
Chapter 6

Linear small-amplitude waves

6.1 Introduction

One of the main difficulties of fluid mechanics is its intrinsic non-linearity, explicitly visible
in the (V · ∇)V term in the equation of motion. This makes it difficult to find exact
solutions, except in those cases where there is a lot of symmetry1. An example of such
a situation is the Solar Wind model treated in Chapter 4: it is a steady flow (∂/∂t = 0)
and in addition the flow is spherically symmetric so that the direction of the flow lines
is known in advance: the radial direction. This is in fact the maximum symmetry that
is non-trivial for a flow in three dimensions, the trivial case being a flow that is steady
with a globally constant speed, density and pressure.

Another way to simplify the equations is to look at small perturbations around an
equilibrium where there is a force balance. This equilibrium state that is a solution of the
fluid equations. One then looks at small deviations from that equilibrium, assuming that
the changes in velocity, density and pressure remain small. If that is the case, nonlinear
terms can be neglected when describing the evolution of these small perturbations, for
instance: all variations in fluid quantities such as velocity, density and pressure can be
expressed as linear functions of the displacement field ξ(x , t) that decribes how far
individual fluid elements are displaced from their equilibrium position. This vector field
(simply called the displacement vector from now on) plays a pivotal role in the theory.
The linearization technique works well if the amplitude of the displacement vector remains
sufficiently small.

As an illustration of this technique, often referred to as perturbation analysis, I will look
at an analogous situation in classical mechanics.

1I use the term symmetry here in a general mathematical sense. As such, it includes not only spatial
symmetries, such as spherical symmetry with ∂/∂θ = ∂/∂φ = 0, but also the case of a steady flow the
the symmetry ∂/∂t = 0.
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6.1.1 Perturbation analysis of particle motion in a potential

Consider a particle of mass m moving in one dimension x in a potential V (x), which
leads to a force F (x) = −dV/dx. The equation of motion for this particle reads:

m
d2x

dt2
= F (x) = −dV

dx
. (6.1.1)

Now let’s assume that there is an equilibrium position x0 where the force F (x) vanishes.
This implies that the potential satisfies

(
dV

dx

)
x=x0

= 0 . (6.1.2)

Consider a particle at rest at the equilibrium position x = x0. We now perturb the
particle, shifting its position from x = x0 to x = x0 + ξ. How will the particle move?

In the immediate vicinity of x0 (i.e. for small ξ) the potential can be expanded in powers
of ξ = x− x0 as:

V (x0 + ξ) ≈ V0 +

(
dV

dx

)
x=x0

ξ +
1

2

(
d2V

dx2

)
x=x0

ξ2 + · · · (6.1.3)

Here V0 ≡ V (x0). If we break off the expansion for the potential at the quadratic term,
and use the equilibrium condition (6.1.2) we get

V (x0 + ξ) ≈ V0 +
1

2
k ξ2 , (6.1.4)

where k ≡ (d2V/dx2)x=x0. Now substituting

x(t) = x0 + ξ(t) (6.1.5)

into the equation of motion (6.1.1), and using ξ = x − x0 so that for constant x0 one
has

dV

dx
=

dξ

dx

dV

dξ
=

dV

dξ
, (6.1.6)
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one finds:

m
d2ξ

dt2
= −dV

dξ
= −kξ . (6.1.7)

By breaking off the expansion (6.1.3) of the potential at the quadratic term in ξ, we get
a linear equation of motion for the dispacement ξ(t) of the particle. Had we included
terms proportional to ξ3, there would be a corresponding nonlinear term ∝ ξ2 in the
equation of motion for ξ. By making this choice we have linearized the problem. We
must therefore assume that |ξ| remains sufficiently small so that our approximation for
V (x0 + ξ) remains valid.

The equation of motion (6.1.7) looks like the equation of motion for a linear oscillator
if k > 0. In that case the force is directed back towards the equilibrium position x0, and
the solution is a harmonic oscillation around the equilibrium position:

ξ(t) = ξ0 cos(ωt+ α) , (6.1.8)

where ξ0 is the amplitude of the oscillation and the oscillation frequency equals

ω =

√
k

m
=

√√√√ 1

m

(
d2V

dx2

)
x=x0

. (6.1.9)

The amplitude ξ0 and phase angle α follow directly from initial conditions: the displace-
ment ξ(0) = ξ0 cosα and the velocity (dξ/dt)0 = −ωξ0 sinα at t = 0.

The condition k > 0 corresponds to:

(
d2V

dx2

)
x=x0

> 0 . (6.1.10)

Condition (6.1.10) is simply that the position x0 must correspond with a minimum in
the potential. In that case the equilibrium is stable since a small perturbation from the
equilibrium position leads to a harmonic oscillation of the particle around that position.
The stable case is illustrated below.
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Figure 6.1: A simple example of a stable oscillation is the motion of a spherical ball in a bowl
under the influence of gravity. The gravitational potential energy equals V (ξ) = mgh(ξ), with
g acceleration of gravity and where ξ is the horizontal distance to the point where the bottom
of the bowl reaches its lower level. This point coincides with x = 0. Also, h(ξ) is the height
above the lowest point at distance ξ. The minimum of the potential occurs in this example at
x = 0, and the constant k in this case equals k = mg (d2h/dx2)x=0.
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If on the other hand the equilibrium position is at a maximum, so that k < 0 and

(
d2V

dx2

)
x=x0

< 0 , (6.1.11)

the force is always directed away from equilibrium position x0. In that case the solution
of the equation of motion for ξ reads

ξ(t) = ξ+ exp(σt) + ξ− exp(−σt) . (6.1.12)

The term proportional to ξ+ grows exponentially in time, and will dominate the solution
when σt 1. The growth rate σ is

σ ≡
√
|k|
m

=

√√√√ 1

m

∣∣∣∣∣d
2V

dx2

∣∣∣∣∣
x=x0

. (6.1.13)

The amplitude of the term ∝ ξ+ doubles in a time interval Δt = τ = ln 2/σ = 0.693/σ,
and grows without bound. This exponential growth of ξ(t) (in the linear approximation)
implies that the equilibrium is linearly unstable: the particle will move further and further
away from the equilibrium position. This means that our assumption that linearization
is allowed must inevitably break down when the displacement becomes sufficiently large.
It is still possible that the exact motion (without the linearization assumption) is stable,
so that the equilibrium is linearly unstable, but nonlinearly stable. In what follows, we
will not consider that case and assume that the presence of a linear instability signals a
true instability of the system.

This example of perturbation anaysis illustrates the main features of an approach that
is also valid in fluid mechanics. There we will also perturb an equilibrium, and derive
a linear equation of motion for a small displacement Δx = ξ from that equilibrium. If
the equilibrium is stable we will find the linear waves (oscillations) the fluid is able to
support. If the equilibrium turns out to be unstable, we will find the linear growth rate of
the instability. Like in the case of ordinary mechanics, the perturbation approach allows
us to determine the stability of an equilibrium state.
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6.2 What constitutes a wave?

In an ideal fluid in a stable equilibrium, small pertubations in pressure, density and
temperature propagate as waves. The qualification ‘small’ in this context means that a
number of conditions must be satisfied:

• The amplitude of the pressure perturbation ΔP , density perturbation Δρ and the
temperature perturbation ΔT are all small compared with the average pressure,
density, and temperature:

|ΔP | � P , |Δρ| � ρ , |ΔT | � T . (6.2.1)

• The displacement Δx ≡ ξ of a fluid element must be small compared with the
wavelength λ of the wave, and the wavelength is small compared with the scale
length L on which the average pressure, density or temperature of the fluid change:

|ξ| � λ� L . (6.2.2)

If these conditions are not fulfilled, a description in terms of simple linear and purely
harmonic waves is not possible.

We will mostly deal with the case of plane waves where it is assumed that ΔP , Δρ,
ΔT and ξ all vary harmonically in space and time, with a well-defined wavelength and
wave frequency2.

Such harmonic behaviour is to be expected. Consider for example what happens in a
sound wave, which is simply a periodic train of alternating regions of slightly higher and
slightly lower pressure than the average pressure. When the gas is locally compressed so
that the density increases, the associated local pressure increase will lead to a pressure
force directed away from the compression region. This presure force induces a motion of
the gas away from the compression which, by virtue of mass conservation, decreases the
density. This density decrease can not stop instantaneously due to the inertia of the ma-
terial. Therefore it continues until the region becomes less dense than its surroundings.
The region is now under-pressurized and the direction of the pressure force reverses. As
a result, the material flows back into the region. Without some form of friction, this
cycle will continue indefinitely.

