
Chapter 7

Shocks

7.1 What are shocks, and why do they occur?

In the previous Chapter we discussed the propagation of small-amplitude disturbances,
and showed that they take the form of linear waves. It was easy to find wave solutions
by using the fluid equations in the linearized version, which neglects the non-linearities
stemming from terms like (V · ∇)V in the equation of motion. In this Chapter I
will condider the opposite limit of strong disturbances, where the fluid properties change
rapidly. In this case the intrinsic non-linearity of the fluid equations plays an essential role.
In particular I will discuss sudden transitions: shock waves and contact discontinuities
which, in the limit of an ideal fluid, are infinitesimally thin.

Shock waves occur supersonic flows where the flow velocity exceeds the (adiabatic)
sound speed. In a shock material flows across the discontinuity surface. A different type
of discontinuity is the so-called contact discontinuity that can occur at any flow speed.
A contact discontinuity is a surface separating two fluids or gases with different physical
properties. Unlike a shock, there is no flow of mass across a contact discontinuity1.

The simplest illustration for the reasons that lead to the formation of shock waves is
a one-dimensional,isentropic (the specific entropy s is constant so that P ∝ ργ) flows2.
Consider the equations for a one-dimensional flow in the x-direction, with a velocity
u(x , t), a density ρ(x , t) and a pressure P (x , t). The set of equations governing such
a flow will be rewritten in a form that allows the identification of invariants.

1We neglect for the moment the effects of the thermal motion
2For a full discussion of the results of this paragraph see:

F.H. Shu: The Physics of Astrophysics, Vol. II, Gas Dynamics, University Science Books, Mill, Valley,
CA, USA, Ch. 15;
L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Course of Theoretical Physics Vol. 6, Pergamon Press,
Oxford, 1959, Chapter IX

281



282 CHAPTER 7. SHOCKS

The relevant equations can be written as

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

(
∂u

∂x

)
;

∂u

∂t
+ u

∂u

∂x
= −1

ρ

(
∂P

∂x

)
; (7.1.1)
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.

The last equation is a simple consequence of the assumption of constant entropy,

P ρ−γ = constant, (7.1.2)

with the isentropic sound speed defined as before by

c2s =

(
∂P

∂ρ

)
s

=
γP

ρ
. (7.1.3)

By algebraic manipulation of these equations one can eliminate the density from these
equations. By using the relation

dρ

ρ
=

2

γ − 1

dcs
cs

, (7.1.4)

the system reduces to a set of two partial differential equations of the form

[
∂

∂t
+ (u+ cs)

∂

∂x

] (
u+

2

γ − 1
cs

)
= 0 ;

(7.1.5)[
∂

∂t
+ (u− cs)

∂

∂x

] (
u− 2

γ − 1
cs

)
= 0 .

These equations can be written in short-hand notation as

D+ C+ = 0 and D− C− = 0 , (7.1.6)
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where

C± = u± 2

γ − 1
cs , D± =

∂

∂t
+ (u± cs)

∂

∂x
. (7.1.7)

These two equations can be interpreted as follows: the two characteristic variables3 C+

and C− are constant on curves in the x− t plane which are the two trajectories defined
by the (implicit) equations

(
dx

dt

)
±

= u± cs . (7.1.8)

These two sets of trajectories are known as the plus-characteristic and minus-characteristic.
The trajectories of the plus-characteristic can be found by tracing the path in space-time
x−t of a hypothetical observer, which moves with a velocity equal to the sum of the local
flow speed and the sound speed. This is exactly the speed of sound waves propagating
in the same direction as the (one-dimensional) flow. In a similar fashion, the trajectory
associated with the minus-characteristic has can be found by moving at a velocity equal
to the speed of sound waves propagating in the direction opposite to the flow direction.
This is illustrated in the figure below. These characteristic equations are true regardless
the amplitude of the perturbations, and not just for (weak) sound waves. They have
been derived using the full (non-linear) set of fluid equations.

One can prove a number of interesting general properties with the theory of charac-
teristics, for instance:

• At any point P in the flow, only the space-time region contained between the
plus- and minus characteristic originating from that point can be influenced by the
physical conditions at P ;

• Conversely, at any point P in the flow, only the physical conditions in the region
contained within the plus- and minus characteristics arriving at P can influence
the conditions at P

The variation of the orinary fluid variables along the characteristics can be derived directly
from the isentropic gas law P ∝ ργ and the associated relation

dP

ρ
= c2s

dρ

ρ
=

2cs
γ − 1

dcs . (7.1.9)

3Usually called the Riemann Invariants in the context of fluid mechanics.
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Figure 7.1: Diagram showing the space-time flow line, defined by dx = u dt, and the
two characteristics C+ and C− defined by dx = (u+ cs) dt and dx = (u− cs) dt. From
each point in the flow two characteristics originate along which C+ and C− are constant
respectively. Note that the value of C± can be different on the different characteristics
so that the characteristic variables C+ and C− are not global constants!
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This relation allows one to write the condition that C± remain constant along their
respective characteristic trajectories as:

dC± = du± 2

γ − 1
dcs = 0 ⇐⇒ du± dP

ρcs
= 0 . (7.1.10)

Here I have used Eqn. (7.1.9). This means that the two Riemann invariants C+ and C−
can also be expressed as

C± = u±
∫

dP

ρcs
, (7.1.11)

up to an arbitrary integration constant.

7.1.1 Application to sound waves

Let us apply this to a simple small-amplitude sound wave propagating along the x-axis
in the positive x-direction, with a wave vector k = k êx. In absence of the wave the fluid
is at rest (u = 0). Using the relations (6.5.6) derived in the previous Chapter, together
with the sound wave frequency that follows from the dispersion relation

ω = |k|cs , (7.1.12)

it is easily checked that the velocity induced by the presence of the wave equals

u = δV =
δP

ρcs
. (7.1.13)

Here I have used that both the wave vector k and the amplitude a of the wave are along
the x-axis.

Without the wave, the Riemann invariants C± have constant values in the uniform,
stationary gas:

C0
+ = −C0

− = 2cs/(γ − 1) ≡ C0 . (7.1.14)

Here cs is the sound speed in the unperturbed uniform gas. The presence of the small-
amplitude sound wave changes the Riemann constants.
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They now equal (compare Eqn. 7.1.10)

C± = ±C0 + δV ± δP

ρcs
. (7.1.15)

It is easily seen form (7.1.13) that a forward propagating wave changes C+ to

C+ = C0 +
2δP

ρcs
= C0 + 2cs

δρ

ρ
. (7.1.16)

Here I have used that δP = c2s δρ in a sound wave. The second invariant C− on the
other hand remains unchanged: the term involving δV cancels the term involving δP .
We conclude that the Riemann invariant with the characteristic trajectory running in the
direction opposite to the propagation direction of the sound wave (the characteristic:
dx = (u − cs) dt) is not influenced by the wave, at least in the linear limit. Therefore
C− = −2cs0/(γ−1) remains a global constant in this case. The other Riemann invariant
C+ varies sinusoidally around C0 due to the presence of the sound wave, and will therefore
take different values on the different plus-characteristics that originate along the wave.

As the wave propagates it must develop non-linearities in the long run as the un-
derlying exact fluid equations are non-linear. This means that the displacement vector
ξ(x , t), δρ(x , t) and δP (x , t) can no longer be described as simple sinusoidal varia-
tions in space and time. If one thinks in terms of a Fourier sum of waves with different
frequencies and wavenumbers, this means that a monochromatic wave with a given fre-
quency and wavenumber (related by the dispersion relation) will exite higher harmonics
in the long run, and does not remain monochromatic.

