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Abstract. We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator
(DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle
hydrodynamics simulation of a multiphase interstellar medium. The comparison between the two methods clearly demonstrates
the superior performance of the DTFE with respect to conventional SPH methods, in particular at locations where SPH appears
to fail. Filamentary and sheetlike structures form telling examples. The DTFE is a fully self-adaptive technique for reconstruct-
ing continuous density fields from discrete particle distributions, and is based upon the corresponding Delaunay tessellation.
Its principal asset is its complete independence of arbitrary smoothing functions and parameters specifying the properties of
these. As a result it manages to faithfully reproduce the anisotropies of the local particle distribution and through its adaptive
and local nature proves to be optimally suited for uncovering the full structural richness in the density distribution. Through
the improvement in local density estimates, calculations invoking the DTFE will yield a much better representation of physical
processes which depend on density. This will be crucial in the case of feedback processes, which play a major role in galaxy
and star formation. The presented results form an encouraging step towards the application and insertion of the DTFE in astro-
physical hydrocodes. We describe an outline for the construction of a particle hydrodynamics code in which the DTFE replaces
kernel-based methods. Further discussion addresses the issue and possibilities for a moving grid-based hydrocode invoking the
DTFE, and Delaunay tessellations, in an attempt to combine the virtues of the Eulerian and Lagrangian approaches.
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1. Introduction is based upon a convolution of the discrete particle distribution

. : . .. with a particular user-specified kernel functh For a sample
Smoothed Particle Hydrodynamics (SPH) has established |t%(!flllﬂ pgrtic:eg wi?r? mzisspse':;-land Iocati:ns- the denssity) St
as the workhorse for a variety of astrophysical fluid dynamy '\~ .~ " particlei is Jgiven by I
I

cal computations (Lucy 1977; Ginghold & Monaghan 1977).
In a wide range of astrophysical environments this Lagrangia
scheme ffers substantial and often crucial advantages o¢
Eulerian, usually grid-based, schemes. Astrophysical applica- . o _
tions such as cosmic structure formation and galaxy formatidh, Which the kernel resolution is determined through the
the dynamics of accretion disks and the formation of stars apl@°°thing scaléy. Notice that generically the scate may

planetary systems are examples of its versatility and succedgidiferentfor each individual particle, and thus may be set to

performance (for an enumeration of applications, and corfdaptto the local parti_cle density. Usually thgfunctionaldepen—
sponding references, see e.g. the reviews by Monaghan 1§831¢€ of the kerndlVv is chosen to be spherically symmetric,
Bertschinger 1998). so that it is a function offr; — r;| only.

A crucial aspect of the SPH procedure concerns the proper, '€ evolution of the physical system under consideration
estimation of the local density, i.e. the density at the locatidp Ul determined by the movement of the discrete parti-
of the particles which are supposed to represent a fair — dfiles. Given aproperly defined densﬂy estimation pr_o_cedure,the
crete — sampling of the underlying continuous density fiel§duations of motion for the set of particles are specified through

The basic feature of the SPH procedure for density estimatpsuitable Lagrangian, if necessary including additional viscous
forces (see e.g. Rasio 1999).

