D, for which you can use that for a binary system we have that

G(Ml + Mg)

Q= 53 . (7)

d. Argue that the same relations hold for the wind from star 2, i.e. that we can also approximate
wind 2 as a radial flow.

2. Slope of the Bow Shock

Ignore rotational effects and show that the local slope of the surface of the bow shock obeys

@ _ rovV/Rsin B + 71 sin fo (8)
dx  ryv/Rcos By + 11 cos Ba
where 7; is the distance vector from star ¢ to the bow shock front, and 3; is the angle that r; makes
with respect to the line through both stars. At the bottom of figure 1 is a sketch of the situation. The
constant is given by

M1U1
= —. (9)
Msuz
Hint 1: rewrite equation 1 to get rid of the u;’s and p;’s. Hint 2: what conservation law can we use

to get rid of the p;’s? Hint 3: what is g—g as function of 67

R

3. Position of the Bow Shock

Assume Ml/Mg = 10 and u; = uy. Where does the shock front cross the imaginary line (M1,M2)

between the two stars, in terms of D? Hint: what should happen to 2% (or %) on this line between
the two stars?

dz



2 The isothermal normal shock

For shock waves in an adiabatic gas, the pressure and density are related by a polytropic gas law of the form

P="R (p)7 . (10)

Po

In this assignment we look at a special case: that of an isothermal gas where the temperature on both sides
of the shock is the same:
Th=T,=T. (11)

Formally this corresponds to v = 1 as the ideal gas law gives P = pRT /p.
One can express the gas pressure in terms of the (now constant) isothermal sound speed cs:

P(p) = pc?, where c,=+/RT/u. (12)

An isothermal gas can arise in astrophysics when the gas on both sides of the shock is immersed in a strong
radiation field that imposes its temperature on the gas, acting as a thermostat. Then something happens
akin to what is illustrated in the figure below. The gas first encounters a real shock in which the temperature
sharply rises. This shock is immediately followed by a transition layer where the excess thermal energy of
the gas is radiated away. This stops when the gas attains the original (upstream) temperature. In this
assignment we collapse this transition layer to zero thickness!.

Consider a normal shock where the velocity is perpendicular to the shock front. The strength of the
shock can be characterised by the isothermal Mach number

M=u/cs. (13)

The table below gives the values of the flow parameters on both sides of the shock in the up- and downstream
region.

Quantity ‘ upstream ‘ downstream
Velocity Up Ug
Density 01 02

Mach number | My =wui/cs | Mo =us/cs

1. As in any shock, the mass flux and the momentum flux must be the same on both sides of the shock
so that no mass or momentum accumulates in the (infinitely thin) shock. Show that, in the case of a
normal isothermal shock, mass- and momentum conservation imply the following jump conditions:

piMy = pa My (mass conservation) ; (14)
p1(M32 +1) = pa(M32 +1) (momentum conservation). (15)

2. Derive that these two jump conditions mean that the downstream Mach number M5 and the upstream
Mach number M; satisfy the relation

MIME — (M2 +1)Ma+ M; =0. (16)

1One can show that for a steady shock, with 9/9t = 0 for all relevant quantities, that simplification is not even needed. The
results you will obtain in this assignment are then valid for a transition layer of arbitrary thickness! The reason is that the ‘flux
in = flux out’ principle, on which the whole calculation is based, now holds for a volume bounded by any two surfaces that are
positioned perpendicular to the flow: you can not store mass, momentum or energy in the volume between the two surfaces. If
you did, the density and the velocity would no longer satisfy 0p/9t = 0, Hu /Ot = 0 within that volume! The obvious choice
for the placement of these two surfaces is one immediately ahead of the shock, and one immediately behind the transition layer
where the temperature returns to the upstream value.
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Figure 2: A schematic representation of the behaviour of the gas temperature T (blue curve) in an isothermal
shock. In this figure, the gas flows from left to right. First the incoming gas encounters a true shock, where
(as in any shock) the temperature, density and pressure rise sharply. Then the excess thermal energy per
particle is radiated away as the gas cools in a transition layer behind the shock. The cooling stops when
the temperature returns to the pre-shock value. The downstream state you are asked to calculate in this
assignment corresponds to the state of the gas behind this transition layer.



3. Derive that there are two solutions, one trivial solution and one for a true isothermal shock:
My = M; (the trivial ‘no shock’ solution) ; (17)

My =1/M; (the isothermal shock jump condition) . (18)
Give the compression r = py/p1 = ug/ug in the shock solution. This dimensionless parameter deter-

mines the relation between upstream and downstream quantities u, p and P.

4. In the case treated in the lectures, we need three conservation laws (conservation of mass, momentum
and energy, expressed in terms of their respective fluxes) to find the final relation linking the upstream
state and the downstream state of the gas: the Rankine-Hugoniot relations.

Give a physical argument why in the isothermal case the two laws of mass- and momentum conservation
are sufficient to totally determine the downstream state, given the upstream state of the gas.

5. In an isothermal gas, the energy flux equals

pu {“22 +c2In (/ﬁ))} , (19)

with pg an arbitrarily chosen reference density. It is convenient for this particular problem to take that
density to be equal to the upstream density:

po = p1- (20)

Show, by rewriting the flux so that all but one p;’s (or all if you convert the last p; into a pressure FP;)
and all u;’s are gone, that this energy flux is not the same on both sides of the shock if M; # M.
This means that due to the interaction of the gas with the radiation the energy per unit mass of the
flow is no longer conserved!