The development of these non-linearities can be traced using the theory of charac-
teristics. Let the density at the nodes of the wave where δV ∝ |a| = 0 be ρ0, the
unperturbed density, and the associated sound speed be equal to cs(ρ0) ≡ cs0. The
sound speed varies with density as

cs(ρ) = cs0

(
ρ

ρ0

)(γ−1)/2

. (7.1.17)

The fact that C− is a global constant implies that

C− = u− 2cs
γ − 1

= − 2cs0
γ − 1

. (7.1.18)
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Solving for the velocity u one finds that on the minus-characteristic x− one must have:

u(x−) =
2cs0
γ − 1

⎡
⎣(ρ(x−)

ρ0

)(γ−1)/2

− 1

⎤
⎦ (7.1.19)

Regions with a density surplus (ρ > ρ0) have u > 0 and cs > cs0, and those with a density
deficit (ρ < ρ0) must have u < 0 and cs < cs0. This means that the plus characteristics
dx = (u + cs) dt emanating from an overdense region travel at a larger velocity than
average, but those emanating from a region of density deficit are traveling slower than
average, as illustrated in figure 7.2. As a result, a sinusoidal wave must steepen as it
propagates (see figure 7.3): the wave crests (regions with a density surplus) catch up
with the wave throughs (regions with a lower than average density) and an acoustic
wave will steepen into a saw-tooth form. The plus-characteristics from overdense and
underdense regions must ultimately cross, leading to an unphysical situation: there can
not be two different values for the variant C+ at the same space-time position. The
same happens to the minus-characteristics. Therefore, something drastic must happen
that prevents such an unphysical situation, in this case the formation of a shock. Sound
waves in the absence of dissipation will steepen into compressive shocks!
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Figure 7.2: The plus characteristics (solid lines) and minus characteristics (dashed lines)
emanating from a small-amplitude sinusoidal sound wave of wavelength λ. The density
amplitude of the wave is indicated (arbitrary units). The characteristics in a uniform
flow with sound speed cs0 would correspond in this figure to lines at an inclination of
±45 degrees with respect to the time axis. Note the crossing of the characteristics
which signals that something drastic, i.e. the formation of shocks, is inevitable as the
non-linearities build up.
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Figure 7.3: The shape of an initially sinusoidal sound wave at t = 0, cs0t/λ = 0.4
and cs0t/λ = 0.8. The sound wave steepens. Before the plus-characteristics cross at
cs0t/λ = 0.4 it has a saw tooth-like shape. After the crossing of the characteristics
at cs0t/λ = 0.8 the shape is double-valued, and hence unphysical near the nodes at
x/λ = 0.5 and 1.5. Before that, a shock will form at these nodes.
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7.2 Plane Shock waves: an introduction

Shock waves are a feature of supersonic flows with a Mach number exceeding unity:

Ms =
|V |
cs

> 1 . (7.2.1)

They occur when a supersonic flow encounters an obstacle which forces it to change its
velocity. For instance: a bowshock forms around the Earth in the tenuous Solar Wind
where the ionized wind material ‘hits’ the strongly magnetized Earth’s magnetosphere.

We have seen in Chapter 6.4 that small-amplitude sound waves in a flow propagate
with a velocity

vgr = V + cs κ̂ , (7.2.2)

with κ̂ = k/|k| the direction of propagation. Sound waves act as an ‘messenger’: they
carry density and pressure fluctuations that in some sense alert the incoming flow when
an obstacle is present. For low-Mach number flows (Ms < 1) waves can propagate
against the flow, getting ahead of the obstacle.

However, in a supersonic flow with Ms > 1 the net velocity of the waves given by
(7.2.2) is always directed downstream, and no waves can reach the flow upstream from
the obstacle. In this situation a shock forms. In the shock, there is a sudden transition
where the density, pressure and temperature of the flow increases. Behind the shock the
temperature is so high that the component of the flow normal to the shock becomes
subsonic. In that post-shock region, sound waves are once again able to communicate
the presence of an obstacle to the flow so that pressure forces can deflect the flow,
steering it around the obstacle. The figure below gives the Earth’s bow shock as an
example.

7.3 A simple mechanical model: the marble-tube

As a simple mechanical model for shock formation, consider the figure below. In a
hollow (semi-infinite) tube, spherical marbles with a diameter D that are separated by
a distance L > D roll with velocity V . The end of the tube is plugged, forming an
obstacle that prevents the marbles from continuing onward. As a result, the marbles
collide inelastically, loose their velocity and accumulate in a stack at the plugged end of
the tube. Far ahead of the obstacle, where the marbles still move freely, the line-density
of marbles (the number of marbles per unit length) equals n1 = 1/L. The density in
the stack equals n2 = 1/D > n1. The density of the marbles increases when they are
added to the stack.
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Figure 7.4: When the Solar Wind impacts the Earth’s magnetosphere, the ‘sphere of influence’
of the Earth’s magnetic field, it forms a bow shock. In this bow shock, the incoming Solar
Wind material is decelerated, compressed and heated. The properties of the Earth’s bow shock
can be studied using satellites

Figure 7.5: The marble tube as a simple model of shock formation. Marbles collide at
the plugged end of the tube, forming a stack that grows as time progresses. The transition
between freely moving marbles, and the stationary marbles in the stack, is the analogue of
a shock surface. Like a real shock, it marks the transition between a low marble density
upstream, and a higher marble density downstream of the transition.
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The growth of the stack is calculated easily. In order to collide, two adjacent marbles
have to close the separation distance ΔD = L − D between their surfaces. The time
between two collisions at the front of the stack is therefore

Δtcoll =
L−D

V
. (7.3.1)

At every collison, one marble is added to the stack, and the length of the stack increases
by D. Therefore, the average velocity with which the length of the stack increases equals

Vsh = − D

Δtcoll
= −V

(
D

L−D

)
. (7.3.2)

Note that this velocity is negative: the minus-sign is introduced because this velocity is
directed towards the left. This relation defines the ‘shock velocity’ in this simple model.
The imaginary surface at the front end of the stack, the surface that separates a region
of low marble density4 (n1 = 1/L) from the high-density region (n2 = 1/D) in the
stack, is the analogue of a hydrodynamical shock.

Let us now transform to a reference frame where the ‘shock’ is stationary. We neglect
the fact that the stack grows impulsively each time a marble is added. In this reference
frame, the shock frame, the incoming marbles have a velocity

V1 = V − Vsh = V
(
1 +

D

L−D

)
= V

(
L

L−D

)
. (7.3.3)

The marbles in the stack, which are stationary in the laboratory frame, move away with
speed

V2 = −Vsh = V
(

D

L−D

)
(7.3.4)

in the shock frame.

In any frame, the flux F of marbles is their line-density × their velocity. In the shock
frame the flux of incoming marbles with density n1 = 1/L equals:

F1 = n1V1 =
V

L−D
. (7.3.5)

4The density is here a line density: the number of marbles per unit length.
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The flux of the marbles in the stack with density n2 = 1/D equals in the shock frame:

F2 = n2V2 =
V

L−D
. (7.3.6)

Comparing this with (7.3.5) one sees that these two fluxes are equal:

F1 = F2 . (7.3.7)

This equality has a simple interpretation. The number of marbles crossing the shock
surface in a time Δt equals ΔN = FΔt. Since an infinitely thin surface can not contain
any marbles, as it has no volume, the number of marbles entering the surface at the
front must exactly equal the number that leaves in the back:

ΔNin = F1 Δt = ΔNout = F2 Δt . (7.3.8)

Equality (7.3.7) follows immediately. As we will see below, many of the concepts in-
troduced here can be immediately transplanted to the physics of shocks in a gas. In
particular we will find that the flux of mass, momentum and energy satisfy relations
equivalent to (7.3.7): what enters the shock surface in the front must come out in the
back.
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7.4 Shock waves in a simple fluid

I will consider a simple fluid with density ρ, pressure P and which satisfies the polytropic
relation

P = constant × ργ (7.4.1)

on either side of the shock, but not with the same constant on both sides as a result
of dissipation (entropy increase) in the shock. I will assume that the shock is planar,
located at a fixed position the y − z plane. The flow is from left-to-right so that the
pre-shock flow occurs for x < 0, and the post-shock flow for x > 0 (see figure 7.6).
The direction normal to the shock coincides with the direction of the x-axis. The shock-
normal, a unit vector pointing into the upstream flow, will be indicated by n̂s. In this
case n̂s = −êx. I will use the subscripts 1 (2) to indicate the values of quantities ahead
of (behind) the shock.

The assumption of a planar shock in the x − z plane can be realized if the flow
properties, such as velocity, density and pressure, depend only on the x−coordinate:
∂/∂y = ∂/∂z = 0. I will also assume that the velocity vector lies in the x− z plane:

V = Vn êx + Vt êz . (7.4.2)

Here I have written Vn rather than Vx, and Vt rather than Vz, in order to stress that
these two velocity components are the components of the velocity normal to the shock
surface and tangential to the shock surface respectively.