2In the case where we are dealing with cylindrical or spherical waves, as opposed to plane waves,
the situation is more complicated.
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6.3 The plane wave representation

The displacement of a fluid element in a harmonic plane wave can be represented in
terms of complex functions as

ξ(x , t) = a exp (ik · x − iωt) + cc .

(6.3.1)

Here a is a complex amplitude, k the wave vector, which is related to the wavelength λ
by

k =
2π

λ
n̂ (6.3.2)

with n̂ a unit vector perpendicular to the wave front, ω is the wave frequency and the
notation ‘cc’ denotes the complex conjugate. The complex conjugate must be included
to keep ξ (which is an observable quantity!) real-valued. Such a representation is
equivalent (but much more convenient, as we will see) to a representation in terms of
sines and cosines. In fact it is equivalent with

ξ(x , t) = 2|a| êa cos (k · x − ωt+ α) , (6.3.3)

if we write a = aêa where êa is a (real) unit vector. The phase angle α is related to
the real and imaginary parts of the complex amplitude a:

α = tan−1 (Im(a)/Re(a)) ≡ tan−1 (ai/ar) , (6.3.4)

and |a| is

|a| =
√
a2

r + a2
i . (6.3.5)

Note that the displacement ξ(x , t) is a field on space-time, just as the fluid velocity.
The velocity perturbation associated with this displacement is

ΔV =
dξ

dt
. (6.3.6)
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For the other quantities that vary as a result of the presence of the waves a similar
expressions can be written down. For instance, one can write for the density and pressure
variations

Δρ = ρ̃ exp (ik · x − iωt) + cc ,

(6.3.7)

ΔP = P̃ exp (ik · x − iωt) + cc .

The fundamental equations of the flow will (after linearization) provide the relation
between Δρ or ΔP and the displacement ξ, and between the complex amplitudes a, ρ̃
and P̃ .

This description will be valid provided the wave number and wave frequency satisfy

ωT  1 , |k|L 1 . (6.3.8)

Here L is the lengthscale of the spatial variation of the properties of the fluid, and T the
timescale on which the fluid changes its properties. The wave period P = 2π/Ω must be
much shorter than the time scale on which the fluid changes its global properties, and the
wavelength λ = 2π/k must be much smaller than the scale on which inhomogeneities
occur in the fluid or gas. If these equalities are marginally satisfied, there are advanced
methods, such as the WJKB method3 that is also used to construct approxiate solutions
to the wave equations of quantum mechanics.

3See for instance: P.M. Morse& H. Feshbach, 1953: Methods of Theoretical Physics Vol. II, p.
1095, McGraw-Hill, New York.
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6.4 Lagrangian and Eulerian perturbations

In Chapter 2.1 we already noted the two different time derivatives that play a role in
fluid mechanics: the partial (or Eulerian) time derivative ∂/∂t which gives the change
at a fixed coordinate position, and the total (or Lagrangian) time derivative d/dt which
is the derivative following the flow. We also pointed out the difference between the
Eulerian perturbation δQ of some quantity (field) Q(x , t) as measured at some fixed
position, and the Lagrangian perturbation ΔQ, given a small change in position Δx:

ΔQ = δQ+ (Δx · ∇)Q . (6.4.1)

These definitions for Eulerian and Lagrangian derivatives and variations can be given a
precise mathematical meaning. If the flow field is well-behaved, it is possible to assign
to each fluid element a label that will identify it unambiguously. A simple choice for
such a label is the position the fluid element has at some arbitrary reference time t0:

Lagrangian label: the position x(t0) ≡ x0 of each fluid element at t = t0.

One can think of the position of a fluid element as a function of time t and of the label
x0, which marks its position at time t0:

x = x(x0 , t) . (6.4.2)

This is equivalent with an ‘initial condition’ x(t0) = x0. Evaluating this function x(x0, t)
at fixed x0 as a function of t gives you the trajectory of a given fluid element: a flow
line. Changing the value of x0 at fixed t takes you to a different fluid element, and you
are moving (in a continuous fashion) from flowline to flowline. The label x0 is carried
along by a flow element, is constant along a given flowline and must therefore satisfy

dx0

dt
= 0 . (6.4.3)

The Lagrangian time derivative can be re-interpreted in these terms as

d

dt
≡
(
∂

∂t

)
x0

. (6.4.4)
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In contrast, the partial (Eulerian) time derivative is taken with the coordinate position
x kept fixed:

∂

∂t
≡
(
∂

∂t

)
x
. (6.4.5)

In the same manner one can define the Lagrangian perturbation ΔQ and its Eulerian
counterpart δQ for any fluid quantity Q(x , t) as

ΔQ = perturbation of Q with x0 fixed ,

(6.4.6)

δQ = perturbation of Q with x fixed .

This definition ensures that ΔQ is the change as seen by an observer moving with the
flow.

There is an important set of relations between these variations, spatial derivatives
and the Eulerian and Lagrangian time derivatives, which follow directly from the formal
definitions (6.4.4), (6.4.5) and (6.4.6):

δ

(
∂Q

∂t

)
=
∂ δQ

∂t
, δ(∇Q) = ∇(δQ) , Δ

(
dQ

dt

)
=

d ΔQ

dt
.

(6.4.7)

These results will prove useful when we derive the wave properties below.
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6.4.1 Velocity, density and pressure perturbations in a wave

The displacement field (wave amplitude) ξ(x , t) as defined above corresponds to the
change of the coordinates (associated with a fixed coordinate grid) as seen by a hy-
pothetical observer who is moving with the oscillating motion of the fluid in the wave:
the sloshing motion. An observer fixed to the grid on the other hand is by definition
always at the same coordinate position. This implies for a small-amplitude wave that
the following relations must be valid:

Δx = ξ(x , t) , δx = 0 . (6.4.8)

We can use the unperturbed position x of the fluid as Lagrangian labels to identify
different fluid elements4. Each fluid element is then displaced according to the simple
prescription

x −→ x = x + ξ(x , t) . (6.4.9)

If we use the definition (6.4.6) and relation (6.4.1), which give the relation between the
Lagrangian and Eulerian variations in some quantity Q, one finds:

ΔQ = δQ+ (ξ · ∇)Q .

(6.4.10)

This is the connection between the Lagrangian and Eulerian variation in a small-amplitude
wave, neglecting terms of order |ξ|2 and higher. The quantity Q can be a scalar, vector
or tensor. We will now use these relations to systematically calculate the velocity, density
and pressure perturbations that induced by the wave motion. There are other methods
to do this, but they tend to be ad hoc and not generally valid.

4From this point onwards, I will write x rather than x0 for the unperturbed position of a fluid
element.
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The velocity perturbation

We can apply the relations derived in the previous Section immediately to calculate the
velocity perturbation induced by the wave. The Lagrangian velocity perturbation equals

ΔV ≡ Δ

(
dx

dt

)
=

d Δx

dt

(6.4.11)

=
dξ

dt
≡ ∂ξ

∂t
+ (V · ∇)ξ .

The Eulerian velocity variation seen by a fixed observer now follows from (6.4.1) as:

δV = ΔV − (ξ · ∇)V

(6.4.12)

=
∂ξ

∂t
+ (V · ∇)ξ − (ξ · ∇)V .

These relations simplify considerably in the case where the fluid is globally at rest so
that V = 0. In that case one has ΔV = δV = ∂ξ/∂t. Note that we consistently
neglect all higher order terms ∝ |ξ|2 , |ξ|3 · · ·.

The density perturbation

The density change follows from a simple argument of mass conservation quite similar
to the one used to derive the continuity equation in Chapter 2.6. Consider different fluid
elements, their unperturbed position separated by an infinitesimal vector dx, which we
write in component form as

dx ≡ (dx1 , dx2 , dx3) . (6.4.13)

The wave motion (6.4.9) transports each fluid element to a new position according to

xi −→ xi = xi + ξi(x , t) for i = 1 , 2 , 3 . (6.4.14)
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This means that the vector dx is stretched and tilted according to the prescription

dxi −→ dxi =
∂xi
∂x1

dx1 +
∂xi
∂x2

dx2 +
∂xi
∂x3

dx3 (6.4.15)

By using the Einstein summation convention, where a summation is implied whenever
an index is repeated, we can write dxi as

dxi =
∂xi
∂xj

dxj ≡ Dij dxj . (6.4.16)

In this expression the summation is over the index j for j = 1 , 2 , 3. The quantity
Dij ≡ ∂xi/∂xj is a tensor, the so-called deformation tensor. This tensor contains
in principle all the information needed to calculate how the vector dx connecting two
neighbouring points is changed as a result of the fluid motion. Using (6.4.14) one can
calculate the components of this tensor:

Dij =
∂xi
∂xj

= δij +
∂ξi
∂xj

. (6.4.17)

In matrix form this corresponds to

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

1 +
∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

1 +
∂ξ3
∂x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.4.18)

This tensor generally is a function of position and time.