Send gprint requests toF. |. Pelupessy, In practical implementations, however, the SPH procedure
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the fact that SPH particles represent functional averages oveuge will be playing a role when addressing the amount of pre-
certain Lagrangian volume. This averaging procedure is furttdicted star formation in simulation studies of galaxy formation.
aggravated by the fact that it is based upon a rather arbitrary Here, we seek to circumvent the complications induced by
user-specified choice of both the adopted resolution scadle(s)he kernel parametrization and introduce and propose an alter-
and the functional form of the kern@l. Such a description of a native to the use of kernels for the quantification of the den-
physical system in terms of user-defined fuzzy clouds of mattgty within the SPH formalism. This new method, based upon
is known to lead to considerable complications in realistic afie Delaunay Tessellation Field Estimator (DTFE, Schaap &
trophysical circumstances. Often, these environments involan de Weygaert 2000), has been devised to mould and fully
fluid flows exhibiting complex spatial patterns and geometriesdaptitself to the configuration of the particle distribution.
In particular in configurations characterized by strong gradierislike conventional SPH methods, it is able to deal self-
in physical characteristics — of which the density, pressure atmhsistently and naturally with anisotropies in the matter dis-
temperature discontinuities in and around shock waves repréution, even when it concerns caustic-like transitions. In ad-
sent the most frequently encountered example — SPH has beiion, it manages to succesfully treat density fields marked by
hindered by its relative ifficiency in resolving these gradientsstructural features over a vast (dynamic) range of scales.
Given the necessity for the user to specify the characteris- The DTFE produces density estimates on the basis of the
tics and parameter values of the density estimation procedyraiticle distribution, which is supposed to form a discrete
the accuracy and adaptibility of the resulting SPH implemespatial sampling of the underlying continuous density field.
tation hinges on the ability to resolve steep density contragts a linear multidimensional field interpolation algorithm it
and the capacity to adapt itself to the geometry and morpholay be regarded as a first-order version of the natural neigh-
ogy of the local matter distribution. A considerable improvesour algorithm for spatial interpolation (Sibson 1981; also see
ment with respect to the early SPH implementations, whiehg. Okabe et al. 2000). In general, applications of the DTFE
were based on a uniform smoothing lengthnvolves the use to spatial point distributions have demonstrated its success in
of adaptive smoothing lengths (Hernquist & Katz 1989), dealing with the complications of anisotropic geometry and
which provides the SPH calculations with a larger dynamédynamic range (Schaap & van de Weygaert 2000). The key
range and higher spatial resolution. The mass distributioniigredient of the DTFE procedure is that of the Delaunay tri-
many (astro) physical systems and circumstances is often clagulation, serving as the complete covering of a sample vol-
acterized by the presence of salient anisotropic patterns, usoe by mutually exclusive multidimensional linear interpola-
ally identified as filamentary or planar features. To deal wition intervals.
such configurations, additional modifications in a few sophis- Delaunay tessellations (Delaunay 1934; see e.g. Okabe
ticated implementations attempted to replace the conventioathl. 2000 for extensive review) form the natural framework in
— and often unrealistic and restrictive — spherically symmetrichich to discuss the properties of discrete point sets, and thus
kernels by ones whose configuration is more akin to the shagso of discrete samplings of continuous fields. Their versatil-
of the local mass distribution. The corresponding results do ity and significance have been underlined by their widespread
deed represent a strong argument for the importance of usipgplications in such areas as computer graphics, geographical
geometrically adaptive density estimates. A noteworthy examapping and medical imaging. Also, they have already found
ple is the introduction of ellipsoidal kernels by Shapiro et alvidespread application in a variety of “conventional” grid-
(1996). Their shapes are stretched in accordance with the based fluid dynamical computation schemes. This may concern
cal flow. Yet, while evidently being conceptually superior, thetheir use as a non-regular application-oriented grid covering
practical implementation does constitute a major obstacle asfiphysicalsystems, which represents a prominent procedure in
has prevented widescale use. This may be ascribed largelyetthnological applications. More innovating has been their use
the rapidly increasing number of degrees of freedom neededrid_agrangian “moving-grid” implementations (see Mauvripilis
specify and maintain the kernel properties during a simulatioct®97 for a review, and Whitehurst 1995 for a promising astro-
Even despite their obvious benefits and improvemengdysical application).
these methods are all dependent upon the artificial parametriza-It seems therefore a good idea to explore the possibilities
tion of the local spatial density distribution in terms of thef applying the DTFE in the context of a numerical hydrody-
smoothing kernels. Moreover, the specification of the informaamics code. Here, as a first step, we wish to obtain an idea
tion on the density distribution in terms of extra non physbf the performance of a hydro code involving the use of DTFE
cal variables, necessary for the definition and evolution of tlestimates with respect to an equivalent code involving regular
properties of the smoothing kernels, is often cumbersome3®&H density estimates. The quality of the new DTFE method
implement and may introduce subtle errors (Hernquist 1998ith respect to the conventional SPH estimates, and their ad-
see however Nelson & Papaloizou 1994; Springel & Hernquisintages and disadvantages under various circumstances, art
2002). In many astrophysical applications this may lead to sysraluated by a comparison between the density field which
tematic artefacts in the outcome for the related physical ptvesuld be yielded by a DTFE processing of the resulting SPH
nomena. Within a cosmological context, for example, the X-rggarticle distribution and that of the regular SPH procedure it-
visibility of clusters of galaxies is sensitively dependent upaself. In this study, we operate along these lines by a comparison
the value of the local density, setting the intensity of the emitted the resulting matter distributions in the situation of a repre-
X-ray emission by the hot intergalactic gas. This will be evesentative stochastic multiphase density field. This allows us to
more critical in the presence of feedback processes, which foake a comparison between both density estimates in a regime
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for which an improved method for density estimates would be The second step involves estimating the density at the lo-
of great value. We should point out a major drawback of ogation of each of the particles in the sample. From the def-
approach, in that we do not really treat the DTFE density @sition of the Delaunay tessellation, it may be evident that
timate in a self-consistent fashion. Instead of being part of theere is a close relationship between the volume of a Delaunay
dynamical equations themselves we only use it as an analyeisahedron and the local density of the generating point pro-
tool of the produced particle distribution. Nevertheless, it wittess (telling examples of this may be seen in e.g. Schaap &
still show the value of the DTFE in particle gasdynamics andn de Weygaert 2002a). Evidently, the “empty” cirumscribing
give an indication of what kind of tierences may be expectedpheres corresponding to the Delaunay tetrahedra, and the vol-
when incorporating in a fully self-consistent manner the DTHEMes of the resulting Delaunay tetrahedra, will be smaller as
estimate in an hydrocode. the number density of sample points increases, and vice versa.
On the basis of our study, we will elaborate on the poteRollowing this observation, a proper density estimatat the
tial benefits of a hydrodynamics scheme based on the DTH&cationx; of a sampling point is obtained by determining the
Specifically, we outline how we would set out to develop properly calibrated inverse of the volumé\,,; of the corre-
complete particle hydrodynamics code whose artificial kerngbondingcontiguous Voronoi cellThe contiguous Voronoi cell
based nature is replaced by the more natural and self-adaptVgor; is the union of all Delaunay tetrahedrg; of which the
approach of the DTFE. Such a DTFE based particle hydrogyarticlei forms one of the four vertices, i.88vorj = Um Tmi-
namics code would form a promising step towards the develdp-general, when a particleis surrounded byNy Delaunay
ment of a fully tessellation based quasi-Eulerian moving-gridtrahedra, each with a volumé(Ty;), the volume of the re-
hydrodynamical code. Such would yield a major and signifsulting contiguous Voronoi cell is
cant step towards defining a much needed alternative and com-