Neglecting the effects of gravity and dissipation in the flow on either side of the shock,
the equations describing the fluid are mass conservation, momentum conservation in the
x and z-direction and conservation of energy. The set of fluid equations in conservative
form (see Chapter 3) in this case reduce to:

∂ρ

∂t
+
∂(ρVn)

∂x
= 0

∂(ρVn)

∂t
+

∂

∂x

[
ρ V 2

n + P
]

= 0

(7.4.3)

∂(ρVt)

∂t
+

∂

∂x
[ρ Vn Vt] = 0

∂

∂t

[
ρ

(
V 2

2
+ e

)]
+

∂

∂x

[
ρVn

(
V 2

2
+ h

)]
= 0 .
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Figure 7.6: The geometry of the flow at a planar, oblique shock. The shock is a thin

transition region in the x − z plane, separating the high-velocity (supersonic) incoming flow

(x < 0) from the shocked outgoing flow (x > 0). Pre-shock quantities such as density and

pressure are labeled with a subscript 1, and post-shock quantities with a subscript 2. The

incoming flow has a velocity V1 at an inclination angle θs with respect to the direction normal

to the shock surface (the x-axis). In a normal shock one has θs = 0.
The thickness of the shock layer equals �s. In this Chapter, we we will take the limit of

vanishing shock thickness (�s → 0) in our calculations, treating the shock as a sudden jump

in velocity, density and pressure.

In the shock the flow component normal to the shock is decelerated, so that Vn2 < Vn1.

The tangential velocity component is unchanged: Vt2 = Vt1. The normal Mach number

of the flow changes from supersonic (Mn = Vn/cs > 1) ahead of the shock to subsonic

(Mn = Vn/cs < 1) behind the shock.
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The quantities e and h are the internal energy per unit mass and the enthalpy per unit
mass which for a polytropic fluid are given by the usual relations,

e =
P

(γ − 1) ρ
, h =

γ P

(γ − 1) ρ
, (7.4.4)

and

V 2 = V 2
n + V 2

t . (7.4.5)

All these equations have the same form:

∂Q
∂t

+
∂F
∂x

= 0 . (7.4.6)

Here Q is some quantity like mass density, momentum density or energy density, and
F the flux of that quantity in the x−direction. Let us assume that the shock has a
thickness �s around x = 0, so that it extends in the range −1

2
�s ≤ x ≤ 1

2
�s. One can

integrate across the shock, from x = −�s/2 to x = +�s/2. The integrated version of
(7.4.6) reads:

F2 −F1 ≡ ΔF = − ∂

∂t

(∫ +
s/2

−
s/2
dxQ(x, t)

)
. (7.4.7)

Here F1 ≡ F(−�s/2) and F2 = F(+�s/2) are the pre- and post-shock values of the
flux. If the shock thickness �s is small, and if the quantity Q changes from an upstream
value Q1 in front of the shock to a downstream value Q2 behind the shock, one can
estimate the integral in (7.4.7) using the mean value of ∂Q/∂t:

−ΔF =
∫ +
s/2

−
s/2
dx

∂Q(x, t)

∂t
≈ �s

2

[
∂Q2

∂t
+
∂Q1

∂t

]
. (7.4.8)

If one now assumes that the shock is infinitely thin, in effect taking the limit �s → 0, the
integral becomes vanishingly small, ΔF = 0. In that case the shock is a discontinuity
surface where the fluid properties change abruptly. Integral relation (7.4.7) in that case
reduces to the conservation of flux across the shock:

F2 = F1 . (7.4.9)



7.4. SHOCK WAVES IN A SIMPLE FLUID 297

This expresses the simple fact that one can not store anything in a infinitely thin surface:
there is no volume to store it in. Therefore, the principle ‘flux in = flux out’ must hold.
Exactly the same condition was derived in the marble tube analogy for shock formation
treated in the preceding Section.

Let us apply this result to the set of equations (7.4.3), which are the conservation
laws for the different fluxes in the problem: the mass flux, the momentum flux that has
two components, and the energy flux. For each of these four fluxes condition (7.4.9)
holds. As we will see, these flux conservation laws give us the information needed to
calculate the state of the gas behind the shock, given its state just ahead of the shock.

Together, the set of four equations (7.4.3) gives the following four flux conservation
laws across an infinitely thin shock, the so-called Rankine-Hugoniot jump conditions:

ρ1Vn1 = ρ2Vn2 ≡ J

[
ρ V 2

n + P
]
1

=
[
ρ V 2

n + P
]
2

(7.4.10)

[ρVnVt]1 = [ρVnVt]2

ρ1Vn1

[
V 2

2
+ h

]
1

= ρ2Vn2

[
V 2

2
+ h

]
2

The first equation states that the mass flux across the shock, J = ρVn, is constant:
you can not ‘store’ mass in an infinitely thin surface. Since the flow is compressed in
the flow (see below, or consider the marble tube analogy) one has ρ2 ≥ ρ1 and

Vn2 =

(
ρ1

ρ2

)
Vn1 ≤ Vn1 . (7.4.11)

The second equation is the conservation of the x−component of the momentum flux.
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The third equation is the conservation of y−momentum flux. Because the mass flux
J = ρVn �= 0 does not change across the shock, the conservation of the flux of y-
momentum reduces to:

Vt1 = Vt2 . (7.4.12)

The component of velocity along the shock surface remains unchanged. There is a simple
physical reason for this result: by transforming to a frame that moves with velocity Vt1

along the z-axis towards positive z, you can transform away the perpendicular component
of the velocity in the incoming flow. The shock now is a normal shock, with the pre-
shock flow velocity along the shock normal. (In the laboratory frame, in which we
performed the original calculations, the shock is an oblique shock provided of course
that Vt �= 0.) Momentum flux conservation in the new frame of reference then tells you
that the post-shock flow must also be in the direction normal to the shock, i.e. along
the x-axis.

The conclusion of this line of reasoning is as follows: every oblique shock can be
tranformed into a normal shock by choosing a new reference frame, and vice versa every
normal shock can be transformed into an oblique shock. This implies that relation
(7.4.12) must be valid.

The two relations (7.4.11) and (7.4.12) together imply that the shock refracts the
flow away from the shock normal, see Figure (7.6). The angle between the velocity
vector and the normal direction increases as the flow crosses the shock.

The fourth equation gives the conservation of the energy flux across the shock: Since
ρ Vn = J does not change across the shock, this condition is equivalent with

[
V 2

2
+ h

]
1

=

[
V 2

2
+ h

]
2

. (7.4.13)

This is essentially Bernouilli’s law applied to a shock. Relation (7.4.12) implies V 2
t1 = V 2

t2,
and the above relation can also be written in a form that involves only Vn, the normal
component of the flow velocity:

[
V 2

n

2
+ h

]
1

=

[
V 2

n

2
+ h

]
2

. (7.4.14)

This form of the energy conservation law is once again the result of the fact that one
can transform away the tangential velocity component Vt, simply by moving along the
shock surface with velocity Vt.
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This procedure leaves the effect of the shock on Vn unchanged, but eliminates Vt from
the equations. In the new reference frame, the kinetic energy per unit mass of the flow
is V 2

n /2.

The conservation of the x−momentum flux and the energy conservation law can be
written in an alternative form, using as a new variable the specific volume, defined as
V = 1/ρ. This is the volume that contains 1 gram (or 1 kg, depending on the mass
units you use) of gas. The specific volume takes the following values on the upstream
and downstream side of the shock:

V1 =
1

ρ1
, V2 =

1

ρ2
. (7.4.15)

The conservation of x−momentum can be expressed in terms of V as

P1 + J2 V1 = P2 + J2 V2 . (7.4.16)

In a similar fashion, the energy conservation law becomes

h1 +
1

2
J2 V2

1 = h2 +
1

2
J2 V2

2 . (7.4.17)

The first equation yields

J2 =
P2 − P1

V1 − V2
. (7.4.18)

Expressing the specific enthalpy of an ideal gas in terms of V,

h =
γ P

(γ − 1) ρ
=

γ

γ − 1
P V , (7.4.19)

one can write the energy flux conservation law as

J2
(
V2

1 − V2
2

)
=

2γ

γ − 1
(P2 V2 − P1 V1) . (7.4.20)
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Eliminating J2 from this equation using (7.4.18) one finds the so-called shock adiabat:

γ

γ − 1
(P2 V2 − P1 V1) =

1

2
(V2 + V1) (P2 − P1) .

