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Abstract. We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator
(DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle
hydrodynamics simulation of a multiphase interstellar medium. The comparison between the two methods clearly demonstrates
the superior performance of the DTFE with respect to conventional SPH methods, in particular at locations where SPH appears
to fail. Filamentary and sheetlike structures form telling examples. The DTFE is a fully self-adaptive technique for reconstruct-
ing continuous density fields from discrete particle distributions, and is based upon the corresponding Delaunay tessellation.
Its principal asset is its complete independence of arbitrary smoothing functions and parameters specifying the properties of
these. As a result it manages to faithfully reproduce the anisotropies of the local particle distribution and through its adaptive
and local nature proves to be optimally suited for uncovering the full structural richness in the density distribution. Through
the improvement in local density estimates, calculations invoking the DTFE will yield a much better representation of physical
processes which depend on density. This will be crucial in the case of feedback processes, which play a major role in galaxy
and star formation. The presented results form an encouraging step towards the application and insertion of the DTFE in astro-
physical hydrocodes. We describe an outline for the construction of a particle hydrodynamics code in which the DTFE replaces
kernel-based methods. Further discussion addresses the issue and possibilities for a moving grid-based hydrocode invoking the
DTFE, and Delaunay tessellations, in an attempt to combine the virtues of the Eulerian and Lagrangian approaches.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) has established itself
as the workhorse for a variety of astrophysical fluid dynami-
cal computations (Lucy 1977; Ginghold & Monaghan 1977).
In a wide range of astrophysical environments this Lagrangian
scheme offers substantial and often crucial advantages over
Eulerian, usually grid-based, schemes. Astrophysical applica-
tions such as cosmic structure formation and galaxy formation,
the dynamics of accretion disks and the formation of stars and
planetary systems are examples of its versatility and succesful
performance (for an enumeration of applications, and corre-
sponding references, see e.g. the reviews by Monaghan 1992;
Bertschinger 1998).

A crucial aspect of the SPH procedure concerns the proper
estimation of the local density, i.e. the density at the location
of the particles which are supposed to represent a fair – dis-
crete – sampling of the underlying continuous density field.
The basic feature of the SPH procedure for density estimation
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is based upon a convolution of the discrete particle distribution
with a particular user-specified kernel functionW. For a sample
of N particles, with massesmj and locationsr j , the densityρ at
the locationr i of particlei is given by

ρ(r i) =
N∑
j=1

mj W(r i − r j , hi), (1)

in which the kernel resolution is determined through the
smoothing scalehi . Notice that generically the scalehi may
be different for each individual particle, and thus may be set to
adapt to the local particle density. Usually the functional depen-
dence of the kernelW is chosen to be spherically symmetric,
so that it is a function of|r i − r j | only.

The evolution of the physical system under consideration
is fully determined by the movement of the discrete parti-
cles. Given a properly defined density estimation procedure, the
equations of motion for the set of particles are specified through
a suitable Lagrangian, if necessary including additional viscous
forces (see e.g. Rasio 1999).

In practical implementations, however, the SPH procedure
involves a considerable number of artefacts. These stem from



2 F. I. Pelupessy et al.: DTFE vs. SPH

the fact that SPH particles represent functional averages over a
certain Lagrangian volume. This averaging procedure is further
aggravated by the fact that it is based upon a rather arbitrary
user-specified choice of both the adopted resolution scale(s)hi

and the functional form of the kernelW. Such a description of a
physical system in terms of user-defined fuzzy clouds of matter
is known to lead to considerable complications in realistic as-
trophysical circumstances. Often, these environments involve
fluid flows exhibiting complex spatial patterns and geometries.
In particular in configurations characterized by strong gradients
in physical characteristics – of which the density, pressure and
temperature discontinuities in and around shock waves repre-
sent the most frequently encountered example – SPH has been
hindered by its relative inefficiency in resolving these gradients.

Given the necessity for the user to specify the characteris-
tics and parameter values of the density estimation procedure,
the accuracy and adaptibility of the resulting SPH implemen-
tation hinges on the ability to resolve steep density contrasts
and the capacity to adapt itself to the geometry and morphol-
ogy of the local matter distribution. A considerable improve-
ment with respect to the early SPH implementations, which
were based on a uniform smoothing lengthh, involves the use
of adaptive smoothing lengthshi (Hernquist & Katz 1989),
which provides the SPH calculations with a larger dynamic
range and higher spatial resolution. The mass distribution in
many (astro) physical systems and circumstances is often char-
acterized by the presence of salient anisotropic patterns, usu-
ally identified as filamentary or planar features. To deal with
such configurations, additional modifications in a few sophis-
ticated implementations attempted to replace the conventional
– and often unrealistic and restrictive – spherically symmetric
kernels by ones whose configuration is more akin to the shape
of the local mass distribution. The corresponding results do in-
deed represent a strong argument for the importance of using
geometrically adaptive density estimates. A noteworthy exam-
ple is the introduction of ellipsoidal kernels by Shapiro et al.
(1996). Their shapes are stretched in accordance with the lo-
cal flow. Yet, while evidently being conceptually superior, their
practical implementation does constitute a major obstacle and
has prevented widescale use. This may be ascribed largely to
the rapidly increasing number of degrees of freedom needed to
specify and maintain the kernel properties during a simulation.