Now consider the infinitesimal volume dV defined by the three infinitesimal vectors
dX ≡ (dX , 0 , 0), dY ≡ (0 , dY , 0) and dZ ≡ (0 , 0 , dZ) that all connect to
neighbouring fluid elements. The infinitesimal volume enclosed by these three vectors is
given by the general rule (2.6.6):

dV = dX · (dY × dZ) = dX dY dZ . (6.4.19)

Each of these three vectors changes as a result of the wave motion, in a manner described
by recipe (6.4.16).
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For instance, the infinitesimal vector dX = (dX , 0 , 0) becomes:

dX = D · dX =

(
1 +

∂ξ1
∂x1

,
∂ξ2
∂x1

,
∂ξ3
∂x1

)
dX . (6.4.20)

The first component is along the unperturbed vector, and corresponds to a change of
length of the vector, which increases when ∂ξ1/∂x1 > 0 or decreases when ∂ξ1/∂x1 < 0.
The other two components are in the direction perpendicular to the unperturbed vector.
For that reason they correspond to a rotation of the vector that changes the orientation
dX with respect to dX. This is illustrated in the figure below. Similar expressions can
be written down for dY and dZ:

dY =

(
∂ξ1
∂x2

, 1 +
∂ξ2
∂x2

,
∂ξ3
∂x2

)
dY , dZ =

(
∂ξ1
∂x3

,
∂ξ2
∂x3

, 1 +
∂ξ3
∂x3

)
dZ . (6.4.21)

The volume enclosed by the new separation vectors dX , dY and dZ is

dV = dX ·
(
dY × dZ

)
. (6.4.22)

Let us write this in component form, using the totally anti-symmetric Levi-Cevita tensor
εijk which is defined by:

εijk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1 for i j k an even permutation of 1 2 3;

−1 for i j k an uneven permutation of 1 2 3;

0 if any of the i j k have the same value

. (6.4.23)

This definition implies ε123 = ε312 = ε231 = +1, ε132 = ε213 = ε321 = −1, and all other
components vanish. In terms of this tensor, the components of the cross product of two
vectors A and B can be written as (remember the summation convention!)

(A × B)i = εijk AjBk . (6.4.24)

The volume-element (6.4.22) expressed in component notation is

dV = εijk dX i dY j dZk . (6.4.25)
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Using (6.4.20) for dX in component form, dX i = Di1 dX, and the corresponding
expressions dY i = Di2 dY , dZ i = Di3 dZ, one finds:

dV = εijk Di1 Dj2 Dk3 dX dY dZ . (6.4.26)

Figure 6.2: The stretching and rotation of the infinitesimal vector dX = (dX , 0 , 0),
illustrated for two dimensions in the x-y plane. The change of the vector is characterized
by a displacement vector ξ(x , y , t) at its root, and by a displacement vector ξ(x +
dX, y, t) at its tip. The difference between the x-components of these two displacement
vectors leads to stretching of the vector dX by an amount ∝ (∂ξx/∂x) dX, while the
difference between the y-components, ξy(x+ dX)− ξy(x) ≈ (∂ξy/∂x) dX, rotates the
vector away from its original orientation parallel to the x-axis, with a rotation angle
∝ (∂ξy/∂x) dX, all to first order in |ξ|.
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The product involving the Levi-Cevita tensor and the three factors of Dij is actually the
determinant of the deformation tensor5:

εijkDi1Dj2Dk3 ≡ det(D) ≡ D(x , t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 +
∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

1 +
∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

1 +
∂ξ3
∂x3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. (6.4.27)

This means that expression (6.4.26) for the volume dV is simply

dV = D(x , t) dV . (6.4.28)

Writing out the determinant of the deformation tensor one finds:

D(x , t) = 1 +
∂ξ1
∂x1

+
∂ξ2
∂x2

+
∂ξ3
∂x3

+ terms of order |ξ|2 and |ξ|3. (6.4.29)

Using the definition6

∂ξ1
∂x1

+
∂ξ2
∂x2

+
∂ξ3
∂x3

= ∇ · ξ , (6.4.30)

one has

D(x , t) = 1 + ∇ · ξ + terms of order |ξ|2 and |ξ|3. (6.4.31)

The perturbed volume (6.4.28) therefore equals, neglecting terms of order |ξ|2 and |ξ|3:

dV = (1 + ∇ · ξ) dV .

(6.4.32)

5This is easily checked by fully writing out the product.
6Simply associate x1 with the x-coordinate, x2 with the y-coordinate and x3 with the z-coordinate.
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The density change follows from the conservation of the mass contained in the volume,

dm = ρ dV = ρ dV = constant . (6.4.33)

This implies:

ρ = ρ

(
dV
dV

)
. (6.4.34)

Using (6.4.32) one can express the new density in terms of the old and ∇ · ξ:

ρ =
ρ

(1 + ∇ · ξ)
≈ ρ (1 − ∇ · ξ) . (6.4.35)

Here I have used the approximation (1 + η)−1 ≈ 1− η+O(η2) that is valid for |η| � 1.

The Lagrangian variation of the density is by definition

Δρ = ρ− ρ = −ρ (∇ · ξ) . (6.4.36)

The Eulerian density perturbation follows from Eqn. (6.4.10): 7

δρ = −ρ (∇ · ξ) − (ξ · ∇) ρ

(6.4.37)

= −∇ · (ρξ) .

7Here I use the vector identity f(∇ · A) + (A · ∇)f = ∇ · (fA).
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The pressure variations ΔP and δP

We consider an adiabatic gas without external heat sources or heat sinks. This means
that the pressure must obey the adiabatic gas law P ∝ ργ for a given fluid element.
Then the pressure depends only on the density, and we can calculate the pressure change
following a fluid element from the density change. The Lagrangian pressure perturbation,
ΔP = P (x + ξ , t) − P (x , t), therefore equals

ΔP =

(
∂P

∂ρ

)
Δρ = −γP (∇ · ξ) . (6.4.38)

The Eulerian pressure perturbation δP = P (x) − P (x) follows in the now familiar
fashion:

δP = −γP (∇ · ξ) − (ξ · ∇)P . (6.4.39)

The table on the following page collects all the results we have derived in this Section
for the perturbations that are associated with a small-amplitude wave with displacement
vector ξ(x , t). In the Box below, the principles behind this derivation are illustrated
for the much simpler case of a one-dimensional flow, where one can (temporarily) forget
about the vector character of the displacement ξ.
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Figure 6.3: A volume-element with width Δx is stretched as a result of the difference
between the displacement ξ(x−) at the trailing edge, and the displacement ξ(x+) at the
leading edge. Due to these displacements, the new width equals Δx̄. The example shown
is for the case of expansion where ∂ξ/∂x > 0 so that Δx̄ > Δx. The opposite case
(where ∂ξ/∂x < 0, not shown) would compress the volume-elements so that Δx̄ < Δx.

The one-dimensional case

The derivation of the Lagrangian density change Δρ and the pressure change
ΔP (and their Eulerian counterparts δρ and δP ) given above is quite gen-
eral, but also rather complicated. Some insight can be gained from the one-
dimensional case, where one does not have to worry about the vector-character
of the displacement. Consider a one-dimensional fluid with density ρ(x , t) and
pressure P (x , t). The position of all fluid elements changes as a result of a
perturbation (sound wave). If we label this position with an x-coordinate, we
can represent the effect of the perturbation by:

x −→ x̄ ≡ x+ ξ(x , t) . (6.4.40)

This defines the displacement ξ(x , t) for the one-dimensional case. The role
of the small ’volume’ is now played by the interval Δx, see the figure above.
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Consider the fluid element with its trailing edge at x− ≡ x and the leading edge
at x+ = x− + Δx. The mass of the fluid element is

Δm = ρΔx . (6.4.41)

Due to the perturbation (6.4.40) the trailing edge of the volume changes its
position from x− to x̄− = x− + ξ(x− , t), whereas the leading edge changes
its position from x+ to x̄+ = x+ + ξ(x+ , t). The width of the fluid element is
now equal to:

Δx̄ = x̄+ − x̄−
(6.4.42)

= x+ + ξ(x+ , t) − (x− + ξ(x− , t)) .

Now using x− = x and x+ = x+ Δx one finds:

Δx̄ = Δx+ ξ(x+ Δx , t) − ξ(x , t)

(6.4.43)

≈ Δx+
∂ξ

∂x
Δx .