(7.4.21)

One defines the shock compression ratio r as the density ratio across the shock:

r ≡ ρ2

ρ1

=
V1

V2

. (7.4.22)

Because of J = ρVn = constant, one also has:

r =
Vn1

Vn2
. (7.4.23)

Substituting V1 = r V2 in (7.4.21), and solving for the compression ratio, one finds the
following relation:

r =
ρ2

ρ1
=

γ + 1

γ − 1
P2 + P1

γ + 1

γ − 1
P1 + P2

. (7.4.24)

The condition ρ2 > ρ1 implies that P2 > P1. Let us examine this relation in two
important limits. In very weak shocks the fluid properties change only slightly across the
shock. One can write

P2 ≈ P1 + ΔP , ρ2 = ρ1 + Δρ , (7.4.25)

where the pressure jump ΔP and density jump Δρ are small in the sense that ΔP � P1

and Δρ � ρ1. Substituting these relations into (7.4.24), and expanding the resulting
equation to first order in ΔP and Δρ, yields the following relation between the density
jump and the pressure jump:

ΔP =

(
γP

ρ

)
1

Δρ = c2s1 Δρ . (7.4.26)
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This relation between the pressure- and density jump is exactly the same as the one
found in (small-amplitude) sound waves. For adiabatic sound waves in a gas where the
pressure satisfies P ∝ ργ one has

ΔP =
∂P

∂ρ
Δρ = c2sΔρ . (7.4.27)

Therefore weak shocks (so that Vn1
>∼ cs) can be considered for all intents and purposes

as strong sound waves.

For very strong shocks on the other hand one expects a large pressure increase across
the shock so that P2 
 P1. In that case (7.4.24) yields an asymptotic value for the
compression across the shock:

r ≈ γ + 1

γ − 1
≡ rmax (strong shock). (7.4.28)

This is the maximum possible compression rate of a shock in an ideal (polytropic) gas.
For an ideal mono-atomic gas one has γ = 5/3, and rmax = 4.
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7.4.1 The Rankine-Hugoniot Relations

One can parametrize the strength of the shock by introducing the normal Mach number
Mn, which is defined for Vn > 0 as

Mn =
(
Vn

cs

)
1

. (7.4.29)

It is the ratio of the upstream component of the flow speed along the shock normal, and
the sound speed in front of the shock. Defining the inclination angle θs of the incoming
flow with respect to the direction of the shock normal by

Vn1 = V1 cos θs , Vt1 = V1 sin θs , (7.4.30)

one can write the normal Mach number in terms of Ms = V1/cs as

Mn = Ms cos θs . (7.4.31)

One can express the compression ratio r and the pressure ratio P2/P1 across the shock
in terms Mn. The resulting expresions are the so-called Rankine-Hugoniot relations5:

r =
ρ2

ρ1
=

(γ + 1) M2
n

(γ − 1) M2
n + 2

,

(7.4.32)

P2

P1

= 1 +
2γ

γ + 1

(
M2

n − 1
)
.

Shocks only exist for Mn > 1. If one puts Mn = 1, one finds r = 1 and P2/P1 = 1.
In such a infinitesimally weak shock the flow crosses the shock surface unchanged: the
density, pressure and velocity in the post-shock flow are equal the density, pressure and
velocity in the pre-shock flow. In the limit of a strong shock with Mn → ∞ one finds
r → (γ + 1)/(γ − 1), and the pressure and temperature increase without bound. For
instance: P2 ≈ 2γM2

n/(γ + 1) → ∞ as Mn → ∞.

5e.g. , L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Course of Theoretical Physics Vol. 6,
Pergamon Press, Oxford, 1959, §85
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7.5 The limit of a strong shock

In many astrophysical applications the normal Mach number is large, Mn 
 1. In this
strong shock limit the Rankine-Hugoniot jump conditions simplify considerably:

ρ2

ρ1
=

Vn1

Vn2
≈ γ + 1

γ − 1
;

(7.5.33)

P2

P1

≈ 2γ

γ + 1
M2

n .

Using the definitions (7.4.29) and (7.4.31), one finds that the post-shock pressure can
be written as

P2 ≈ 2ρ1V
2
n1

γ + 1
=

2ρ1V
2
1 cos2 θs
γ + 1

. (7.5.34)

The post-shock temperature follows from the ideal gas law, P = ρRT/μ, as:

T2 =
μP2

ρ2R =

(
2μ(γ − 1)

(γ + 1)2R
)
ρ1V

2
1 cos2 θs . (7.5.35)

The sound speed in the shocked gas follows from

cs2 =

√
γRT2

μ
≈
(

2γ(γ − 1)

(γ + 1)2

)1/2

V1 cos θs . (7.5.36)

From this it is obvious that, as an order of magnitude, one has P2 ∼ ρ1V
2
n1 and cs2 ∼

Vn1 = V1 cos θs. For instance: in an ideal gas with γ = 5/3 one has P2 = 3ρ1V
2
n1/4 and

cs2 ≈ 0.56Vn1.

These (approximate) relations will be used extensively below, when we consider the
physics of Supernova Remnants and Stellar Wind Bubbles that are expanding into the
Interstellar Medium.

In the Box below, I will derive these relations directly from the jump conditions for
the case of a normal shock.
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The infinitely strong normal shock

The algebra that is involved in the solution of the general jump conditions across
a shock in an ideal fluid is rather involved. There is one case, however, where
the jump conditions can be solved rather simply: the infinitely strong, normal
shock. This is the case with a vanishing pre-shock pressure, P1 = 0, and with
Ms = Mn = ∞. The jump conditions (7.4.10) reduce to the following, much
simpler set of algebraic relations:

ρ1V1 = ρ2V2 ≡ J ;

ρ1V
2
1 = ρ2V

2
2 + P2 ; (7.5.37)

1
2
V 2

1 = 1
2
V 2

2 +
γP2

(γ − 1) ρ2
.

In the above set of equations I have written simply V1 and V2 for the pre- and
post-shock flow speeds. Note that we can not assume that the post-shock
pressure vanishes: if we put P2 = 0 the only solution of this set of relations is
the trivial solution: V1 = V2. There is no shock in the trivial case.

Combining the first two of these relations immediately yields:

V1 − V2 =
P2

J
=

P2

ρ1V1
. (7.5.38)

The last of the three relations of (7.5.37) can be written as

V 2
1 − V 2

2 =
2γ

γ − 1

P2V2

J
. (7.5.39)

Using V 2
1 −V 2

2 = (V1 +V2)(V1−V2) and substituting for V1−V2 from (7.5.38),
this last equation can be written as:

P2

J
(V1 + V2) =

2γ P2V2

(γ − 1) J
. (7.5.40)
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The common factor P2/J cancels, and the resulting linear equation is easily
solved for V2 in terms of V1:

V2 =
γ − 1

γ + 1
V1 . (7.5.41)

Substituting this result into (7.5.38) yields the post-shock pressure:

P2 = ρ1V1 (V1 − V2) =
2

γ + 1
ρ1V

2
1 . (7.5.42)

Finally, the continuity of the mass flux J = ρV gives the post-shock mass
density:

ρ2 =
(
V1

V2

)
ρ1 =

γ + 1

γ − 1
ρ1 . (7.5.43)

This relatively straightforward calculation reproduces the strong-shock jump
conditions that follow from the general Rankine-Hugoniot relations in the limit
Mn → ∞.

The case of an oblique infinitely strong shock with normal velocity Vn and
tangential velocity Vt is easily obtained by making the replacements V1 −→ Vn1,
V2 −→ Vn2 in the above expressions, and by adding the jump condition for the
tangential velocity component:

Vt2 = Vt1 , (7.5.44)

which is valid for any hydrodynamical shock for the reasons explained above.
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7.6 Dissipation in a shock and the entropy jump

In an ideal polytropic gas the specific entropy (entropy per unit mass) is defined as

s = cv ln
(
Pρ−γ

)
. (7.6.1)

Since we neglected dissipation in the derivation of our equations, the specific entropy in
the flow on either side of the fluid is constant:

s(x < 0) = constant ≡ s1 , s(x > 0) = constant ≡ s2 . (7.6.2)

However, from the Rankine-Hugoniot relations (7.4.32) one can calculate s2, given the
upstream state of the gas (including s1). If one does so one sees immediately that the
s2 ≥ s1 provided that ρ2 > ρ1 and (consequently) P2 > P1 and V2 < V1. Until now we
have assumed that this is indeed the case, with the marble tube analogy as justification.
The jump in the specific entropy across the shock is

Δs ≡ s2 − s1 = cv ln

[(
P2

P1

)(
ρ1

ρ2

)γ ]
≥ 0 . (7.6.3)

One has Δs = 0 in an infinitely weak shock with ρ2 = ρ1 and P2 = P1.

In general, the entropy per particle will increase across the shock, a sure sign of some
form of dissipation! That there must be some form of dissipation associated with the
shock is intuitively obvious: part of the kinetic energy 1

2
ρ1V

2
1 of the directed motion

in the upstream flow is irreversibly converted into the thermal (internal) energy of the
shock-heated gas downstream. Nevertheless, the details of the dissipation mechanism
do not enter into the final equations (the jump conditions).