Even despite their obvious benefits and improvements,
these methods are all dependent upon the artificial parametriza-
tion of the local spatial density distribution in terms of the
smoothing kernels. Moreover, the specification of the informa-
tion on the density distribution in terms of extra non physi-
cal variables, necessary for the definition and evolution of the
properties of the smoothing kernels, is often cumbersome to
implement and may introduce subtle errors (Hernquist 1993,
see however Nelson & Papaloizou 1994; Springel & Hernquist
2002). In many astrophysical applications this may lead to sys-
tematic artefacts in the outcome for the related physical phe-
nomena. Within a cosmological context, for example, the X-ray
visibility of clusters of galaxies is sensitively dependent upon
the value of the local density, setting the intensity of the emitted
X-ray emission by the hot intergalactic gas. This will be even
more critical in the presence of feedback processes, which for

sure will be playing a role when addressing the amount of pre-
dicted star formation in simulation studies of galaxy formation.

Here, we seek to circumvent the complications induced by
the kernel parametrization and introduce and propose an alter-
native to the use of kernels for the quantification of the den-
sity within the SPH formalism. This new method, based upon
the Delaunay Tessellation Field Estimator (DTFE, Schaap &
van de Weygaert 2000), has been devised to mould and fully
adapt itself to the configuration of the particle distribution.
Unlike conventional SPH methods, it is able to deal self-
consistently and naturally with anisotropies in the matter dis-
tribution, even when it concerns caustic-like transitions. In ad-
dition, it manages to succesfully treat density fields marked by
structural features over a vast (dynamic) range of scales.

The DTFE produces density estimates on the basis of the
particle distribution, which is supposed to form a discrete
spatial sampling of the underlying continuous density field.
As a linear multidimensional field interpolation algorithm it
may be regarded as a first-order version of the natural neigh-
bour algorithm for spatial interpolation (Sibson 1981; also see
e.g. Okabe et al. 2000). In general, applications of the DTFE
to spatial point distributions have demonstrated its success in
dealing with the complications of anisotropic geometry and
dynamic range (Schaap & van de Weygaert 2000). The key
ingredient of the DTFE procedure is that of the Delaunay tri-
angulation, serving as the complete covering of a sample vol-
ume by mutually exclusive multidimensional linear interpola-
tion intervals.

Delaunay tessellations (Delaunay 1934; see e.g. Okabe
et al. 2000 for extensive review) form the natural framework in
which to discuss the properties of discrete point sets, and thus
also of discrete samplings of continuous fields. Their versatil-
ity and significance have been underlined by their widespread
applications in such areas as computer graphics, geographical
mapping and medical imaging. Also, they have already found
widespread application in a variety of “conventional” grid-
based fluid dynamical computation schemes. This may concern
their use as a non-regular application-oriented grid covering
of physicalsystems, which represents a prominent procedure in
technological applications. More innovating has been their use
in Lagrangian “moving-grid” implementations (see Mavripilis
1997 for a review, and Whitehurst 1995 for a promising astro-
physical application).

It seems therefore a good idea to explore the possibilities
of applying the DTFE in the context of a numerical hydrody-
namics code. Here, as a first step, we wish to obtain an idea
of the performance of a hydro code involving the use of DTFE
estimates with respect to an equivalent code involving regular
SPH density estimates. The quality of the new DTFE method
with respect to the conventional SPH estimates, and their ad-
vantages and disadvantages under various circumstances, are
evaluated by a comparison between the density field which
would be yielded by a DTFE processing of the resulting SPH
particle distribution and that of the regular SPH procedure it-
self. In this study, we operate along these lines by a comparison
of the resulting matter distributions in the situation of a repre-
sentative stochastic multiphase density field. This allows us to
make a comparison between both density estimates in a regime
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for which an improved method for density estimates would be
of great value. We should point out a major drawback of our
approach, in that we do not really treat the DTFE density es-
timate in a self-consistent fashion. Instead of being part of the
dynamical equations themselves we only use it as an analysis
tool of the produced particle distribution. Nevertheless, it will
still show the value of the DTFE in particle gasdynamics and
give an indication of what kind of differences may be expected
when incorporating in a fully self-consistent manner the DTFE
estimate in an hydrocode.

