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1 Bow Shock

We will determine the shock front between two binary stars with masses M1 and M2, rotating in circular
orbits around their common barycenter. Star 1 produces a wind with speed u1 that emits mass (from the
star) at a rate Ṁ1 = dM1/dt and likewise for star 2. The winds will collide in a so called ‘bow shock’. The
surface of the bow shock is defined by the momentum flux condition

ρ1u
2
1⊥ = ρ2u

2
2⊥ (1)

where the ⊥ denotes that the velocities perpendicular to the shock front’s surface are considered.
Here we assume a ‘cold flow’, i.e. the pressure can be ignored. This is a fine approximation for O stars.

1. Rotational Forces

Choose a coordinate system in which star 1 is fixed at the center and star 2 orbits at fixed distance
D around star 1. This must be a rotating coordinate system that moves in the opposite direction to
star 1; see the top images in figure 1. Due to this, there will be two fictitious rotational forces, the
centrifugal and Coriolis forces, that cause accelerations (in the rotating system) given respectively by:

−Ω× (Ω× r) . (2)

and
−2Ω× u (3)

a. Consider a fluid element in the wind from star 1. Derive two expressions for the displacement
δr = 1

2at
2 due to the accelerations of the two rotational forces, as a function of only r, u and Ω.

b. We can approximate the wind as being a purely radial flow (i.e. we can ignore the rotational forces)
if the displacement due to rotational forces is very small compared to the total displacement r
from the initial position (the star’s position). What condition on r does this imply?

c. If we assume u1 = u2 = 2000 km s−1, M1 = M2 = 10M�, and D = 10R∗ where R∗ = 3R� is the
individual stellar radius, is the condition fullfilled? Express your (numerical) estimate in units of
D, for which you can use that for a binary system we have that

Ω =

√
G(M1 +M2)

D3
. (4)

d. Argue that the same relations hold for the wind from star 2, i.e. that we can also approximate
wind 2 as a radial flow.

2. Slope of the Bow Shock

Ignore rotational effects and show that the local slope of the surface of the bow shock obeys
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Figure 1: The top-central image depicts a rotating coordinate system with star 1 at the center. Ω points
out of the paper, towards the reader. At the bottom a sketch of the situation for question 2 is drawn.
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dy

dx
=
r2
√
R sinβ1 + r1 sinβ2

r2
√
R cosβ1 + r1 cosβ2

(5)

where ri is the distance vector from star i to the bow shock front, and βi is the angle that ri makes
with respect to the line through both stars. At the bottom of figure 1 is a sketch of the situation. The
constant is given by

R =
Ṁ1u1

Ṁ2u2
. (6)

Hint 1: rewrite equation 1 to get rid of the ui⊥’s and ρi’s. Hint 2: what conservation law can we use
to get rid of the ρi’s? Hint 3: what is dy

dx as function of θ?

3. Position of the Bow Shock

Assume Ṁ1/Ṁ2 = 10 and u1 = u2. Where does the shock front cross the imaginary line (M1,M2)
between the two stars, in terms of D? Hint: what should happen to dy

dx (or dx
dy ) on this line between

the two stars?

4. The Bow Shock

Plot the bow shock using the previous two answers! Hint: it doesn’t look exactly like in the sketch ;-)
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2 The isothermal normal shock

In the lectures we have considered shock waves in an adiabatic gas, where the pressure and density are
related by a polytropic gas law of the form

P = P0

(
ρ

ρ0

)γ
. (7)

In this assignment we look at a special case: that of an isothermal gas where the temperature on both sides
of the shock is the same:

T1 = T2 = T . (8)

Formally this corresponds to γ = 1 as the ideal gas law gives P = ρRT/µ.
One can express the gas pressure in terms of the (now constant) isothermal sound speed cs:

P (ρ) = ρc2s , where cs ≡
√
RT/µ . (9)

An isothermal gas can arise in astrophysics when the gas on both sides of the shock is immersed in a strong
radiation field that ‘imposes’ its temperature on the gas, acting as a thermostat. Then something happens
akin to what is illustrated in the figure below. The gas first encounters a real shock in which the temperature
sharply rises. This shock is immediately followed by a transition layer where the excess thermal energy of
the gas is radiated away. This stops when the gas attains the original (upstream) temperature. In this
assignment we collapse this transition layer to zero thickness1.