Here I have used the fact that Δx is infinitesimally small. One concludes that
the new and the old ’volume’ are related by

Δx̄ =

(
1 +

∂ξ

∂x

)
Δx . (6.4.44)

This is the one-dimensional analogue of relation (6.4.32). Note that the fluid
element is compressed (so that Δx̄ < Δx) when ∂ξ/∂x < 0, and expands (so
that Δx̄ > Δx) in the case ∂ξ/∂x > 0.

Mass conservation (Δm = constant) now reads ρ Δx = ρ̄ Δx̄, so the new
density is

ρ̄ = ρ
Δx

Δx̄
. (6.4.45)
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Using (6.4.44) one has

ρ̄ =
ρ

1 +
∂ξ

∂x

≈ ρ

(
1 − ∂ξ

∂x

)
, (6.4.46)

where I have assumed that |ξ| is small compared with the wavelength λ of the
perturbation, which implies that |∂ξ/∂x| ∼ |ξ|/λ is much smaller than unity.

The new density ρ̄ is the density in the displaced fluid element, which is now at
a position x̄ = x+ ξ. So we should write relation (6.4.46) more precisely as:

ρ̄(x+ ξ , t) = ρ(x , t)

(
1 − ∂ξ

∂x

)
. (6.4.47)

This defines the Lagrangian density perturbation as

Δρ = ρ̄(x+ ξ , t) − ρ(x , t) = −ρ(x , t)
(
∂ξ

∂x

)
. (6.4.48)

This is the one-dimensional version of relation (6.4.36).

The density at the old (unperturbed) position follows from using (for small ξ)

ρ̄(x+ ξ , t) ≈ ρ̄(x , t) + ξ

(
∂ρ

∂x

)
. (6.4.49)

Note that I have replaced ∂ρ̄/∂x by ∂ρ/∂x, which is allowed since the difference
between ρ and ρ̄ (and the two density derivatives) is of order |ξ|, and can be
neglected since we are only considering terms linear in ξ in relation (6.4.49).
Substituting this into relation (6.4.47) and re-ordering terms one finds:

ρ̄(x , t) = ρ(x , t)

(
1 − ∂ξ

∂x

)
− ξ

(
∂ρ

∂x

)
. (6.4.50)
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The Eulerian density perturbation is (by definition) the difference between the
new and the old density at the old (unperturbed) position. It follows from the
previous relation as

δρ = ρ̄(x , t) − ρ(x , t) = −ρ
(
∂ξ

∂x

)
− ξ

(
∂ρ

∂x

)
. (6.4.51)

This result for δρ can be written more compactly as

δρ = − ∂

∂x
(ρ ξ) . (6.4.52)

This is the one-dimensional version of Eqn. (6.4.37).

In the special case of a uniform mass density, where ∂ρ/∂x = 0 everywhere
in the unperturbed fluid, there is no difference between the Eulerian and La-
grangian density perturbations:

δρ = Δρ = −ρ
(
∂ξ

∂x

)
(uniform fluid only!) (6.4.53)

In the general case Δρ and δρ do not coincide.

The pressure perturbation due to the displacement can be calculated in much
the same manner. For an adiabatic gas, where

P (ρ) ∝ ργ , (6.4.54)

we can use (6.4.45) to write:

P̄ (x+ ξ , t) = P (x , t)

(
ρ̄

ρ

)γ
= P (x , t)

(
Δx

Δx̄

)γ
. (6.4.55)
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Using (6.4.44) we have

P̄ (x+ ξ , t) = P (x , t)

(
1 +

∂ξ

∂x

)−γ
. (6.4.56)

Using |∂ξ/∂x| � 1 we can approximate this by:

P̄ (x+ ξ , t) = P (x , t)

(
1 − γ

∂ξ

∂x

)
. (6.4.57)

The Lagrangian perturbation of the pressure follows immediately:

ΔP ≡ P̄ (x+ ξ , t) − P (x , t) = −γP
(
∂ξ

∂x

)
. (6.4.58)

The Eulerian perturbation can be found using (compare Eqn. 6.4.49)

P̄ (x+ ξ , t) ≈ P̄ (x , t) + ξ

(
∂P

∂x

)
. (6.4.59)

Upon substitution of this relation into (6.4.57), and after a re-arrangement of
terms, one finds:

δP ≡ P̄ (x , t) − P (x , t) = −γP
(
∂ξ

∂x

)
− ξ

(
∂P

∂x

)
. (6.4.60)

Only if the pressure gradient vanishes in the unperturbed fluid, so that ∂P/∂x =
0 everywhere, do the Lagrangian and the Eulerian pressure perturbations coin-
cide:

ΔP = δP = −γP
(
∂ξ

∂x

)
(uniform fluid only!) (6.4.61)

In three dimensions Eqn. (6.4.58) becomes Eqn. (6.4.38), and (6.4.60) be-
comes (6.4.39).
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6.5 Sound waves

The results derived in the previous Section allow us to calculate the properties of an
adiabatic sound wave propagating in a stationary, homogeneous fluid. We assume that
V = 0 everywhere and that avarage density ρ and average pressure P are are independent
of position. Because of that assumption, and the fact that the unperturbed fluid is
stationary, there is no difference between the linear Lagrangian variations and the Eulerian
variations:

homogeneous fluid: ⇐⇒ δQ = ΔQ, (6.5.1)

a relation that is valid for any quantity Q(x , t) in the fluid.

We introduce the small displacement Δx ≡ ξ(x , t) of a fluid element, due to the
presence of a sound wave, that takes the form (6.3.1),

ξ(x , t) = a exp (ik · x − iωt) + cc . (6.5.2)

Pressure and density fluctuations induced by this wave satisfy

Δρ = δρ = −ρ (∇ · ξ) , ΔP = δP = −γP (∇ · ξ) . (6.5.3)

The velocity induced by the wave equals

δV = ΔV =
∂ξ

∂t
. (6.5.4)

From the properties of the exponential function,

∂

∂t
[exp (ik · x − iωt) ] = −iωexp (ik · x − iωt) ,

(6.5.5)

∂

∂xi
[exp (ik · x − iωt) ] = iki exp (ik · x − iωt) ,

we can calculate the velocity perturbation and the density- and pressure perturbations
in terms of ξ by using (6.5.3) and (6.5.2):
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δV (x , t)

δρ(x , t)

δP (x , t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iωa

−ρ i(k · a)

−γP i(k · a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× exp (ik · x − iωt) + cc .

(6.5.6)

This incidently shows that ρ̃ = −iρ (k · a) and that P̃ = −iγP (k · a). The only
missing ingredient is an equation of motion that links the velocity δV = ∂ξ/∂t to the
density and pressure perturbations. Consider the equation of motion for the gas:

dV

dt
= −1

ρ
∇P . (6.5.7)

From the Lagrangian perturbation of the left-hand-side of this equation we obtain the
acceleration of the fluid elements due to the wave. For this acceleration term we can
use the fact that taking the Lagrangian variation Δ and the comoving time derivative
d/dt commute. Using (6.5.4) one finds:

Δ

(
dV

dt

)
=

d ΔV

dt
=

d2ξ

dt2
=
∂2ξ

∂t2
. (6.5.8)

In the last equality I have used that the unperturbed velocity vanishes: V = 0.

The Lagrangian perturbation of the right-hand-side gives the pressure force per unit
mass due to the waves. This term can be evaluated using [1] the fact that we have as-
sumed that both the unperturbed pressure P and the unperturbed density ρ are constant
everywhere, and [2] by applying (6.5.1) and the properties listed in Eqn. (6.4.7):

Δ

(
1

ρ
∇P

)
=

1

ρ
Δ (∇P ) (as ∇P = 0 in the unperturbed fluid)

=
1

ρ
δ (∇P ) (as Δ = δ in a homogeneous fluid) (6.5.9)

=
1

ρ
∇ δP (as δ(∇P ) = ∇δP .)
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The steps taken in this last derivation are only true for the linear perturbations. The
perturbed version of the equation of motion obtained in this fashion is the equation that
governs the perturbations due to sound waves:

∂2ξ

∂t2
= −1

ρ
∇ δP

(6.5.10)

=
γP

ρ
∇ (∇ · ξ) .

Here I have substituted expression (6.5.3) for δP . The relation

γP

ρ
≡ C2

s (6.5.11)

defines the adiabatic sound speed Cs. One can write (6.5.10) as a wave equation in
three dimensions:

∂2ξ

∂t2
− C2

s ∇ (∇ · ξ) = 0 .

(6.5.12)

In conclusion: in order to find the equation of motion for the displacement vector
ξ(x , t) one has to perturb and linearize the equation of motion, expressing all quantities
(such as the velocity and pressure perturbations) in terms of ξ and its derivatives and
ruthlessly dropping all terms that are quadratic (or higher order) in ξ.