In fact, one can appeal to the laws of thermodynamics in order to show that the only
possible shock transitions are those where the density, pressure and temperature increase
across the shock, and the flow velocity decreases. In that case the entropy jump is pos-
itive: Δs ≥ 0. Formally, the jump conditions could also be satisfied if one interchanges
the post-shock and the pre-shock flows, and where the flow velocity increases across the
shock. That would be a transition where the density, pressure and temperature decrease
across the shock, and where the flow accelerates rather than decelerates. In such a
transition the specific entropy decreases: Δs < 0. Thermodynamics tells you that the
entropy of the system can only stay equal or increase. Δs ≥ 0. This thermodynamic
law specifically excludes a shock transition where the flow is accelerated rather than
decelerated.
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One can think of a shock as a self-regulating structure in the following sense: the jump
conditions (7.4.10), which were derived assuming an infinitely thin shock, put a strong
constraint on the system: given the upstream state of the fluid (i.e. ρ1, V 1 and P1) and
the direction of the shock normal n̂s, the downstream state is completely determined
by the Rankine-Hugoniot relations. The detailed (microscopic) structure of the shock,
such as it’s thickness, will have to adjust in such a way that the dissipation in the shock
is exactly at the level required to reach a downstream state where the density, pressure
and flow velocity are equal to the values that follow from the jump conditions.

The details of the dissipation only determine the thickness of the layer in which the
fluid makes the transition from the upstream state to the downstream state. If the
dissipation in the transition layer is due to two-body collisions between molecules or
atoms, one can show that the typical thickness of the shock is of similar magnitude as
the mean-free-path of the atoms or molecules in the gas. This mean free path is the
typical distance an atom or molecule can travel between two collisons. The collisions
convert part of the directed kinetic energy of the incoming flow into the kinetic energy
of the random thermal motions of the individual atoms or molecules.

7.6.1 Shock thickness and the jump conditions

The formal derivation of the jump conditions in the preceding Sections assumes that
the shock transition layer is infinitesimally thin. We derived that this implies that the
flux entering the surface from upstream equals the flux exiting the surface into the
downstream region. What happens if we allow the shock to have a finite thickness?

The answer to that question is contained in Eqn. (7.4.7): the flux F of some quantity
entering the shock from upstream can only differ from the flux leaving the shock if the
associated density Q of this quantity depends explicitly on time:

∂Q
∂t

�= 0 . (7.6.4)

This means that the flow must be time-dependent! In a steady flow, where all flow
quantities are independent of time, the jump conditions are also valid in the case of a
finite shock thickness.

The reason is simple. Consider two infinite surfaces, with the flow lines crossing
both these surfaces. In a steady flow, no mass (and no energy or momentum) can
accumulate in (or drain away from) the volume contained between these two surfaces. If
it did accumulate (or drain away), the amount of mass (energy, momentum) contained
between the two surfaces would grow (decay) in time, and the flow would no longer be
steady. This line of reasoning also holds for two surfaces, one at the front and one at
the back of a shock transition layer. This implies that the principle flux in = flux out
also holds for shocks of finite thickness in a steady flow.
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7.7 An example: over- and underexpanded Jets

In Chapter 5 we discussed Jet flows: collimated streams of gas which are in pressure-
equilibrium with their surroundings. What happens if there is no pressure-equilibrium?
If the flow speed inside the jet is supersonic with Ms > 1, the attempt of the jet to re-
establish pressure equilibrium with the surrounding gas leads to a series of strong shocks
in the jet flow, the so-called Mach Disks. These Mach Disks are oriented perpendicular
to the jet axis, so that these shocks are normal shocks on the jet axis, the axis of
symmetry. If the internal pressure Pi inside the jet is less than the pressure Pe in the
external medium, one speaks of an overexpanded jet as the jet material has expanded
too much, resulting in a low internal pressure. The opposite case (with Pi > Pe) is
called an underexpanded jet.

What happens in these jets is illustrated in the Figure below. The situation shown
there is what typically results in the exhaust jet of a jet engine or a rocket engine. The
pressure in such an exhaust is determined by the (chemical) processes ocurring inside
the engine, where the fuel is burned. The Mach Disks can actually be observed, as is
illustrated below for the case of the Bell X-1 rocket plane, the first plane to break the
sound barrier, and for the Space Shuttle.

In an underexpanded jet, the jet material expands sideways, leading to a expansion
fan: a region where the fluid expands, and pressure and density decrease. These expan-
sion fans, which behave similar to an expansion wave, reflect off the boundary of the
jet, and turn (upon reflection) into compression fans. Such compression fans steepen
into oblique shock waves, and finally cause the formation of the Mach Disk. Material
that crosses the Mach Disk is compressed and heated, so that behind the Mach Disk
the jet is again underexpanded (and over-pressured) with respect to the surrounding gas
that tries to confine the jet. This means that the sequence of events starts anew, and a
whole series of expansion fans, compression fans and Mach Disks is possible.

In an overexpanded jet, one starts with a compression fan as the jet material is
compressed in response to the higher pressure in the surrounding gas. A Mach Disk is
formed, and the shock compression in this Mach Disk raises the jet pressure so that the
jet material is now over-pressured (underexpanded) with respect to the surrounding gas.
The development of the jet thereafter proceeds as sketched above for an underexpanded
jet.

Some astrophysicists believe that the bright ‘knots’ observed in the jets associated
with Active Galaxies, see for example Figure 5.3 for the case of M87, are caused by a
similar mechanism. This idea is supported by simulations, which show that the char-
acteristic ‘diamond shape’ pattern of oblique shocks and Mach Disks indeed occur, as
illustrated in the third figure below.
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Underexpanded jet: P > Pei

Overexpanded jet: P < Pei

Figure 7.7: The flow in an over- and underexpanded jet. The Mach Disks are represented
by the red lines perpendicular to the jet axis.
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Figure 7.8: Mach Disks in the exhaust jet of the Bell X-1 rocket plane (top), and behind
the three main engines of the Space Shuttle (below). Behind the Bell X-1 a series of
bright ‘blobs’ are visible, which show the location of the series of Mach Disks. Behind
the Shuttle engines, only the first Mach Disk is clearly visible, the following disks in the
series are less distinct.



7.7. AN EXAMPLE: OVER- AND UNDEREXPANDED JETS 311

Figure 7.9: A numerical simulation by P. Hughes, G. Comer Duncan & P. Hardee (Uni-
versity of Michigan) of a relativistic jet. The colors indicate different densities, with the
highest densities in red, and intermediate density in yellow. Compressions are therefore
colored yellow and red. Note the blunt bow shock preceding the jet, and the diamond-
shape pattern of shocks inside the jet, just behind the head of the jet where it impacts
the shocked intergalactic medium that has just passed through the bow shock. In this
case, the shock diamonds are caused by the pressure fluctuations associated with the
Kelvin-Helmholz Instability that occurs in the back-flow in the cocoon of shocked jet
material near the head of the jet. This distorts the jet boundary and causes the wavy
undulations. This instability, which occurs at a contact discontinuity between two fluids
with a different streaming velocity, is treated in Chapter 9.
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7.8 Contact discontinuities

The jump conditions of Eqn. (7.4.10) have another solution. Let us assume that no
mass crosses the discontinuity surface so that

Vn1 = Vn2 = 0 . (7.8.5)

In that case one speaks of a contact discontinuity. The conservation of the flux of x-
momentum, formally equal to ρV 2

n + P , reduces to a simple pressure-balance equation:

P2 = P1 . (7.8.6)

The conservation of the flux of y-momentum and the conservation of the energy flux are
both satisfied trivially: both vanish identically as ρVn = 0. This means that in a contact
discontinuity the state of the fluid on both sides of the discontinuity is only constrained
by the two relations (7.8.5) and (7.8.6). In particular one can have a situation where

ρ2 �= ρ1 , (7.8.7)

and the velocity, which in this case is entirely along the discontinuity surface, is uncon-
strained. It is not even necessary that the velocity along the contact discontinuity has
the same direction on both sides. At a contact discontinuity it is allowed that

V t2 �= V t1 . (7.8.8)

We will see however that such a situation, where the two velocities differ across the
contact discontinuity, is unstable: when the contact surface is warped, the deformations
grow as a result of the Kelvin-Helmholz instability.
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Summary: jump conditions at a shock

The table below summarizes the relevant relations valid at a infinitely thin shock,
in the frame where the shock itself is at rest:

Definition Mach Number: Ms =
V1

cs1
=

√√√√ρ1V 2
1

γP1
;

Normal Mach Number: Mn =
Vn1

cs1
= Ms cos θs ;

Density jump:
ρ2

ρ1
=

(γ + 1) M2
n

(γ − 1) M2
n + 2

;

Jump normal velocity:
Vn2

Vn1
=

(γ − 1) M2
n + 2

(γ + 1) M2
n

,

Tangential velocity: Vt2 = Vt1 ; (7.8.9)

Pressure jump:
P2

P1
= 1 +

2γ

γ + 1

(
M2

n − 1
)

;

Strong shock limit: M2
n =

ρ1V
2
n1

γP1


 1

Density jump:
ρ2

ρ1

	 γ + 1

γ − 1
;

Jump normal velocity:
Vn2

Vn1

	 γ − 1

γ + 1
;

Tangential velocity: Vt2 = Vt1 ;

Post-shock pressure P2 	 2γM2
n P1

γ + 1
=

2ρ1 V
2
n1

γ + 1
.
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7.9 Supernova remnants and stellar wind bubbles

7.9.1 Blowing high-pressure bubbles into a uniform medium

In the previous Sections we considered the physics of shocks from a reference frame
where the shock surface is at rest. The situation in a frame of reference where the
shock moves with velocity V s can be obtained (for non-relativistic shock speeds) from a
simple Galilean transformation. The Rankine-Hugoniot relations (7.4.32) and the jump
conditions (7.4.10) can still be applied, provided one interprets the velocities V1 and V2

as the relative velocity with respect to the shock, in vector notation:

V =⇒ V rel = V − V s . (7.9.1)

For a shock propagating with velocity V s into a medium that is at rest, V = 0, one
has V 1 = −V s and θs = 0. In this particular case any shock is a normal shock, with
Vt = 0, even when the shock surface itself is not a plane!

Now consider a strong shock, propagating with shock speed Vs into a stationary and
uniform medium with pressure P1 ≡ P0 and density ρ1 ≡ ρ0. This normal shock, with a
Mach number Mn = Ms, satisfies:

M2
s =

(
Vs

cs0

)2

=
ρ0 V

2
s

γP0

 1 . (7.9.2)

The strong shock limit of the Rankine-Hugoniot relations (Eqns. 7.5.33 and 7.5.34 with
cos θs = 1) then give the following result for the pressure P2 immediately behind the
shock:

P2 ≈ 2γM2
s

γ + 1
P0

(7.9.3)

=
2ρ0 V

2
s

γ + 1
,

where I have used (7.9.2). One can invert this relation, and calculate the shock speed
in terms of the post-shock pressure P2, and the pre-shock density ρ0:

Vs ≈
√
γ + 1

2

(
P2

ρ0

)1/2

. (7.9.4)
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This result can be applied for the formation of high-pressure bubbles in a stationary
surrounding medium. This is a situation that applies to supernova remnants (SNRs)
and stellar wind bubbles in the interstellar medium.

Consider a spherical bubble containing a low-density, very hot gas with internal
pressure Pi and internal density ρi. This bubble has a radius R, see the figure below. The
bubble is embedded in a cold, dense stationary medium with a low pressure, P0 � Pi,
and a high density ρ0 
 ρi. Because of the large pressure difference, the bubble will start
to expand rapidly. If the difference between the internal pressure Pi and the external
pressure P0 is sufficiently large, the expansion speed will be supersonic with respect to

the sound speed in the surrounding medium, dR/dt = Vs > cs0 =
√
γP0/ρ0. For

instance, the typical (observed) expansion speed of a supernova remant is ∼ 1000 km/s.
The sound speed in the interstellar medium ranges from 10-100 km/s.

Because of the supersonic expansion velocity, a shock will form at the outer edge of
the bubble. This shock is usually called the blast wave. The mass that has been swept
up by the expanding bubble will collect in a dense ‘shell’ at its outer rim. If the shock
is strong, the typical density in this shell follows from the shock jump conditions. The
shocked swept-up material in the shell has a density (see Eqn. 7.5.33)

ρsh ≈ γ + 1

γ − 1
ρ0 . (7.9.5)

This immediately allows us to calculate the thickness of the shell. If the external medium
is uniform, a bubble with radius R has swept a total mass equal to

Msw =
4π

3
ρ0R

3 . (7.9.6)

This mass is now residing in the dense shell with thickness ΔR and has a density ρsh.
So one must have for ΔR � R:

Msw ≈ 4π ρshR
2 ΔR . (7.9.7)

Combining the last to equations, and using (7.9.5), one finds:

ΔR =
(γ − 1)R

3(γ + 1)
= 0.083R , (7.9.8)

where the numerical value is for γ = 5/3. So the assumption that the shell is thin is
a reasonable one. The swept-up material is separated from the hot material inside the
bubble by a contact discontinuity.
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Figure 7.10: The structure of a tenuous bubble of very hot gas (large internal pressure Pi

amd small density ρi) expanding with velocity Vs = dR/dt into a low-pressure, high-density
medium at rest. The density of the surrounding medium equals ρ0. If the expansion speed
is supersonic with respect to the sound speed in the surrounding medium, the exterior of the
bubble is a strong shock, also called a blast wave. Behind the blast wave, the material that
the bubble has swept up in its life time collects in a dense shell. The hot material in the bubble
interior is separated from this swept-up material by a contact discontinuity.
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The expansion speed of the bubble can be estimated from shock theory (Eqn. 7.9.4):

dR

dt
≈ Vs ≈

√
γ + 1

2

(
Pi

ρ0

)1/2

(7.9.9)

This relation also implies that the the expansion is supersonic if ρi � ρ0: the material
inside the bubble must have a very low density compared with the surrounding medium.

The associated expansion law, which gives the bubble radius R(t) as a function of
time, can be obtained from a simple dynamical argument. Let us assume that most of
the mass of the expanding bubble is the swept-up material that has been collected over
the bubble life time, and which resides in a dense shell at the outer edge the bubble
with thickness ΔR � R. This immediately gives the mass contained in the bubble as a
function of the bubble radius R(t):

M(t) ≈Msw =
4π

3
ρ0 R

3(t) . (7.9.10)

The total energy of the bubble consists of the kinetic energy of the expanding massive
shell, and the internal (thermal) energy of the hot, tenuous gas in the bubble interior:

E(t) ≈ 1

2
M(t)

(
dR

dt

)2

+
(

4π

3
R3

)
Pi(t)

γ − 1
. (7.9.11)

Here it is assumed that the internal pressure is almost uniform, which is a reasonable
approximation of the expansion speed is less than the internal sound speed:

Vs ≤ csi =

√
γPi

ρi
. (7.9.12)

In that case, the interior pressure must be roughly equal to the post-shock pressure in
the shell material:

Pi ≈ P2 ≈ 2

γ + 1
ρ0

(
dR

dt

)2

(7.9.13)

This is simply the pressure-balance condition (7.8.6) applied at the contact discontinuity
that separates the bubble interior from the shocked material in the shell. Note that
(7.9.13) implies that the ratio of the thermal energy and the kinetic energy of the remnant
becomes a constant (equal to 4/(γ2 − 1) = 2.25 for γ = 5/3) when M(t) ≈Msw.
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These relations allow us to find an approximate expression for the total (kinetic +
thermal) energy of the expanding, hot bubble. Substituting (7.9.13) into (7.9.11) one
finds:

E(t) = Cγ M(t)

(
dR

dt

)2

. (7.9.14)

Here Cγ is a numerical constant of order unity, which in this simple model is given by

Cγ =
γ2 + 3

2(γ2 − 1)
. (7.9.15)

For an ideal mono-atomic gas with γ = 5/3 one has Cγ = 1.625. The value for Cγ
is approximate, because of the various approximations made in the derivation (constant
interior pressure etc.). However, more exact treatments arrive at the same result, with
a somewhat smaller value for Cγ.

If one knows at which rate energy is supplied to the bubble as a function of time,
so that E(t) is known, one can use Eqn. (7.9.14) together with Eqn. (7.9.10) to derive
the expansion law R(t). We will treat two important cases: that of a point explosion
where a fixed amount of energy E0 is supplied impulsively at t = 0 and where no
energy losses occur afterwards, so that E(t) = constant = E0. This is a model for
a supernova remnant some 100-10,000 years after the explosion of the progenitor star.
The other important case is that of a constant energy supply at some luminosity L so
that E(t) = Lt. The latter case can serve as a crude model of the energy of a bubble
blown into the interstellar medium by a strong stellar wind.