On the basis of our study, we will elaborate on the poten-
tial benefits of a hydrodynamics scheme based on the DTFE.
Specifically, we outline how we would set out to develop a
complete particle hydrodynamics code whose artificial kernel
based nature is replaced by the more natural and self-adaptive
approach of the DTFE. Such a DTFE based particle hydrody-
namics code would form a promising step towards the develop-
ment of a fully tessellation based quasi-Eulerian moving-grid
hydrodynamical code. Such would yield a major and signifi-
cant step towards defining a much needed alternative and com-
plement to currently available simulation tools.

2. DTFE and SPH density estimates

The methods we use for SPH and DTFE density estimates have
been extensively described elsewhere (Hernquist & Katz 1989;
Schaap & van de Weygaert 2000). Here, we will only summa-
rize their main, and relevant, aspects.

2.1. SPH density estimate

Amongst the various density recepies employed within avail-
able SPH codes, we use the Hernquist & Katz (1989) sym-
metrized form of Eq. (1), using adaptive smoothing lengths:

ρ̂i =
1
2

∑
j

mj

{
W(|ri − r j |, hi) +W(|ri − r j |, hj)

}
, (2)

The smoothing lengthshi are chosen such that the sum in-
volves around 40 nearest neighbours. For the kernelW we take
the conventional spline kernel described by Monaghan (1992).
Other variants of the SPH estimate produce comparable results.

2.2. DTFE density estimate

The DTFE density estimating procedure consists of three basic
steps.

Starting from the sample of particle locations, the first step
involves the computation of the corresponding Delaunay tes-
sellation. Each Delaunay cellTm is the uniquely defined tetra-
hedron whose four vertices (in 3D) are the set of 4 sample
particles whose circumscribing sphere does not contain any
of the other particles in the set. The Delaunay tessellation is
the full covering of space by the complete set of these mutu-
ally disjunct tetrahedra. Delaunay tessellations are well known
concepts in stochastic and computational geometry (Delaunay
1934; for further references see e.g. Okabe et al. 2000; Møller
1994; van de Weygaert 1991).

The second step involves estimating the density at the lo-
cation of each of the particles in the sample. From the def-
inition of the Delaunay tessellation, it may be evident that
there is a close relationship between the volume of a Delaunay
tetrahedron and the local density of the generating point pro-
cess (telling examples of this may be seen in e.g. Schaap &
van de Weygaert 2002a). Evidently, the “empty” cirumscribing
spheres corresponding to the Delaunay tetrahedra, and the vol-
umes of the resulting Delaunay tetrahedra, will be smaller as
the number density of sample points increases, and vice versa.
Following this observation, a proper density estimate ˆρ at the
locationxi of a sampling pointi is obtained by determining the
properly calibrated inverse of the volumeWVor,i of the corre-
spondingcontiguous Voronoi cell. The contiguous Voronoi cell
WVor,i is the union of all Delaunay tetrahedraTm,i of which the
particlei forms one of the four vertices, i.e.WVor,i =

⋃
m Tm,i .

In general, when a particlei is surrounded byNT Delaunay
tetrahedra, each with a volumeV(Tm,i), the volume of the re-
sulting contiguous Voronoi cell is

WVor,i =

NT∑
m=1

V(Tm,i) . (3)

Note thatNT is not a constant, but in general may acquire a
different value for each point in the sample. For a Poisson dis-
tribution of particles this is a non-integer number in the order
of 〈NT〉 ≈ 27 (van de Weygaert 1994). Generalizing to an ar-
bitrary D-dimensional space, and assuming that each particlei
has been assigned a massmi , the estimated density ˆρi at the lo-
cation of particlei is given by (see Schaap & van de Weygaert
2000)

ρ̂(r i) = (D + 1)
mi

WVor,i
, (4)

In this, we explicitly expressWVor,i for the general
D-dimensional case. The factor (D + 1) is a normalization fac-
tor, accounting for the (D + 1) different contiguous Voronoi
hypercells to which each Delaunay hyper “tetrahedron” is as-
signed, one for each vertex of a Delaunay hyper “tetrahedron”.

The third step is the interpolation of the estimated densi-
ties ρ̂i over the full sample volume. In this, the DTFE bases
itself upon the fact that each Delaunay tetrahedron may be con-
sidered the natural multidimensional equivalent of a linear in-
terpolation interval (see e.g. Bernardeau & van de Weygaert
1996). Given the (D + 1) vertices of a Delaunay tetrahedron
with corresponding density estimates ˆρ j , the value ˆρ(r) at any
location r within the tetrahedron can be straightforwardly de-
termined by simple linear interpolation,

ρ̂(r) = ρ̂(r i0) + (∇̂ρ)Del,m · (r − r i0), (5)

in which r i0 is the location of one of the Delaunay verticesi.
This is a trivial evaluation once the value of the (linear) den-
sity gradient (∇̂ρ)Del,m has been estimated. For each Delaunay
tetrahedronTm this is accomplished by solving the the sys-
tem of D linear equations corresponding to each of the re-
mainingD Delaunay vertices constituting the Delaunay tetra-
hedronTm. The “minimum triangulation” property of Delaunay
tessellations underlying this linear interpolation, minimum in
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the sense of representing a volume-covering network of opti-
mally compact multidimensional “triangles”, has been a well-
known property utilized in a variety of imaging and surface
rendering applications such as geographical mapping and vari-
ous computer imaging algorithms.