If we now substitute the plane wave assumption (6.5.2) for ξ and make use of the prop-
erties of the exponential factor, this equation is converted into a set of linear algebraic
equations for the amplitude a 8, given ω and k:

ω2 a − C2
s (k · a) k = 0 .

(6.5.13)

8There is a similar equation for the complex conjugate a∗, but that equation does not contain any
new information: it is simply the complex conjugate of the equation for a. We can therefore safely
ignore it in what follows, as I show in more detail below.
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In order to simplify the algebra, assume that the sound wave propagates in the x − y
plane so that k = (kx , ky , 0). In that case we have

k · a = kxax + kyay .

It is always possible to define your coordinate system in such a way that this choice is
valid, as long as one is dealing with plane waves.

By writing out the three spatial components of equation (6.5.13) explicitly we get
three coupled, linear algebraic equations for ax, ay and az that can be represented in
matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎝

ω2 − k2
xC

2
s −kxky C2

s 0

−kykx C2
s ω2 − k2

yC
2
s 0

0 0 ω2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ax

ay

az

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0 . (6.5.14)

Matrix algebra9 tells us that there are only non-trivial solutions, i.e. solutions where the
ai do not all vanish, when the determinant of the 3 × 3 matrix Mij in (6.5.14),

Mij ≡ ω2 δij − C2
s kikj , (6.5.15)

vanishes. This determinant equals

det (Mij) = ω2
{(
ω2 − k2

xC
2
s

) (
ω2 − k2

yC
2
s

)
−
(
kxky C

2
s

)2
}
. (6.5.16)

Re-ordering terms, and putting the determinant equal to zero, yields a relation between
wave frequency ω and the wave number k, the so-called dispersion relation. For sound
waves in a stationary fluid or gas this dispersion relation is

ω4
(
ω2 − k2 C2

s

)
= 0 ,

(6.5.17)

with k2 = k2
x + k2

y.

9e.g. G.B. Arfken & H.J. Weber, 2005: Mathematical Methods for Physicists, Sixth Edition, Elsevier
Academic Press, Chapter 3.
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There are two types of solutions: the solution ω = 0 does not really correspond with a
wave: the corresponding amplitude does not vary in time. Strictly speaking, this solution
should be discarded for this reason.

The remaining two solutions correspond to a positive- and a negative frequency sound
wave:

ω(k) = +kCs , ω(k) = −kCs , (6.5.18)

with k = |k| =
√
k2
x + k2

y. The frequency of the sound waves depends only on the sound

speed and the magnitude of the wave vector, but not on the direction of k! This means
that sound waves in a stationary fluid propagate with equal velocity in all directions.
There is no preferred direction. We will see below that this is no longer true for sound
waves in a moving fluid. In that case, the direction of the fluid velocity V introduces a
preferred direction.

Using the three possible solutions for ω in the original equations one can determine
the corresponding eigenvectors. It is easily checked that the solution ω = 0 must have
ax = ay = 0 and az �= 0 or ax/ay = −ky/kx and az = 0. In both cases a ⊥ k. This can
also be seen directly from (6.5.13): if we substitute ω = 0 it reduces to C2

s (k · a)k = 0,
which has the solution k · a = 0.

Sound waves on the other hand must have

ax/ay = kx/ky , az = 0 . (6.5.19)

This implies that the sound wave amplitude and the wave vector must be parallel:

asound ‖ k . (6.5.20)

Sound waves are compressive longitudinal waves. The main properties of a sound wave
are illustrated in the figure below.

Now that we know the frequency and the polarization of the sound wave, we can
immediately write down the relation between the amplitude |ξ| =

√
2a · a∗ of the wave,

and the velocity, density and pressure perturbations. From (6.5.6) and (6.5.20) one
finds:
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|δV | = Cs k|ξ| ,

|δρ| = ρ k|ξ| = ρ
|δV |
Cs

, (6.5.21)

|δP | = γP k|ξ| = γP
|δρ|
ρ

.

Figure 6.4: The density ρ, displacement ξ and velocity δV in a sound wave of wavelength
λ and frequency ω propagating in the x-direction. This figure shows a ‘snapshot’ of the
wave, the density represented by the position of a large number of ‘test-particles’ carried
passively along by the flow, the displacement by a solid sinusoidal curve, and the velocity
is represented by δV/|ω|: the dashed curve. Note that with this scaling, the velocity
curve has the same amplitude as the displacement curve, (see Eqn. 6.5.6) but is shifted
by λ/2, i.e. the velocity curve is 90o out of phase. Note that the density is largest
at those locations where where the displacement derivative satisfies ∂ξ/∂x < 0 and
simultaneously ξ = 0.
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What about the complex conjugate?

This derivation treats the algebra resulting from the plane wave assumption,

ξ(x , t) = a exp (ik · x − iωt) + cc ,

in a rather cavalier fashion. To justify the approach taken, i.e. converting
differential equations for ξ to an algebraic equation for the amplitude a, I will
look at this approach in more detail, taking the case of sound waves as an
example.
The partial differential equation (wave equation) for sound waves reads

∂2ξ

∂t2
− C2

s ∇ (∇ · ξ) = 0 .

Now writing the plane-wave assumption as

ξ(x , t) = a e+iS + a∗e−iS

with
S(x , t) ≡ k · x − ωt

the phase of the wave and a∗ the complex conjugate of the (complex) wave
amplitude, substitution of this expression into the wave equation yields:[

ω2a − C2
s k (k · a)

]
e+iS +

[
ω2a∗ − C2

s k (k · a∗)
]
e−iS = 0 .

This equation should be satisfied for all values of x and t, meaning for all values
of the phase S(x , t). Since

e±iS = cosS ± i sinS ,

the above equation can only be satisfied for all x and t if the two factors in the
square brackets are both zero:

ω2a − C2
s k (k · a) = 0 ,

and

ω2a∗ − C2
s k (k · a∗) = 0 .

However, the second equation is simply the complex conjugate of the first
equation (assuming that ω and k are real quantities), so it contains no new
information (as 0∗ = 0). Therefore it is sufficient to solve only one of then,
the equation for a. If the wave frequency becomes complex, the story is a
bit more complicated, but the final conclusion is the same: in the algebraic
equations resulting from the plane wave assumption we can forget the
phase factor e±iS after differentiation, and the complex conjugate. In
effect you only need to solve a set of equations for the components of
the amplitude vector a.
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6.5.1 Wave kinematics: phase- and group velocity

The propagation of the waves is characterized by two velocities: the phase velocity vph

and the group velocity vgr. The phase velocity is the velocity at which points or surfaces
of constant phase move. This phase is defined by writing Eqn. (6.5.2) as

ξ(x , t) = a exp [iS(x , t) ] + cc , (6.5.22)

where, for waves in a uniform steady fluid, the phase S is simply

S(x , t) ≡ k · x − ωt .

The phase velocity vph is defined by the requirement that an observer moving with this
velocity stays on a surface of constant wave phase:

(
dS

dt

)
ph

=
∂S

∂t
+ (vph · ∇)S = 0 . (6.5.23)

Since we have

∂S

∂t
= −ω ,

∂S

∂xi
= ki , (6.5.24)

this condition means that the phase velocity must satisfy

ω(k) − k · vph = 0 . (6.5.25)

The obvious choice is10

vph =
ω(k)

k
κ̂ ,

(6.5.26)

with κ̂ ≡ k/k the unit vector along the wave vector.

10One can always add an arbitrary velocity v⊥ ⊥ k to vph and still satisfy this condition. The only
sensible and non-arbitrary choice however is to put this perpendicular velocity to zero.
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The group velocity vgr is defined as the velocity with which the wave amplitude
propagates. Its value can be determined by the following argument. For simplicity, I use
a one-dimensional example.

Consider a wave packet, containing waves of different wavelengths, centered in a
small bandwidth Δk � k around some central wave number k. In that case, the
displacement can be represented as an integral counting all wave numbers present in the
packet11

ξ(x , t) =
∫ +∞

−∞
dk′

2π
A(k′) eik

′x−iω(k′)t . (6.5.27)

An example of such a superposition of waves is shown below. The typical spatial extent
of the wavepacket equals Δx ≈ 1/Δk. The differential wave amplitude (the so-called
Fourier amplitude) A(k) satisfies

A(k′) = 0 for |k′ − k|  Δk , (6.5.28)

i.e. A(k′) is strongly peaked around wave number k.

