Astrophysical Fluid Dynamics

Lecturer: Rien van de Weijgaert
 a Room 186, phone 4086, email: weygaert@astro.rug.nl
 b Office hours: You are always welcome to come to my office for short questions. You can also make an appointment via email.

Teaching assistant: Stefano Antonellini
 a Office: 192, phone: 8689, email: S.Antonellini@astro.rug.nl

The purpose of the course is to complete the fluid mechanics background needed in astrophysics.

Attendance of a substantial fraction of course lectures is obligatory.

Problem sets are mandatory and constitute about 25% of the final grade.

Written exam at the end of the term: April 10, 2014 (exam) May 8, 2014 (re-exam)
Bibliography

I. The lecture notes and handouts are the main source of material. However, there are a number of good books that the student can use to clarify some of the topics or for extra material.

II. Interesting Books:

- **Fluid Mechanics**, Landau and Lifshitz
 - Exceptional book but of somewhat higher level.
- **Gas Dynamics**: Vol. II, Physics of Astrophysics, F. Shu
 - Univ. Science Books, very good for astrophysical perspective.
- **An Introduction to Fluid Dynamics**, G. K. Batchelor
 - Historic classic, widely regarded as a "bible" for the subject.
 - Daunting at first sight, but lucid, thorough and reliable.
- **Astrophysica: Inleiding Gasdynamica**, Bram Achterberg (UU)
 - Very clear and complete treatment of astrophysical hydrodynamics
- **Album of Fluid Motion**, van Dyke
 - Beautiful photographs showing fluid in motion

Astrophysical Fluid Mechanics

Topics

<table>
<thead>
<tr>
<th>I</th>
<th>Fluid Picture Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>Basic fluid equations of ideal fluids</td>
</tr>
<tr>
<td>III</td>
<td>Inviscid Barotropic Flows: Kelvin Circulation Theorem Bernoulli Theorem</td>
</tr>
<tr>
<td>IV</td>
<td>Incompressible Fluids Compressible fluids: Waves</td>
</tr>
<tr>
<td>V</td>
<td>Waves</td>
</tr>
<tr>
<td>VI</td>
<td>Hydrodynamic Instabilities</td>
</tr>
<tr>
<td>VII</td>
<td>Shock Waves</td>
</tr>
<tr>
<td>VIII</td>
<td>Viscous flows: Navier-Stokes Eqns.</td>
</tr>
<tr>
<td>IX</td>
<td>Similarity solutions</td>
</tr>
<tr>
<td>X</td>
<td>Turbulence</td>
</tr>
<tr>
<td>XI</td>
<td>Numerical (astro)hydrodynamics</td>
</tr>
</tbody>
</table>
Fluid Picture Book

Waves: sea & ocean waves
Cosmic Sound Waves

Primordial Sound Ripples seen in WMAP Cosmic Microwave Background
Convection: Benard cells

Convection: Earth Atmosphere
Convective cells on solar surface

Vortex & Vorticity
Vortices in Shear Flow

Tornados: Atmospheric Vortices
Hurricanes: Atmospheric Vortices

Vortices and Eddies: Jupiter's turbulent atmosphere
Voriticity Flow around Jupiter’s Red Spot

May 15, 2008 June 28, 2008 July 8, 2008

Jupiter’s Red Spots
Hubble Space Telescope • WFPC2

NASA, ESA, and A. Simon-Miller (NASA Goddard Space Flight Center) • STScI-PRC08-27
Jupiter’s Great Red Spot

Rayleigh-Taylor Instability

2 fluids of different density
Rayleigh-Taylor Instability

2 fluids of different density

Rayleigh-Taylor Instability

fluids of different density
Cosmic Rayleigh-Taylor Instability

Crab Supernova Remnant

Kelvin-Helmholtz Instability

at the boundary of 2 shearing fluids
Kelvin-Helmholtz Instability

KH instability in cloud cover

Kelvin-Helmholtz Instability

KH instability in Saturn's atmosphere
Supersonic Motion & Shockwaves
Supersonic Motion & Shockwaves

Cosmic Shockwave:
Supernova remnant CasA
Gas streams along magnetic field lines

Solar surface
TRACE