Consider a normal shock where the velocity is perpendicular to the shock front. The strength of the
shock can be characterised by the isothermal Mach number

M = u/cs . (10)

The table below gives the values of the flow parameters on both sides of the shock in the up- and downstream
region.

Quantity upstream downstream
Velocity u1 u2
Density ρ1 ρ2
Mach number M1 = u1/cs M2 = u2/cs

1. As in any shock, the mass flux and the momentum flux must be the same on both sides of the shock
so that no mass or momentum accumulates in the (infinitely thin) shock. Show that, in the case of a
normal isothermal shock, mass- and momentum conservation imply the following jump conditions:

ρ1M1 = ρ2M2 (mass conservation) ; (11)

ρ1(M2
1 + 1) = ρ2(M2

2 + 1) (momentum conservation) . (12)

2. Derive that these two jump conditions mean that the downstream Mach numberM2 and the upstream
Mach number M1 satisfy the relation

M1M2
2 − (M2

1 + 1)M2 +M1 = 0 . (13)

1One can show that for a steady shock, with ∂/∂t = 0 for all relevant quantities, that simplification is not even needed. The
results you will obtain in this assignment are then valid for a transition layer of arbitrary thickness! The reason is that the ‘flux
in = flux out’ principle, on which the whole calculation is based, now holds for a volume bounded by any two surfaces that are
positioned perpendicular to the flow: you can not store mass, momentum or energy in the volume between the two surfaces. If
you did, the density and the velocity would no longer satisfy ∂ρ/∂t = 0, ∂u/∂t = 0 within that volume! The obvious choice
for the placement of these two surfaces is one immediately ahead of the shock, and one immediately behind the transition layer
where the temperature returns to the upstream value.
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Figure 2: A schematic representation of the behaviour of the gas temperature T (blue curve) in an isothermal
shock. In this figure, the gas flows from left to right. First the incoming gas encounters a true shock, where
(as in any shock) the temperature, density and pressure rise sharply. Then the excess thermal energy per
particle is radiated away as the gas cools in a transition layer behind the shock. The cooling stops when
the temperature returns to the pre-shock value. The downstream state you are asked to calculate in this
assignment corresponds to the state of the gas behind this transition layer.
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3. Show (i.e. derive, don’t just check!) that there are two solutions, one trivial solution and one for a
true isothermal shock:

M2 =M1 (the trivial ‘no shock’ solution) ; (14)

M2 = 1/M1 (the isothermal shock jump condition) . (15)

Give the compression r = ρ2/ρ1 = u1/u2 in the shock solution. This dimensionless parameter deter-
mines the relation between upstream and downstream quantities u, ρ and P .

4. In the case treated in the lectures, we need three conservation laws (conservation of mass, momentum
and energy, expressed in terms of their respective fluxes) to find the final relation linking the upstream
state and the downstream state of the gas: the Rankine-Hugoniot relations.

Give a physical argument why in the isothermal case the two laws of mass- and momentum conservation
are sufficient to totally determine the downstream state, given the upstream state of the gas.

5. In an isothermal gas, the energy flux equals

ρu

[
u2

2
+ c2s ln

(
ρ

ρ0

)]
, (16)

with ρ0 an arbitrarily chosen reference density. It is convenient for this particular problem to take that
density to be equal to the upstream density:

ρ0 = ρ1 . (17)

Show, by rewriting the flux so that all but one ρi’s (or all if you convert the last ρi into a pressure Pi)
and all ui’s are gone, that this energy flux is not the same on both sides of the shock if M1 6= M2.
This means that due to the interaction of the gas with the radiation the energy per unit mass of the
flow is no longer conserved!
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