The wave packet will evolve in time as the waves propagate. Everywhere along the path
of the wavepacket (and at each wave number) the local dispersion relation ω = ω(k)
must be satisfied. This determines the wave frequency at some wave number k + Δk
near k as

ω(k + Δk) ≈ ω(k) + Δk

(
∂ω

∂k

)
. (6.5.29)

Using this expansion, together with the fact that the Fourier amplitude is strongly peaked
around wave number k, one can write:

ξ(x, t) ≈ eikx−iω(k)t ×
∫ +∞

−∞
dk′

2π
A(k′) eiΔk [x−(∂ω/∂k)t ]

︸ ︷︷ ︸
effective amplitude

. (6.5.30)

Here Δk ≡ k′ − k. The integral over k′ defines what can be considered as the effective
amplitude of the wave packet.

11This is an example of a so-called Fourier representation. It is needed to represent a wave packet
with a finite spatial size L ∼ 1/Δk. In contrast, a monochromatic wave (Δk = 0) always has an
infinite spatial extent.
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Figure 6.5: The wave pattern that results from adding two sinusiodal waves, with a slightly
different wave number k and frequency ω. These two waves are the two sinus-like curves at
the bottom of the figure. Here the relation between the frequency and wave number is chosen

to be of the form ω(k) =
√

k2c2 + ω2
0. The two waves together interfere to form the wave

shown at top. The resulting amplitude modulation in this wave travels at the group velocity.
The rapid sinusoidal variation on the other hand travels at the phase speed.
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This effective amplitude will be vanishingly small due to the sinusoidal behaviour of the
exponential factor in the integrand, the result of destructive interference, except at
those positions where the phase factor in that exponential term vanishes:

x−
(
∂ω

∂k

)
t = 0 . (6.5.31)

At those points the different Fourier amplitudes add up, a case of constructive inter-
ference. Condition (6.5.31) therefore determines the position of the wave packet, and
defines the group velocity in this one-dimensional example as

vgr =

(
dx

dt

)
packet

=
∂ω

∂k
. (6.5.32)

In three dimensions this generalizes to:

vgr =
∂ω(k)

∂k
=

(
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
.

(6.5.33)

For sound waves, the phase and group velocity are equal:

vph = vgr = Csκ̂ . (6.5.34)

Such waves are said to show no dispersion: the amplitude and phase propagate with
the same velocity, regardless the wavelength or frequency. If the sound waves in our
atmosphere were not almost dispersionless, human hearing would have to be much more
sophisticated to discern intelligible signals from human speech, which covers a frequency
range of ∼ 100 Hz to ∼ 1 kHz, or to enjoy music which covers a range ∼ 10 Hz to
∼ 20 kHz.
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6.6 Sound waves in a moving fluid

Now consider sound waves propagating in a moving medium with velocity V . If we
assume that the wavelength of the waves concerned is much smaller than the scale on
which this velocity changes, and that the wave period is much shorter than the timescale
on which the temporal variation of V occurs, we may treat this situation (to lowest order)
as a case where the fluid velocity is constant and uniform. In that approximation, the
relation between the displacement vector and Lagrangian velocity perturbation is

ΔV =

(
∂

∂t
+ (V · ∇)

)
ξ ,

while the Lagrangian perturbation of the acceleration is

dΔV

dt
=

(
∂

∂t
+ (V · ∇)

)2

ξ .

The only difference with the case treated above, where the fluid was at rest, is a consis-
tent replacement of the time derivatives:

∂

∂t
=⇒ d

dt
=

∂

∂t
+ (V · ∇), (6.6.1)

The ordinary time derivative is replaced by the comoving derivative in the unperturbed
flow. The density- and pressure variations depend only on the spatial derivatives of ξ,
and remain unchanged, e.g.

ΔP = δP = −γP (∇ · ξ) .

Therefore, we can immediately write down the wave equation for sound waves in a
moving fluid that corresponds to Eqn. (6.5.12), which is valid in a stationary fluid:

(
∂

∂t
+ (V · ∇)

)2

ξ − C2
s ∇ (∇ · ξ) = 0 . (6.6.2)

If we now again assume a plane wave solution,

ξ(x , t) = a exp (ik · x − iωt) + cc , (6.6.3)

it is easily checked that we find essentially the same dispersion relation as before,

(ω − k · V )2 a − C2
s (k · a) k = 0 , (6.6.4)



6.6. SOUND WAVES IN A MOVING FLUID 171

except for the replacement

ω =⇒ ω − k · V ≡ ω̃, (6.6.5)

i.e. the wave frequency ω is replaced by the Doppler-shifted frequency ω̃, which cor-
responds to the frequency of the wave seen by an observer moving with the fluid, i.e.
the frequency in the fluid rest frame. This is a simple consequence of replacement rule
(6.6.1), which implies that the time derivative of the displacement vector ξ(x , t) is:

(
∂

∂t
+ (V · ∇)

)
a exp (ik · x − iωt) =

(6.6.6)

−i (ω − k · V ) a exp (ik · x − iωt)

We find the following dispersion relation for sound waves in a moving fluid:

ω̃ = ω − k · V = ±|k|Cs , (6.6.7)

or equivalently:

ω(k) = k · V ± |k|Cs .

(6.6.8)

If we now calculate the group velocity, the velocity with which signals can propagate,
we find in this case:

vgr =
∂ω

∂k
= V ± Cs κ̂ ,

(6.6.9)

with κ̂ = k/|k| as before. This result simply says that sound waves are dragged along
by the moving fluid at velocity V , and propagate with respect to the fluid at the (local)
sound speed in the direction of k.
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6.7 Non-planar sound waves

The previous two Sections could leave the impression that all sound waves are plane
waves, where the displacement vector ξ(x , t) is given by relation (6.5.2). This is not
the case. As a counter-example I will briefly consider the case of spherical sound waves.

Let us assume that we place a spherical membrane of radius R at the origin. This
membrane acts as a loudspeaker: its radius varies harmonically in time with a prescribed
frequency ω:

R(t) = R0 + δR cos(ωt) . (6.7.1)

We will assume that the amplitude of this vibration is small: δR� R0.

The gas surrounding this vibrating sphere must respond: at the surface of the vibrat-
ing sphere the gas must move in concert. There the displacement vector of the fluid is
given by:

ξ(r = R0 , t) = δR cos(ωt) êr . (6.7.2)

These radial motions induce density- and pressure fluctuations, which in turn lead to the
emission of spherical sound waves.

In order to derive the equation for these spherical waves I will use a different form of
the wave equation for sound waves. The original equation (6.5.12) reads

∂2ξ

∂t2
− C2

s ∇ (∇ · ξ) = 0 . (6.7.3)

Sound waves are the compressive solutions of the wave equation, with

Δ ≡ δρ

ρ
= − (∇ · ξ) �= 0 . (6.7.4)

We can therefore ‘isolate’ the sound waves by taking the divergence on both sides of the
wave equation and demanding that ∇ · ξ �= 0. Using the relations

∇ ·
(
∂2ξ

∂t2

)
=
∂2(∇ · ξ)

∂t2
= −∂

2Δ

∂t2
, ∇ · [∇ (∇ · ξ) ] = −∇2Δ (6.7.5)

one finds the following equation that exclusively describes sound waves:
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{
∂2

∂t2
− C2

s ∇2

}
Δ(x , t) = 0 . (6.7.6)

If the waves are spherical, meaning that the surfaces of constant phase are expanding
spheres since the waves are outgoing waves that propagate away from the origin, the
function Δ(x , t) can only depend on the distance r to the origin, and on time. The
resulting wave equation reads in spherical coordinates:

{
∂2

∂t2
− C2

s

r2

∂

∂r

(
r2 ∂

∂r

)}
Δ(r , t) = 0 . (6.7.7)

The frequency ω is fixed: it must equal the vibration frequency of the sphere. This
means we can put

Δ(r , t) = Δ̃(r) e−iωt + cc , (6.7.8)

and use

∂2Δ

∂t2
= −ω2 Δ . (6.7.9)

The wave equation (6.7.7) can be then written as an equation for Δ̃(r)12:

1

r2

d

dr

(
r2 dΔ̃

dr

)
= −ω2

C2
s

Δ̃ . (6.7.10)

Note that the partial derivatives with respect to r have been replaced by ordinary deriva-
tives. This is allowed since Δ̃ only depends on r.