Another approach gives similar results. Consider the force balance of the dense
shell of swept-up material. I will consider the case where of an explosive event where
E(t) = E0 is constant. The force balance equation can be written as a relation for the
change of the shell momentum Msw V :

d(Msw V )

dt
≈ 4πR2 Pi . (7.9.16)

This states that the change of the magnitude of the momentum of the shell is supplied
by the push excerted at its inner edge by the pressure of the hot gas inside the bubble.
The assumption Pi 
 P0 allows us to neglect the force on the shell due to the pressure in
the surrounding interstellar medium. If one now uses the expression Msw = 4πρ0R

3/3,
and if one estimates the internal pressure as Pi ∼ E0/4πR

3, which assumes that about
half of the total energy resides in the thermal energy in the bubble, one finds an equation
of motion that will give the same expansion law as the energy argument used above.
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7.10 Supernova explosions and their remnants

In a supernova the core of a massive star (M ≥ 10M�) which has exhausted its nuclear
fuel collapses under its own weight. Without the constant energy supplied by nuclear
fusion, the gas pressure drops and is no longer capable of supporting the outer layers
of the star against gravity. The star starts to collapse, a collapse which proceeds most
rapidly in the dense inner core. The collapse of the core continues (and accelerates) until
it reaches a density comparable to that found in atomic nuclei. In that case a neutron
star is left as a ‘fossil’ of the original exploded star. In a number of supernova remnants,
such as the Crab Nebula (see figure) this pulsar has been detected. For a recent review
about supernovae and their significance for astrophysics see Burrows6.

The amount of energy liberated when the core collapses into a neutron star is es-
sentially the gravitational binding energy of the core at the moment it ‘bounces’. This
bounce is due to the change in the equation of state of the material in the collapsing core
when it is compressed to nuclear densities (ρ 	 ρnuc = 1014 g cm−3). Nuclear forces,
rather than the pressure of the (degenerate) material start to dominate the pressure.
With a core mass Mc ≈ 1.5 M� and a bounce radius Rb ≈ 10 km (the typical mass
and radius of a neutron star) the binding energy equals:

Esn ≈ GM2
c

Rb
≈ 1053 erg . (7.10.1)

The binding energy is radiated away, mainly in the form of neutrinos. These neutrino’s
are the product of the reaction

p+ e− → n+ νe , (7.10.2)

which occurs when protons and electrons ‘recombine’ into neutrons within the dense, col-
lapsing core. Neutrinos associated with the supernova SN 1987a in the Large Magellanic
Cloud were detected on Earth in several experiments set up to measure proton-decay7.
About 1 % of this energy is transferred from the neutrinos to the stellar envelope, and
is used to drive a shockwave that ejects the envelope into the interstellar medium. The
mechanical energy of the ejecta is therefore of order

Esnr ≈ 0.01 × Esn ≈ 1051 erg. (7.10.3)

This energy fuels the explosive event that ultimately creates a supernova remnant.

6A. Burrows, 2000: Nature 403, 727.
7e.g.: Hirata, K et al., 1987: Phys. Rev. Lett. 58, 1490; Bionta, R.M. et al. 1987: Phys. Rev.

Lett. 58, 1494.
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Figure 7.11: Picture of the Crab Nebula, showing the optical filaments and the diffuse glow
of optical synchrotron radiation due to relativistic electrons. This nebula is the remnant of the
supernova of AD 1054. The actual Sedov blast wave is much larger than the structure shown
here, but has as yet not been detected. This emission seen in this picture is largely powered
by the Crab pulsar, the first pulsar ever discovered. This rapidly rotating neutron star spinds
down slowly Apparently, most of the lost rotational energy is put into an ultra-relativistic wind.
Therefore the Crab Nebula is an example of a pulsar wind nebula.
Photo taken with the VLT, ESO, Chili
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The whole sequence of events in a core-collapse supernova (Type II supernova in the
astronomical jargon) is illustrated below.

Figure 7.12: The sequence of events leading to core collapse, and the associated supernova
explosion

A supernova remnant consists essentially of the stellar ejecta in a hot expanding
bubble, preceded by swept-up interstellar material and an outer blast wave (strong shock)
propagating into the interstellar medium. The typical speed Vs of this material can be
estimated by a simple argument of energy conservation. Let us assume that all the
mechanical energy is converted into the kinetic energy of the remnant, Esnr = 1

2
MsnrV

2
s .

In that case, the expansion velocity should be of order

Vs 	
√

2Esnr

Msnr
. (7.10.4)

The mass Msnr is the mass of the ejecta, explosively expelled from the star at the time
of the supernova explosion, and the mass Msw (see Eqn. 8.10.10) that is added later as
the remnant sweeps up more and more interstellar material.
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If the density of the interstellar gas is constant and equal to ρism, and if the radius of
the remnant is Rs, one has

Msnr = Mej +
4π

3
ρism R

3
s . (7.10.5)

Since we know the typical energy involved, and the mass of the remnant must be several
solar masses, we can estimate the typical expansion velocity:

Vs 	 3, 000

(
Esnr

1051 erg

)1/2 (
Msnr

10 M�

)−1/2

km/s . (7.10.6)

Initially, the mass M(t) of the remnant consists almost entirely of the ejecta mass,
Mej 	 2 − 10 M�. The expansion velocity is nearly constant:

Vs 	 (2Esnr/Mej)
1/2 = 10, 000 km/s. (7.10.7)

This expansion velocity is much larger that the sound speed in the interstellar gas (	
10− 100 km/s), so a shock must form at the outer edge of the remnant. This phase in
the evolution of the remnant is called the free-expansion phase.

As more and more interstellar gas is swept up, the mass of the remnant increases.
After a few hundred years, the mass is dominated by this swept-up interstellar material,
so that (7.10.4) reduces to:

Vs 	
√

6Esnr

4πρism
R−3/2

s . (7.10.8)

The velocity decreases with increasing radius as R−3/2 in this so-called Sedov-Taylor
phase, the result of the increasing remnant mass: Msnr ∝ R3. The typical expansion
speed remains supersonic for a considerable time (typically 10,000 yr), so the shock at
the outer edge of the remnant persists in this evolutionary phase.

The transition between the free expansion phase and the Sedov-Taylor phase occurs
gradually when the radius of the remnant reaches the deceleration radius Rd. The
deceleration radius is defined as the radius where the ejecta mass equals the mass of the
swept-up interstellar gas:

4π

3
ρismR

3
d = Mej ⇐⇒ Rd =

(
3Mej

4πρism

)1/3

	 2.2

(
Mej

M�

)1/3

n
−1/3
ism pc. (7.10.9)
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Here nism ≈ ρism/mp is the number density of the interstellar gas, which is typically
nism ∼ 1 cm−3. It is easily checked that the relation Vs ∝ R−3/2

s leads to an expansion
law of the form Rs ∝ t2/5, see below.

Later (typically after ∼ 10,000 years) the remnant begins to cool, and the energy is no
longer conserved. The figure below gives the typical evolution of a supernova remnant,
showing the free-expansion and Sedov-Taylor phase, and the following pressure-driven
snowplow phase and the and momentum-conserving phases. Ultimately, a supernova
remnant will merge with the general interstellar medium, leaving a Hot-Phase bubble
in the interstellar medium. I will now derive the expansion law during the Sedov-Taylor
phase, using the results of the previous Section.

7.10.1 The Sedov-Taylor expansion law

In a supernova explosion, the mechanical energy E0 ≡ Esnr that drives the expansion
of the bubble is supplied impulsively in a point explosion at time t = 0. If no energy is
lost, for instance through radiation losses, the mechanical energy remains constant for
t > 0. One can write the energy equation (7.9.11) in this case as:

Esnr = Cγ M(t)

(
dR

dt

)2

= constant (7.10.10)

The constant Cγ (see Eqn. 7.9.15) is of order unity. Once the remnant has expanded
to a radius larger than the deceleration radius, we can use (7.9.10) for the mass of the
bubble: M(t) ≈ 4πρismR

3(t)/3. The energy equation can then be written as

R3/2

(
dR

dt

)
=

(
3Esnr

4πCγρism

)1/2

= constant. (7.10.11)

This relationship between the velocity and the radius of the bubble, Vs ∝ R−3/2
s , is the

same one as derived above using a simple conservation law for the kinetic energy. In this
derivation we also take account of the thermal energy of the hot bubble material.