. . . Nr
plement to currently available simulation tools. Wyori = Z V(Tmi) - (3)
m=1
2. DTFE and SPH density estimates Note thatNy is not a constant, but in general may acquire a

g{fgerent value for each point in the sample. For a Poisson dis-

been extensively described elsewhere (Hernquist & Katz 198 ,ut|on of particles this is a non-integer number in the order

Schaap & van de Weygaert 2000). Here, we will only summ%_— <NT>Dzd'27 (va.n del Weygaertc}994). Qene;ahzmg;o a_n_alr-
fize their main, and relevant, aspects. itrary D-dimensional space, and assuming that each pairticle

has been assigned a massthe estimated densipy at the lo-
cation of particld is given by (see Schaap & van de Weygaert

The methods we use for SPH and DTFE density estimates h

2.1. SPH density estimate 2000)
Amongst the various density recepies employed within avaﬂ(ri) - (D+1) m (4)
able SPH codes, we use the Hernquist & Katz (1989) sym- Vori

metrized form of Eq. (1), using adaptive smoothing lengths: In this, we explicitly expressWiyo; for the general

. 1 D-dimensional case. The factdd ¢+ 1) is a normalization fac-
pi=5 Z my (Wi = il i) + Wi = 1l b)) (2) tor, accounting for thel + 1) different contiguous Voronoi

! hypercells to which each Delaunay hyper “tetrahedron” is as-
The smoothing lengthl; are chosen such that the sum inSigned, one for each vertex of a Delaunay hyper “tetrahedron”.
volves around 40 nearest neighbours. For the kashele take The third step is the interpolation of the estimated densi-
the conventional spline kernel described by Monaghan (1998§s oi over the full sample volume. In this, the DTFE bases

Other variants of the SPH estimate produce comparable resitgg!f upon the fact that each Delaunay tetrahedron may be con-
sidered the natural multidimensional equivalent of a linear in-

] ) terpolation interval (see e.g. Bernardeau & van de Weygaert
2.2. DTFE density estimate 1996). Given the D + 1) vertices of a Delaunay tetrahedron
The DTFE density estimating procedure consists of three ba%igh corresponding density estimajes the valuep(r) at any
steps. Iocat_|onr W|th_|n the _tetrah_edron can be straightforwardly de-

Starting from the sample of particle locations, the first stéprmined by simple linear interpolation,

involves the computation of the corresponding Delaunay t _ aflr > Cr
sellation. Each Delaunay cdll, is the uniquely defined tetra—eps(r) = Altio) + (VP)oelm - (1 = Tio). ®)
hedron whose four vertices (in 3D) are the set of 4 samplewhich rjg is the location of one of the Delaunay vertides
particles whose circumscribing sphere does not contain anlyis is a trivial evaluation once the value of the (linear) den-
of the other particles in the set. The Delaunay tessellationsisy gradient ¥p)peim has been estimated. For each Delaunay
the full covering of space by the complete set of these muttrahedronTl, this is accomplished by solving the the sys-
ally disjunct tetrahedra. Delaunay tessellations are well knotem of D linear equations corresponding to each of the re-
concepts in stochastic and computational geometry (DelaumaginingD Delaunay vertices constituting the Delaunay tetra-
1934; for further references see e.g. Okabe et al. 2000; MghedronT .. The “minimum triangulation” property of Delaunay
1994; van de Weygaert 1991). tessellations underlying this linear interpolation, minimum in
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the sense of representing a volume-covering network of ogial conditions according to a “glass” distribution (e.g. White
mally compact multidimensional “triangles”, has been a welt994).