This equation must be solved subject to sensible boundary conditions. At the surface
of the vibrating sphere one has condition (6.7.2). We will deal with this condition later.
At large distances the wave should die out, meaning that Δ ↓ 0 when r → ∞. Equation
(6.7.10) can be cast in the form

r2 d2Δ̃

dr2
+ 2r

dΔ̃

dr
+ k2r2 Δ̃ = 0 , (6.7.11)

12Once again, you can forget about the complex conjugate for the time being.
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Here k is defined as

k ≡ ω

Cs
, (6.7.12)

and essentially plays the role of the wave number. The solution to this equation is

Δ̃(r) = A j0(kr) +B n0(kr) . (6.7.13)

Here j0(x) and n0(x) are the spherical Bessel functions of order zero13, and A and B are
arbitrary constants, to be determined from the boundary conditions. The two functions
j0 and h0 can be given in closed form:

j0(x) =
sin x

x
, n0(x) = −cos x

x
. (6.7.14)

Both functions satisfly the boundary condition Δ̃ → 0 as r → ∞. We are forced to
use another argument to decide which Bessel function (or what combination of the two
functions) to use.

The form of these spherical Bessel functions shows that we are truly dealing with
waves: the density δρ(r , t) = ρΔ(r , t) varies harmonically in time, and the spherical
ripples due to sin(kr) and cos(kr) have a wavelength Δr = λ = 2π/k = 2πCs/ω. This
is exactly the same wavelength one would assign to a plane sound wave with the same
frequency. There is a major difference however: the typical amplitude of the spherical
waves scales as 1/r, as both j0(kr) and n0(kr) have a factor 1/kr in front of the sine
and cosine term. In a plane wave (without damping) on the other hand the amplitude
is constant. This reflects the different geometry of a spherical wave.

We can decide which combination of the two spherical Bessel functions to use by
employing the following argument. Far from the vibrating sphere, at a distance that is
large compared to both R0 and λ, the wave should look like an outgoing (almost) plane
wave to a local observer. Assuming without loss of generality that ω > 0, this means
that Δ(r , t) should vary like:

Δout(r , t) ∼ cos(kr − ωt+ α) . (6.7.15)

In contrast, an ingoing spherical wave propagating towards the origin would behave like

Δin(r , t) ∼ cos(−kr − ωt+ α) . (6.7.16)

13see for instance: Arfken & Weber, Mathematical Methods for Physicists, Ch. 11.7.
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This argument implies that the solution should be chosen to be equal to:

Δ̃(r) = A (j0(kr) + in0(kr)) ≡ A h
(1)
0 (kr) . (6.7.17)

The function

h
(1)
0 (x) = j0(x) + in0(x) =

1

ix
exp(ix) (6.7.18)

is the zero-th order spherical Hankel function of the first kind.

The remaining constant A can only be found by considering the boundary condition
at the surface of the vibrating sphere (i.e. at r = R0). Because of the spherical
symmetry of the problem, the motion of the fluid induced by the sphere will be in the
radial direction:

ξ(x , t) = ξ(r , t) êr . (6.7.19)

Consequently, the linearized equation of motion only has a radial component,

ρ
∂2ξ

∂t2
= −∂δP

∂r
, (6.7.20)

compare Eqn. (6.5.10). The associated pressure perturbation is

δP = γP Δ(r , t) . (6.7.21)

and because of the harmonic time dependence we can rewrite (6.7.20) as:

∂2ξ

∂t2
= −ω2 ξ = −C2

s

∂Δ

∂r
. (6.7.22)

Here I have used C2
s = γP/ρ. This gives the amplitude of the motion as

ξ(r , t) =

(
C2

s

ω2

)
∂Δ

∂r
=

1

k2

∂Δ

∂r
. (6.7.23)
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Substituting the solution

Δ(r , t) = Ah
(1)
0 (kr) exp(−iωt) + cc (6.7.24)

One finds:

ξ(r , t) =
A

k
h′(1)0 (kr) exp(−iωt) + cc (6.7.25)

Here h′(1)0 (x) ≡ dh
(1)
0 /dx is the first derivative of the Hankel function. At the surface of

the sphere we must satisfy the condition that the velocity, and therefore the amplitude
ξ matches the motion of the surface, ξ(R0 , t) = δR cos(ωt). This condition fixes A:

A =
k δR

2h′(1)0 (kR0)
. (6.7.26)

This solves the problem of spherical sound waves generated by a vibrating sphere. Note
that the coefficient A is proportional to the amplitude δR of the vibration on the spherical
membrane.

The full solution of the sound waves emitted by a vibrating spherical membrane now
reads, for r > R0:

ξ(r , t) = 1
2
δR

⎛
⎝ h′(1)0 (kr)

h′(1)0 (kR0)

⎞
⎠ exp(−iωt) + cc. (6.7.27)
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6.8 Some astrophysical applications of waves

6.8.1 The Jeans instability

Around 1902, Sir James Jeans investigated the stability of a self-gravitating fluid. This
calculation considers the fate of small-amplitude waves (‘sound waves’) in a fluid which
generates its own gravity. This means one one has to solve the equation of motion and
the continuity equation in concert with Poisson’s equation for the gravitational potential:

dV

dt
= −1

ρ
∇P − ∇Φ ,

dρ

dt
= −ρ (∇ · V ) , (6.8.1)

∇2Φ = 4πG ρ ,

together with the adiabatic gas law P (ρ) ∝ ργ . The unperturbed state on which
these waves are superposed is sometimes referred to as Jeans’ swindle: a fluid with
uniform density ρ, pressure P and no gravity: g = −∇Φ = 0. There can be no
gravitational acceleration in a uniform fluid: the gravitational acceleration g is a vector.
Its direction would introduce a preferred direction, which can not be present in an infinite
homogeneous medium that looks the same everywhere and in every direction. One
must therefore conclude that g = −∇Φ = 0, which implies Φ = constant. However,
according to Poisson’s equation one has ∇2Φ = 4πG ρ. This will only give a constant
Φ if ρ = 0. This inconsistency is glossed over by assuming that Poisson’s equation only
applies to the density fluctuations induced by the waves.

The results derived for the velocity, density and pressure perturbations in sound waves
remain valid in this case:

δV =
∂ξ

∂t
, δρ = −ρ (∇ · ξ) , δP = −γP (∇ · ξ) = C2

s δρ . (6.8.2)

The equation of motion for the perturbations must be modified in order to take the
effect of gravity into account. It now reads:

∂2ξ

∂t2
= −1

ρ
∇δP − ∇δΦ . (6.8.3)
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Here I have used that, according to Jean’s Swindle, the gravitational acceleration acting
on a fluid element is

δg = −∇δΦ . (6.8.4)

This acceleration is caused by the gravitational action of the density fluctuations: density
enhancements in the waves tend to attract the surrounding matter. Poisson’s equation
links the potential perturbations to the fluctuations in the density:

∇2 δΦ = 4πG δρ . (6.8.5)

Let us define the relative density perturbation:

Δ ≡ δρ

ρ
= −(∇ · ξ) . (6.8.6)

Substituting for the pressure perturbation δP from (6.8.2), the equation of motion
becomes:

∂2ξ

∂t2
= C2

s ∇(∇ · ξ) − ∇δΦ . (6.8.7)

Using the fact that Cs =
√
γP/ρ is constant, we can take the divergence of both sides

of the equation, effectively isolating the compressive (∇ · ξ �= 0) ‘sound-like’ solutions:

∂2

∂t2
(∇ · ξ) = C2

s ∇2(∇ · ξ) − ∇2δΦ

(6.8.8)

= C2
s ∇2(∇ · ξ) + 4πGρ (∇ · ξ) .

Here I have used ∇ · ∇(· · ·) = ∇2 · · ·, and I have employed Poisson’s equation (6.8.5)
to eliminate ∇2 δΦ in terms of the density perturbation:

∇2δΦ = 4πG δρ = 4πGρΔ . (6.8.9)
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Equation (6.8.8) is a linear equation for Δ = δρ/ρ:

[
∂2

∂t2
− C2

s ∇2 − 4πG ρ

]
Δ = 0 .

(6.8.10)

The rest of the analysis proceeds along the same lines as for sound waves. Consider a
plane wave solution, where the relative density perturbation Δ = δρ/ρ takes the form14

Δ(x , t) = Δ̃ exp (ik · x − iωt) + cc . (6.8.11)

A substitution of this assumption for Δ(x , t) into (6.8.10) yields the dispersion relation
for compressive (sound) waves in a self-gravitating fluid:

ω2 = k2C2
s − 4πG ρ .

(6.8.12)

The last term on the right-hand-side gives the modification of sound waves due to gravity.
The solution of this equation,

ω(k) = ±
√
k2C2

s − 4πG ρ , (6.8.13)

describes fundamentally different behaviour at short and long wavelengths.

The dividing line between these two types of behaviour is at the wavelength λJ, the
so-called Jeans length, where the wave frequency ω(k) vanishes. Defining kJ = 2π/λJ

one must have k2
JC

2
s = 4πG ρ, and one finds:

λ2
J =

(
2π

kJ

)2

=
πC2

s

Gρ
. (6.8.14)

For waves with a wavelength λ < λJ the argument of the square root in (6.8.13) is
positive, and the wave frequency is real.