Let us try a power-law solution for the radius as a function of time:

R(t) = constant × tα . (7.10.12)
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Figure 7.13: The evolutionary stages in the life of a supernova remnant From: Cioffi, 1990,
in: Physical Processes in Hot Cosmic Plasmas, W. Brinkmann, A.C. Fabian & F. Giovannelli
(Eds.), NATO ASI Vol. 305, p. 1, Kluwer Academic Publishers.
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For an expansion law of this form the velocity is also a power-law in time:

V (t) =
dR

dt
= α

R

t
∝ tα−1 (7.10.13)

Using V = αR/t one sees that this power law for R(t) indeed solves Eqn. (7.10.11),
provided that

R5/2

t
= constant ⇐⇒ R(t) ∝ t2/5 . (7.10.14)

This solution condition determines the power-law index as α = 2/5. Now that the value
of α has been determined one can derive the full solution:

R(t) = C̄

(
Esnr

ρism

)1/5

t2/5 (7.10.15)

Here C̄ is another constant of order unity, which in our simple theory equals

C̄ =

(
75

16πCγ

)1/5

(7.10.16)

For γ = 5/3 one finds C̄ ≈ 0.98.

The pressure in the bubble decays as the bubble expands. From Eqn. (7.9.3) one
has Pi ∝ V 2

s ∝ t−6/5. This loss of pressure is simply an expansion loss as the internal
pressure is converted into the kinetic energy of the expanding shell.

This energy-conserving Sedov-Taylor solution8 applies for R
 Rd until the radiation
losses from the remnant become important. Radiative cooling makes the pressure inside
the hot bubble decay faster, and consequently the remant looses energy, and the expan-
sion slows down more rapidly than in the Sedov-Taylor phase. The cooling-dominated
stages of the remnant evolution set in after about 10,000 years.

8The Russian physicist Sedov derived this solution analytically. Sedov’s method was a very clever
use of a mathematical technique known as a similarity solution. The British physicist Taylor derived
the same expansion law by numerical means. Taylor then used his model to estimate the explosive yield
of the first atomic test explosions in the desert of New Mexico in 1945, using the publicly available
photographs of the expanding fireball. At the time, the explosive yield of atomic bombs was considered
to be classified information by the U.S.
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The Sedov-Taylor solution predicts the radius and speed (shock speed) of the remnant
to be

Rs 	 3.8

(
Esnr

1051 erg

)1/5 (
nism

1 cm−3

)−1/5
(

t

1000 yr

)2/5

pc

(7.10.17)

Vs 	 1580

(
Esnr

1051 erg

)1/5 (
nism

1 cm−3

)−1/5
(

t

1000 yr

)−3/5

km/s.

The strong shocks around the supernova remnants are believed to be the source of cosmic
rays: a tenuous gas of very energetic charged particles (protons, electrons and nuclei)
which pervades our whole galaxy. These shocks also accelerate electrons which radiate by
the synchrotron mechanism in the weak magnetic field (B ∼ 10−4 G) inside the remant.
This makes supernova remnants strong,non-thermal radio sources, as illustrated by the
false-color picture of the radio emisson from Tycho’s remnant shown below. The heated
gas inside the bubble (T ∼ 108 K) causes emission lines in the optical spectrum of the
remant, and X-rays (thermal bremsstrahlung and atomic lines from highly ionized heavy
nuclei such as Iron) which makes them also strong X-ray sources, as illustrated on the
next page by the picture of Tycho’s remnant in X-rays.

7.10.2 The pressure-driven and the momentum-conserving snow-
plow phases

I will now briefly consider the two evolutionary phases that follow the Sedov-Taylor
phase. If the supernova remnant becomes sufficiently old, radiative cooling becomes
important, and the total energy is no longer conserved. In the energy conserving Sedov-
Taylor phase, pressure forces accelerate the swept-up interstellar gas, converting thermal
energy (which came from the original explosion) into the kinetic energy of the shell of
swept-up matter. Since radiative cooling scales with the number density n as n2, and
since the density inside the shell of swept-up matter is much larger than inside the hot
interior of the remnant, most of the cooling occurs in the shocked interstellar medium.

In the snow-plow approximation one assumes that all the energy put into the swept-
up gas is radiated away, but that the hot interior of the remnant does not cool. This
means that the shell of shocked interstellar gas collapses until it becomes very thin, and
that the pressure inside the remnant now behaves adiabatically (as no heat is added to,
or lost from the interior):

Pi ∝ ργi . (7.10.18)
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Figure 7.14: Two pictures of the remnant of Tycho’s supernova (AD 1572), a picture
in X-Rays (left) , made with the CHANDRA satellite, and a radio picture made with
the Very Large Array radio synthesis telescope (right). The X-ray picture shows the
hot (T ∼ 108 K) gas in the remnants interior in yellow. This is mostly line emission
from exited nuclei. The blue radiation at the outer rim of the remnant is synchrotron
continuum emission, caused by relativistic electrons moving in a weak magnetic field.
The radio emission is also synchrotron radiation. It is believed that these relativistic
electrons are accelerated at the outer shock.
This is a ‘classical’ remnant with a nearly perfect spherical shape. It is believed to be
entering the Sedov-Taylor phase. Note the sharp outer edge of the remnant, which is
believed to coincide with the position of the outer blast wave.
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Since the mass residing in the hot interior is conserved one has:

ρi =
Mej

(4π/3)R3
s

. (7.10.19)

Combining these two relations yields:

Pi ∝ R−3γ
s . (7.10.20)

For γ = 5/3 one finds Pi ∝ R−5
s . This behaviour is quite different from the behaviour

of the pressure in the Sedov-Taylor phase: there the pressure behaves as Pi ∼ ρismV
2
s ∝

R−3
s . The motion of the collapsed shell, which contains most of the mass, is driven by

the pressure of the remnant’s interior. The equation of motion of the massive shell can
be found by balancing the total pressure force on the shell by the inertial force,

d

dt

(
M(Rs)

dRs

dt

)
= 4πR2

s Pi(Rs) . (7.10.21)

The pressure of the interstellar medium has been neglected. Using the pressure law
(7.10.20) together with M(Rs) = 4πρismR

3
s/3 one finds that the equation of motion

(7.10.21) can be written as:

d

dt

(
R3

s

dRs

dt

)
= AR2−3γ

s . (7.10.22)

Here A is a constant, whose value does not concern us here. If one tries to solve this
equation with a power-law that gives the radius of the remnant as

Rs(t) = B tα (7.10.23)

with B some constant, the condition that both sides of the equation contain the same
power of t gives a condition on α. It is easy to check that this condition reads

t4α−2 = t(2−3γ)α . (7.10.24)

Solving for α one finds:
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α =
2

3γ + 2
=

2

7
≈ 0.286 . (7.10.25)

The last value is for γ = 5/3. So in the pressure-driven snowplow phase the supernova
remnant expands as

Rs(t) ∝ t2/7 . (7.10.26)

Numerical simulations of this pressure-driven snowplow phase show that the value of α
is actually closer to α = 3/10 = 0.3.

Finally, when all the internal energy of the remnant has been radiated away, the
internal pressure approaches zero, and the remnant enters the momentum-conserving
snowplow phase, where Eqn. (7.10.21) reduces for Pi = 0 to

d

dt

(
M(Rs)

dRs

dt

)
=

d

dt
(M(Rs) Vs) = 0 ⇐⇒M(Rs) Vs = constant . (7.10.27)

Momentum conservation yields

Vs(Rs) ∝M−1(Rs) ∝ R−3
s , (7.10.28)

which implies

Rs(t) ∝ t1/4 . (7.10.29)

In the last stages of its life, the supernova remnant dissolves into the general interstellar
medium. The figure below shows such an old remnant.

A note on using power-law solutions

I have repeatedly solved the equations of motion of a supernova remnant in different
evolutionary stages with a power-law of the form Rs(t) ∝ tα. Although these are
mathematically speaking perfectly good solutions, physically they are approximations
simply because the assumptions behind the solutions are not valid over all time. If a
supernova remnant enters a different evolutionary stage (say: it goes from the Sedov-
Taylor stage to the snow plow stage) its behaviour changes, as indicated by a different
expansion law. Near the time of the transition neither the Sedov-Taylor expansion law
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nor the pressure-driven snow plow law give a good representation of the behaviour of the
remnant. The power-law solutions are only a good approximation to the exact solution if
one stays well away from the point in time where the SNR changes its behaviour because
the underlying physics changes!

Figure 7.15: The old supernova remnant S147, which is in the process of dissolving into the
general interstellar medium. Photo credit: Robert Gendler