known property utilized in a variety of imaging and surface The evolution of the gas is solely a consequence of fluid
rendering applications such as geographical mapping and vg{inamical and thermodynamical processes. No self gravity is

ous computer imaging algorithms. included. As for the thermodynamical state of the gas, cool-
ing is implemented using a fit to the Dalgarno-McCray (1972)
2.3. Comparison cooling curve. The heating of the gas is accomplished through

photo-electric grain heating, attributed to a constant FUV back-
Comparing the two methods, we see that in the case of SBkbund (17 G,, with Gy the Habing field) radiation field.
the particle “size” and “shape” (i.e. its domain of influence) i$he parameters are chosen such that after about 15 Myrs a
determined by some arbitrary kerné(r, hy) and a fortuitous two-phase medium forms which consists of warm (10 000 K)
choice of smoothing length; (assuming, along with the ma-and cold £100 K) HI gas.
jor share of SPH procedures, a radially symmetric kernel). In 1o stage at which a two-phase medium emerges forms a

the case of the DTFE method the particles” influence regiQQjitaple point to investigate the performance of the SPH and
is fully determined by the sizes and shapes of the Delaungy e methods. At this stage we took a snapshot from the sim-
cellsTr;, themselves solely dependent on the particle distribyrion, and subjected it to further analysis. For a variety of
tion. In other words, in regular SPH the density is determingdasons, the spatial gas distribution of the snapshot is expected
through the kernel functiolV(x), while in DTFE it is solely (5 represent a challenging configuration. The multiphase char-
the particle distribution itself setting the estimated values of th@er of the resulting particle configuration is likely to present a
density. Contrary to the generic situation for the kernel depefiopiem for regular SPH. Density contrasts of about four orders
dent methods, there are no extra variables left to be dewrm"ﬁdmagnitude separate dense clumps from the surrounding dif-
One major additional advantage is that it is therefore not n§Gge medium through which they are dispersed. Note that a fail-
essary to worry about the evolution of the kernel parameters, e 15 recover the correct density may have serious repercus-
Both methods do display some characteristic artefactsdpyng for the computedtects of cooling. In addition, we notice

their density reconstructions (_see_F!g. 1). To a!arge_extentth?ﬁg presence of physical structures with conspicuous, aspheri-
may be traced back to the implicit assumptions involved {0 geometries (see Figs. 1 and 2), such as anisotropic sheet:
the interpolation procedures, a necessary consequence of th€fjaments as well as dense and compact clumps, which cer-

finite amount of information contained in a discrete represefinly do form a challenging aspect for thefdrent methods.
tation of a continuous field. SPH density fields implicitly con-

tain the imprint of the specified and applied kernel which, as
has been discussed before, may seriously impart its resolvihg. Results
power and capacity to trace the true geometry of structures. The
DTFE technique, on the other hand, does produce triangurgure 1 dfers a visual impression of thefférences in per-
artefacts. At instances conspicuously visible in the DTFE r&mance between the SPH and DTFE density reconstructions.
constructed density fields, they are the result of the linear intdi?€ greyscale density maps in Fig. 1 (lower left: SPH, lower
polation scheme employed for the density estimation at the [§3ht: DTFE) represent 2D cuts through the corresponding 3D
cations not coinciding with the particle positions. In principledensity field reconstructions (note that contrary to the finite
this may be substantially improved by the use of higher ord&fdth of the corresponding particle slice, upper left frame,
interpolation schemes. Such higher-order schemes have ind&&ge constitute planes with zero thickness).
been developed, and the ones based upon the natural neighboummediately visible is the more crispy appearance of the
interpolation prescription of Sibson (1981) have already be®TFE density field, displaying substantially more contrast in
succesfully applied to two-dimensional problems in the field ebnjunction with more pronounced structural features. Look
geophysics (Sambridge et al. 1995; Braun & Sambridge 1995Y. at the compact clump in the lower righthand corper(
and solid state physics (Sukumar 1998). 0.5,Y ~ 0.12), forming a prominent and tight spot in the DTFE
density field. The clump at{ ~ 0.48 Y ~ 0.52) represents
another telling example, visible as a striking peak in the DTFE
rendering while hardly noticeable in the SPH reconstruction.
For the sake of testing and comparing the SPH and DTFE meStructures in the SPH field have a more extended appearance
ods, we assess a snapshot from a simulation of the neutral I3hvn their counterparts in the DTFE field, whose matter con-
The model of the ISM is chosen as an illustration rather thantast has been smeared out more evenly, over a larger volume,
a realistic model. yielding features with a significantly lower contrast. In this as-
The “simulation” sample of the ISM consists of HI gas corsessment it becomes clear that the DTFE reconstruction ad-
fined in a periodic simulation box with a site= 0.6 kpc®. The heres considerably closer to the original particle distribution
initially uniform density of the gas isy = 0.3 cnT3, while its  (top lefthand frame). Apparently the DTFE succeeds better in
temperature is taken to @e= 10 000 K. No fluctuation spec- rendering the shapes, the coherence and the internal composi-
trum is imposed to set the initial featureless spatial gas disttibn in the displayed particle distribution. At various locations,
bution. To set the corresponding initial spatial distribution dhe DTFE even manages to capture structural details which
theN = 64 000 simulation particles, we start from relaxed inseem to be absent in the SPH density field.