14In terms of the plane-wave expression (6.5.2) for ξ(x , t) the amplitude Δ̃ is related to the dis-
placement amplitude a by Δ̃ = −i(k · a), see Eqn. (6.5.6).
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However, for wavelengths λ > λJ the argument of the square root is negative, and the
wave frequency becomes purely imaginary. The solution (6.8.13) for λ > λJ can be
written in terms of the Jeans length:

ω = ±ikCs

√√√√λ2

λ2
J

− 1 ≡ iσ . (6.8.15)

Imaginary frequencies, where ω = iσ, lead to exponentially growing or decaying pertur-
bations. Solution (6.8.15) always has one exponentially growing mode and one decaying
mode. The decaying mode is not very important as it dies away. The assumed time-
dependence means that the relative density perturbation behaves as

Δ(x , t) ∝ e−iωt = eσt . (6.8.16)

If Im(ω) = σ > 0 the perturbation grows exponentially in time. It decays if σ < 0.
Here there is always a solution with σ > 0, which implies that the wave amplitude gets
larger and larger. Our assumption that the pressure, density and velocity perturbations
associated with the wave all remain small will ultimately break down. When such a
situation arises, the equilibrium state used to calculate the wave properties is said to be
linearly unstable against suitable perturbations:

If there is a solution with Im ω(k) ≡ σ(k) > 0 a linear instability arises

(6.8.17)

The importance of the Jeans length λJ as the wavelength that separates stable from
unstable oscillations can be illustrated in another way. The pressure force and the
gravitational force due to the perturbation are

F p = −∇δP = −γP k2a exp (ik · x − iωt) + cc ,

(6.8.18)

F g = −ρ∇δΦ = 4πG ρ2 a exp (ik · x − iωt) + cc .

Here I have used the plane wave assumption, and the fact that a ‖ k. One sees that
the pressure force and the gravitational force are 180 degrees out of phase: they work
in opposite directions, physically obvious as gravity promotes mass concentrations while
pressure forces try to negate them.
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Comparing the amplitude of these two forces one has:

|F g|
|F p| =

4πG ρ

k2C2
s

=

(
λ

λJ

)2

. (6.8.19)

In the stable case (λ < λJ) the amplitude of pressure force is larger than the amplitude
of the gravitational force, and the system is stable. In the case λ > λJ the amplitude
of the gravitational force is larger than the amplitude of the pressure force. In that case
the system is unstable, and the density enhancements in the wave will continue to grow.

This is illustrated in the two figures above. It shows the displacement ξ, the velocity
δv = ∂ξ/∂t, the pressure force and the gravitational force in a plane wave propagating
in the x-direction. The first figure considers the stable case λ = λJ/

√
2, the second

figure considers the unstable case with λ =
√

2 λJ.

We encountered a similar unstable situation in our simple perturbation analysis of a
single particle moving in a potential well. In that case, it turned out that an equilibrium is
unstable if d2V/dx2 < 0 at the equilibrium point. The example of the Jeans’ instability
shows that in fluid dynamics you can have a situation where there are stable as well as
unstable solutions to the equations of motion. However, if there is an unstable solution,
the system is unstable and can not persist.

6.8.2 The zero-frequency mode

For completeness sake, I mention the fact that the zero-frequency waves present in our
discussion of sound waves are also present in Jeans’ problem. This can be seen by taking

∇ × (Equation of motion 6.8.7) .

Using the vector identity

∇ × ∇f = 0 , (6.8.20)

valid for an arbitrary function f(x , t), this leads to

∂2

∂t2
(∇ × ξ) = 0 . (6.8.21)

Note that this equation does not show any coupling to gravity since ∇ × ∇δΦ = 0.
Substituting a plane wave solution for ξ(x , t) (c.f. 6.5.2) one immediately finds

ω2 (k × a) = 0 . (6.8.22)
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Figure 6.6: The displacement (top panel, solid curve), velocity (top panel, dashed curve)
gravitational force (bottom panel, solid curve) and pressure force(bottom panel, dashed curve)
in a linear sound wave in a self-gravitating fluid. Shown is the stable case with wavelength
λ = λJ/

√
2. In this case the amplitude of the pressure force is twice that of the gravitational

force. The small dots are test particles moving with the fluid, and show where the compressions
and rarefactions are located.
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Figure 6.7: The displacement (top panel, solid curve), velocity (top panel, dashed curve)
gravitational force (bottom panel, solid curve) and pressure force(bottom panel, dashed curve)
in a linear sound wave in a self-gravitating fluid. Shown is the unstable case with wavelength
λ =

√
2 λJ. In this case the amplitude of the pressure force is half that of the gravitational

force.
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The only non-trivial solution where k × a �= 0 must have ω = 0. The compressive
(longitudinal) waves which play a role in the Jeans Instability have k ‖ a, just like
ordinary sound waves.

6.8.3 A simple physical explanation of the Jeans Instability

The physics behind the Jeans Instability can be understood in a different manner without
referring to waves and their stability. This alternative approach uses a stability criterion
based on an energy argument. Consider a spherical cloud of hydrogen gas (μ ≈ 1) with
radius a, uniform density ρ, temperature T and pressure P = ρRT . The total energy
W (a) of this cloud is

W (a) =
∫ M

0
dm(r)

[
3

2
RT − Gm(r)

r

]
≡ Uth + Ugr . (6.8.23)

Here

dm(r) = 4πr2 ρ dr , m(r) =
4π

3
ρ r3 (6.8.24)

are the mass contained in a spherical shell between r and r+dr, and the mass contained
within a radius r respectively. The total mass of the cloud is

M =
4π

3
ρ a3 . (6.8.25)

The term 3RT/2 in integral (6.8.23) is the thermal energy per unit mass in an ideal
gas with adiabatic index γ = 5/3. The term involving Φ(r) = −Gm(r)/r is the
gravitational binding energy per unit mass at radius r. Integrating these quantities over
all mass elements in the cloud yields the total cloud energy W .

The integration of this expression is relatively straightforward. One finds:

W (a) = 3
2
MRT − 3

5

GM2

a
. (6.8.26)

I now consider the effect of a change −Δa (with Δa > 0) in the radius of the cloud,
so that the radius decreases from a to a− Δa. Let us assume that this change occurs
adiabatically, so that no heat is added to, or extracted from the gas.
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In that case, the thermodynamical equations of Chapter 2.5 tell us that the thermal
energy changes according to dUth = −P dV. The volume change is ΔV = −4πa2 Δa.
This means that the thermal energy of the cloud changes by an amount

ΔUth = −P ΔV ≈ ρRT 4πa2 Δa . (6.8.27)

The change of the gravitational binding energy due to the change in radius from a to
a− Δa is

ΔUgr ≈
(
∂Ugr

∂a

)
× (−Δa) = −3

5

(
GM2

a2

)
Δa . (6.8.28)

Here I have used that the total mass M of the cloud is conserved. Adding these two
contributions yields the change of the total energy, ΔW = ΔUth + ΔUgr, of the cloud:

ΔW ≈
(

3MRT − 3

5

GM2

a

)
×
(

Δa

a

)
. (6.8.29)

Now there are two possibilites:

• If ΔW > 0 the change costs energy since the increase in the inward
gravitational force is smaller than the increase of the outward pressure
force that resists the volume change. In this case the cloud is stable.

• If ΔW < 0, the change liberates energy! The inward gravitational force
increases faster than the outward pressure force. This implies that, once
started, the contraction of the cloud will continue, leading to gravita-
tional collapse. The cloud is unstable, which can be interpreted as a
consequence of the fact that physical systems tend to evolve towards a
minimum-energy state.

Using M = 4πρa3/3 expression (6.8.29) can be rewritten as

ΔW = 3MRT
⎛
⎝1 − a2

λ
2

J

⎞
⎠×

(
Δa

a

)
. (6.8.30)
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The characteristic length λJ in this expression is defined by:

λJ =

√
15

4π

(RT
Gρ

)1/2

. (6.8.31)

This characteristic length is almost the same as the Jeans length introduced in the
previous Section when we discussed the Jeans Instability. Using Cs = (5RT/3)1/2 one
finds

λJ =
(

3

2π

)
λJ ≈ 0.5 λJ .

The above criterion for (in)stability leads to the following conclusion: if the cloud has
a radius a > λJ (and therefore the cloud diameter is larger than 2λJ ∼ λJ) it will be
unstable against gravitational collapse since ΔW < 0. Smaller clouds, with a < λJ, are
stable as ΔW > 0.