3. Case study: Two-phase interstellar medium
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Fig. 1. Comparison of the DTFE performance versus that of the regular SPH method in a characteristic configuration, that of a hydrodynamic
simulation of the multiphase interstellar medium. Top left panel: the particle distribution.®>a®6 kpc simulation region, within a slice

with a width of 0.005 kpc. Bottom left frame: 2D slice through the resulting (3D) SPH density field reconstruction. Bottom right frame: the
corresponding (3D) density field reconstruction produced by the DTFE procedure. Top righthand frame: summary, in terms of a quantitative
point-by-point comparison between the DTFE and SPH density estimatgs, and pspp. Abscissa: the value of the SPH density estimate
(normalized by the average dens{p)). Ordinate: the ratio of DTFE estimate to the SPH density estirpgiee/ospn These quantities are

plotted for each particle location in the full simulation box.

To quantify the visual impressions of Fig. 1, and to ananethods may be substantial, with density estimates at various
lyze the nature of the fierences between the two methods, wiastances dfering by a factor of 5 or more.
plot the ratiopprre/pspu @s a function of the SPH density es-  Most interesting is the finding that we may distinguish
timatepspn/{p) (in units of the average densify)). Doing so clearly identifiable and distinct regimes in the scatter diagram
for all particles in the sample (Fig. 1, top righthand, Fig. 2, topf pptre/pspH Versuspspr/{p). Four diferent sectors may be
lefthand) immediately reveals interesting behaviour. The scatentified in the scatter diagram. Allowing for some arbitrari-
ter diagram does show that the discrepancies between the hess in their definition, and indicating these regions by digits 1

to 4, we may organize the particles according to density-related
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Fig. 2. Systematic analysis of theftBrences between the DTFE and SPH density estimatgs, andpspn. Basis of the analysis is a point-by-
point comparison of these two density estimates. Top lefthand frame: diagram of the value of tpewalipspy (ordinate) versupsp/{o)
(abscissa) for each of the points in the simulation volume. Indicated in this scatter diagram are four sectors, each of which correspt
to particles residing in a physically fiiirent regimgphase. On the basis of this identification, the full set of particles is dissected into the
corresponding four composing particle samples. Top righthand frame: the spatial distribution of the full set of particles in a 0.04 kpc wide sl
The subsequent 4 frames (from central left to bottom right) show, for each indicated sector in the scatter diagram, the spatial distribution o
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criteria, roughly specified as (we refer to Fig. 2, top left framef the filaments and walls. By contrast, the higher values for
for the precise definitions of the domains): the SPH produced densities in sector 3 are related to the outer
realms of these features. This characteristic distinction can be
traced back to the failure of the SPH procedure to cope with
highly anisotropic particle configurations. While it attempts to
maintain a fixed number of neighbours within a spherical ker-
nel, it smears out the density in a direction perpendicular to
the filament. This produces lower estimates in the central parts,
which are compensated for with higher estimates in the periph-
ery. Evidently, the adaptive nature of DTFE does not appear to
produce similar deficiencies.
The physical meaning of the distinct sectors in the scatter dia-
gram becomes apparent when relating the various regimes wijt .
the spatial distribution of the corresponding particles. This mé(/'hrhe DTFE particle method
be appreciated from the five subsequent frames in Fig. 2, eatdving demonstrated the improvement in quality of the DTFE
depicting the related particle distribution in the same slice dénsity estimates, this suggests a considerable potential for in-
width 0.04 kpc. The centre and bottom frames, numberectdrporating the DTFE in a self-consistent manner within a hy-
to 4, show the spatial distribution of each group of particledrodynamical code. Here, we first wish to indicate a possible
isolated from the complete distribution (top right frame, Fig. 2)oute for accomplishing this in a particle hydrodynamics code
These particle slices immediately reveal the close corresp@mough replacement of the kernel based density estimates (1)
dence between any of the sectors in the scatter diagram #gdhe DTFE density estimates. We are currently in the pro-
typical features in the spatial matter distribution of the twaess of implementing this. The formalism on which this im-
phase interstellar medium. This systematic behaviour seemgfementation is based can be easily derived, involving nontriv-
point to truly fundamental dierences in the workings of theial yet minor modifications. Essentially, it uses the same dy-
SPH and DTFE methods, and would be hard to understanchéimic equations for gas particles as those in the regular SPH
terms of random errors. The separate spatial features in thefgasialism, the fundamental adjustment being the insertion of
distribution seem to react fiierently to the use of the DTFEthe DTFE densities instead of the regular SPH ones. In addi-
method. tion, a further diference may be introduced through a change
We argue that the major share of the disparity between tipetreatment of viscous forces. Ultimately, this will work out
SPH and DTFE density estimates has to be attributed to SRido different equations of motion for the gas particles. A fun-
mainly on the grounds of the known fact that SPH is poor ilamental property of a DTFE based hydrocode, by construc-
handling nontrivial configurations such as encountered in mtibn, is that it conserves mass exactly and therefore obeys the
tiphase media. By separately assessing each regime, we m@inuity equation. This is not necessarily true for SPH imple-
come to appreciate how theséfdiences arise. In sector 1, inmentations (Hernquist & Katz 1989).
volving the difuse low density medium, the DTFE and SPH es-  The start of the suggested DTFE particle method is formed
timates are of comparable magnitude, be it that we do obseryg/ahe discretized expression for the Lagrandidior a com-
systematic tendency. In the lowest density realms, whose rgjéessible, nondissipative flow,
tively smooth density does not raise serious obstacles for either
method, DTFE and SPH are indeed equal (with the exceptipn. Z m (1,42 + Ui (oi, S)) , (6)
of variations to be attributed to random noise). However, near < 2
the edges of the low density regions, SPH starts to overesti- . L )
mate the local density as the kernels do include particles witHfi€'em is the mass of particle v its velocity, 5 the cor-
the surrounding high density structures. The geometric int&fSPonding entropy and its specific internal energy. In this
polation of the DTFE manages to avoid this systemafiece SXPressionp; is the density at Iocat_lon as yet unspecified.
(see e.g. Schaap & van de Weygaert 2002a,b), which epralei? resulting Euler-Lagrange equations are
the systematic linear decrease of the ratigre/pspn With in- do; au;\ dp;
creasingospr/(p). To the other extreme, the high density re = — Z m; (5) I (7)
gions in sector 4 are identified with compact dense clumps Iis 7

as well as with their extensions into connecting filaments affle standard SPH equations of motion then follow after insert-
walls. On average DTFE yields higher density estimates thag the SpH density estimate (Eq. (1)). Instead, insertion of the
SPH, frequentl)_/ d|§play|ng superior spatial resolut|_on (see alsqFE density (Eq. (4)) will lead to the corresponding equa-
greyscale plot in Fig. 1). Note that the repercussions may s of motion for the DTFE-based formalism. Note that the
far-reaching in the context of a wide variety of astrophysjs | conservation properties related to Eq. (6) remain intact.
cal environments characterized by strongly density depend@fb; some algebraic manipulation, thereby using the basic

physical phenomenaand processes! The intermediate regimﬁ]@fmodynamic relation for a gas with equation of si(e),
sectors 2 and 3 clearly connects to the filamentary structures in

the gas distribution. Sector 2, in which the DTFE estimates gr@ui |\ _ Pi
larger than those of SPH, appears to select out the inner pa#s; |, B Pi2 ’

1. low density regions:

pspH/{p) < 1
2. medium density regions, DTFE smaller than SPH:

PDTFE < pspH, 1 < pspr/{p) < 10
3. medium density regions, DTFE larger than SPH:

PDTFE > pspH, 1 < pspr/{p) < 10
4. high density regions:

POTFE 2 PspH,  pspH/(p) > 10

(8)
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we finally obtain the equations of motion for the gas particles For a variety of astrophysical problems it is indeed essen-

(moving in D-dimensional space), tial to have such advanced codes at one’s disposal. An exam-
Nr ple of high current interest mayffer a good illustration. Such

doi _ 1 Z P(Tmi) 9V(Tmi) (9) an example is the reionization of the intergalactic medium by

d D+14 "7 0% the ionizing radiation emitted by the first generation of stars,

(proto)galaxies arfdr active galactic nuclei. These radiation
sources will form in the densest regions of the universe. To

as one of its four vertices. The pressure té¥iin;) is the sum be able to resolve these infiadient detall, it is crucial that the
over the pressure®; at the four vertices of tetrrghedroﬁ' i code is able to focus in onto these densest spots. Their emphasis
P(Tm) = ¥ P : ™" on mass resolution makes Lagrangian codes —including SPH —

H_sually better equipped to do so, be it not yet optimally. On the
her hand, it is in the low density regions that most radiation
absorbed at first. In the early stages the reionization process

P at each of the vertices of the Delaunay tetrahedra containlﬁéhelref,ore restrlcteﬁ tol thih“%e underderllse fraction of space.
particlei as one of their vertices. The reason for this is that orginulation codes should therefore properly represent and re-

can then invoke the definition of the volume of the contiguo&?'ve the gas density distribution within these voidlike regions.
Voronoi cell corresponding to poin(Eq. (3)), yielding The uniform spatial resolution of the Eulerian codes is better

suited to accomplish this. Ideally, however, a simulation code

O _ 1 P 9Wvori (10) should be able to combine the virtues of both approaches, yield-
dt D+1 0% ing optimal mass resolution in the high density source regions
Since the volume of the contiguous Voronoi cell does not dend a proper coverage of the large underdense regions. Moving
pend on the position of particleitself (it lies in the inte- grid methods, of which Delaunay tessellation based ones will
rior of the contiguous Voronoi cell), the resulting acceleratiope a natural example, may indeed be the best alternative, as
vanishes. Another interesting notion, which was pointed oflte reionization simulations by Gnedin (1995) appear to indi-
by Icke (2002), is that Delaunay tessellations also providecate. There have been manfjogts in the context of Eulerian
unique opportunity to include a natural treatment of the visodes towards the development of Adaptive Mesh Refinement
cous stresses in the physical system. We intend to elaboraté¢AMR) algorithms (Berger 1989), which have achieved a de-
this possibility in subsequent work dealing with the practicgiree of maturity. Their chief advantage is their ability to con-
implementation along the lines sketched above. centrate computationatfert on regions based on arbitrary re-
finement criteria, where, in the basic form at least, moving grid
methods refine on a mass resolution criterion. However they
are still constrained by the use of regular grids, which may
introduce artifacts due to the presence of preferred directions
Ultimately, the ideal hydrodynamical code would combin& the grid. The advantages of a moving grid fluid dynamics
the advantages of the Eulerian as well as of the Lagrangieode based on Delaunay tessellations have been most explic-
approach. In their simplest formulation, Eulerian algorithmily demonstrated by the implementation of a two-dimensional
cover the volume of study with a fixed grid and compute tHagrangian hydrocode (FLAME) by Whitehurst (1995). These
fluid transfer through the faces of the (fixed) grid cell voladvantages will in principle apply to any such algorithm, in par-
umes to follow the evolution of the system. Lagrangian foticular also for three-dimensional implementations (of which
mulations, on the other hand, compute the system by followimge are currently unaware). Whitehurst (1995) enumerated var-
the ever changing volume and shape of a particular individualis potential benefits in comparison with conventional SPH
element of gas (interestingly, the “Lagrangian” formulation isodes, most importantly the following:
also due to Euler 1862, who employed this formalism in a letter .
to Lagrange, who later proposed these ideas in a publication}'ySPH needs a smopthlng lengh
himself, 1762; see Whitehurst 1995), 7 SPH nee_ds an_arbltrary kernel functidh _

. 3. The moving grid method does not need an (unphysical) ar-

For a substantial part the success of the DTFE may be as- ... = | ; . ;

. . : tificial viscosity to stabilize solutions.
cribed to the use of Delaunay tessellations as an optimally cov-
ering grid. This suggests that they may also be ideal for th@e validity of the first two claims has of course also been
use in moving grid implementations for hydrodynamical caemonstrated in this study for particle methods based on
culations. As in our SPH application, such hydrocodes wilbTFE. Whitehurst showed additionally that there is an advan-
Delaunay tessellations at their core would warrant a close coage of moving grid methods over Eulerian grid-based ones.
nection to the underlying matter distribution. Indeed, attempi$ie implementation of Whitehurst, which used a first-order
towards such implementations have already been introducedatver and a limit on the shape of grid ce
the context of a few specific, mainly two-dimensional, appli- lIs to control the &ects of shearing of the grid, was far su-
cations (Whitehurst 1995; Braun & Sambridge 1995; Sukumperior to all tested first-order Eulerian codes, and superior to
1998). Alternative attempts towards the development of momany second-order ones as well. The adaptive nature of the
ing grid codes, in an astrophysical context, have shown themgrangian method and the fact that the resulting grid has no
potential (Gnedin 1995; Pen 1998). preferred directions are key factors in determining the perfor-

This expression involves a summation over Igfl Delaunay
tetrahedrd ,;, with volumesV(Tr,;), which have the particle

As an interesting aside, we point out that unlike in the co
ventional SPH formalism, this procedure implies an exact]
vanishing acceleratiorvd dt in the case of a constant pressur

5. Delaunay tessellations
and “moving grid” hydrocodes
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mance of moving grid methods such as FLAME. For additionsimulations will prove to be highly beneficial. This may be un-
convincing arguments, including the other claims, we may rderlined by considering a fitting illustration. Simulations of the
fer the reader to the truly impressive case studies presentedettling and evolution of the X-ray emitting hot intracluster gas
Whitehurst (1995). in forming clusters of galaxies do represent an important and
cosmologically relevant example (see Borgani & Guzzo 2001
and Rosati et al. 2002 for recent reviews). The X-ray luminos-
ity is strongly dependent upon the density of the gas. The poor
Here we have introduced the DTFE as an alternative dengiigcuracy of the density determination in regular SPH calcula-
estimator for particle fluid dynamics. Its principle asset is théibns therefore yields deficient X-ray luminosity estimates (see
it is fully self-adaptive, resulting in a density field reconstrudBertschinger 1998 and Rosati et al. 2002 for relevant recent re-
tion which closely reproduces, usually in meticulous detailjews). Despite a number of suggested remedies, such as sep-
the characteristics of the spatial particle distribution. It maarating particles according to their temperature, their ad hoc
do so because of its complete independence of arbitrary useature does not evoke a strong sense of confidence in the re-
specified smoothing functions and parameters. Unlike convestdts. Numerical limitations will of course always imply a de-
tional methods, such as the kernel estimators used in SPHyrite of artificial smoothing, but by invoking tools based upon
manages to faithfully reproduce the anisotropies in the lodalke DTFE technique there is at least a guarantee of an optimal
particle distribution. It therefore automatically reflects the geretrieval of information contained in the data.

uine geometry and shape of the structures present in the underDespite its promise for the use in a variety of analysis
lying density field. This is in marked contrast with kernel basddols for discrete data samples, such as particle distributions
methods, which almost without exception produce distortén computer simulations or galaxy catalogues in an observa-
shapes of density features, the result of the convolution of ttienal context, its potential would be most optimally exploited
real structure with the intrinsic shape of the smoothing funby building it into genuine new fluid dynamics codes. Some
tion. Its adaptive and local nature also makes it optimally suitsgecific (two-dimensional) examples of succesful attempts in
for reconstructing the hierarchy of scales present in the derher scientific fields were mentioned, and we argue for a sim-
sity distribution. In kernel based methods the internal structuikdr strategy in astrophysics. One path may be the upgrade of
richness of density features is usually suppressed on scalesdoerent particle hydrodynamics codes by inserting DTFE tech-
low that of the characteristic (local) kernel scale. DTFE, howology. In this study, we have outlined the development of such
ever, is solely based upon the particle distribution itself arrdSPH-like hydrodynamics scheme in which the regular kernel
follows the density field wherever the discrete representatiestimates are replaced by DTFE estimates. One could interpret
by the particle distribution allows it to do so. Its capacity to rethis in terms of the replacement of the user-specified kernel by
solve structures over a large dynamic range may prove tothe self-adaptive contiguous Delaunay cell, solely dependent
highly beneficial in many astrophysical circumstances, quit@ the local particle configuration. An additional benefit will
often involving environments in which we encounter a hiebe that on the basis of the localized connections in a Delaunay
archical embedding of small-scale structures within more ebessellations it will be possible to define a more physically mo-
tended ones. tivated artificial viscosity term.

In this study we have investigated the performance of the The ultimate hydrodynamics algorithm would combine the
DTFE density estimator in the context of a Smooth Particlértues of Eulerian and Lagrangian techniques. Considering the
Hydrodynamics simulation of a multiphase interstellar mediupositive experiences with DTFE, it appears to be worthwhile
of neutral gas. The limited spatial resolution of current partivithin the context of “moving grid” or “Lagrangian grid” meth-
cle hydrodynamics codes are known to implicate considerablgs to investigate the use of Delaunay tessellations for solving
problems near regions with e.g. steep density and temperathee Euler equations. With respect to a particle hydrodynamics
gradients. In particular their handling of shocks forms a sourcede, the self-adaptive virtues of DTFE and its ability to handle
of considerable concern. SPH often fails in and around theseaebitrary density jumps with only one intermediate point may
gions, so often playing a critical and vital role in the evolutiotead to significant improvements in the resolution and shock
of a physical system. Our study consists of a comparison amandling properties. Yet, for grid based methods major compli-
confrontation of the conventional SPH kernel based density estions may be expected in dealing with the non-regular nature
timation procedure with the corresponding DTFE density fielof the corresponding cells, complicating the handling of flux
reconstruction method. transport along the boundaries of the Delaunay tetrahedra.

The comparison of the density field reconstructions demon- The computational cost of DTFE resembling techniques
strated convincingly the considerable improvement embodiesdnot overriding. The CPU time necessary for generating the
by the DTFE procedure. This is in particular true at locatiori3elaunay tessellation corresponding to a point sel gfarti-
and under conditions where SPH appears to fail. Filamentatgs is in the order 0© (NlogN), comparable to the cost of
and sheetlike structures provide telling examples of the suggnerating the neighbour list in SPH. Within an evolving point
rior DTFE handling with respect to the regular SPH methodistribution these tessellation construction procedures may be
with the most pronounced improvement occurring in the diremade far moreféicient, as small steps in the developmentin the
tion of the steepest density gradient. system will induce a correspondingly small number of tetrahe-

Having shown the success of the DTFE, we are convincerbn (identity) changes. Such dynamic upgrading routines are
that its application towards the analysis of the outcome of SRifesently under development.

6. Summary and discussion
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In summary, in this work we have argued for and demoinghold, R. A., & Monaghan, J. J. 1977, MNRAS, 181, 375
strated the potential and promise of a natural computatioaledin, N. Y. 1995, ApJS, 97, 231
technique which is based upon one of the most fundaméternquist, L., & Katz, N. 1989, ApJS, 70, 419
tal and natural tilings of space, the Delaunay tessellatigAgrnquist, L. 1993, ApJ, 404, 717
Although the practical implementation will undoubtedly enlSke: V. 2002, priv. comm.
counter a variety of complications, dependent upon the phykia_grange, J. L. 1762, Oeuvres de Lagrange, 1, 151

. . . uey, L. B. 1977, AJ, 82, 1013
cal setting and scope of the code, the final benefit of a nat a?vripilis, D. J. 1997, Ann. Rev. Fluid Mech., 29, 473

movmg g,”d hydrodynamics code for a large number of aStrR/lbller, J. 1994, Lecture notes in Statistics, 87 (Berlin: Springer-
physical issues may not only represent a large progress in AVerlag)
computational sense. Its major significance may be found infiignaghan, J. J. 1992, ARA&A, 30, 543
ability to address fundamental astrophysical problems in a nelson, R. P., & Papaloizou, J. C. B. 1994, MNRAS, 270, 1
and truely natural way, leading to important new insights in th@kabe, A., Boots, B., Sugihara, K., & Nok Chiu, S. 2000, Spatial
workings of the cosmos. Tessellations, Concepts and Applications of Voronoi Diagrams,
2nd edition (Chichester: John Wiley & Sons Ltd)
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