2.3. Comparison

Comparing the two methods, we see that in the case of SPH
the particle “size” and “shape” (i.e. its domain of influence) is
determined by some arbitrary kernelW(r, hi) and a fortuitous
choice of smoothing lengthhi (assuming, along with the ma-
jor share of SPH procedures, a radially symmetric kernel). In
the case of the DTFE method the particles’ influence region
is fully determined by the sizes and shapes of the Delaunay
cellsTm,i, themselves solely dependent on the particle distribu-
tion. In other words, in regular SPH the density is determined
through the kernel functionW(x), while in DTFE it is solely
the particle distribution itself setting the estimated values of the
density. Contrary to the generic situation for the kernel depen-
dent methods, there are no extra variables left to be determined.
One major additional advantage is that it is therefore not nec-
essary to worry about the evolution of the kernel parameters.

Both methods do display some characteristic artefacts in
their density reconstructions (see Fig. 1). To a large extent these
may be traced back to the implicit assumptions involved in
the interpolation procedures, a necessary consequence of the
finite amount of information contained in a discrete represen-
tation of a continuous field. SPH density fields implicitly con-
tain the imprint of the specified and applied kernel which, as
has been discussed before, may seriously impart its resolving
power and capacity to trace the true geometry of structures. The
DTFE technique, on the other hand, does produce triangular
artefacts. At instances conspicuously visible in the DTFE re-
constructed density fields, they are the result of the linear inter-
polation scheme employed for the density estimation at the lo-
cations not coinciding with the particle positions. In principle,
this may be substantially improved by the use of higher order
interpolation schemes. Such higher-order schemes have indeed
been developed, and the ones based upon the natural neighbour
interpolation prescription of Sibson (1981) have already been
succesfully applied to two-dimensional problems in the field of
geophysics (Sambridge et al. 1995; Braun & Sambridge 1995)
and solid state physics (Sukumar 1998).

3. Case study: Two-phase interstellar medium

For the sake of testing and comparing the SPH and DTFE meth-
ods, we assess a snapshot from a simulation of the neutral ISM.
The model of the ISM is chosen as an illustration rather than as
a realistic model.

The “simulation” sample of the ISM consists of HI gas con-
fined in a periodic simulation box with a sizeL = 0.6 kpc3. The
initially uniform density of the gas isnH = 0.3 cm−3, while its
temperature is taken to beT = 10 000 K. No fluctuation spec-
trum is imposed to set the initial featureless spatial gas distri-
bution. To set the corresponding initial spatial distribution of
theN = 64 000 simulation particles, we start from relaxed ini-

tial conditions according to a “glass” distribution (e.g. White
1994).

The evolution of the gas is solely a consequence of fluid
dynamical and thermodynamical processes. No self gravity is
included. As for the thermodynamical state of the gas, cool-
ing is implemented using a fit to the Dalgarno-McCray (1972)
cooling curve. The heating of the gas is accomplished through
photo-electric grain heating, attributed to a constant FUV back-
ground (1.7 G0, with G0 the Habing field) radiation field.
The parameters are chosen such that after about 15 Myrs a
two-phase medium forms which consists of warm (10 000 K)
and cold (>100 K) HI gas.

The stage at which a two-phase medium emerges forms a
suitable point to investigate the performance of the SPH and
DTFE methods. At this stage we took a snapshot from the sim-
ulation, and subjected it to further analysis. For a variety of
reasons, the spatial gas distribution of the snapshot is expected
to represent a challenging configuration. The multiphase char-
acter of the resulting particle configuration is likely to present a
problem for regular SPH. Density contrasts of about four orders
of magnitude separate dense clumps from the surrounding dif-
fuse medium through which they are dispersed. Note that a fail-
ure to recover the correct density may have serious repercus-
sions for the computed effects of cooling. In addition, we notice
the presence of physical structures with conspicuous, aspheri-
cal geometries (see Figs. 1 and 2), such as anisotropic sheets
and filaments as well as dense and compact clumps, which cer-
tainly do form a challenging aspect for the different methods.

3.1. Results

Figure 1 offers a visual impression of the differences in per-
formance between the SPH and DTFE density reconstructions.
The greyscale density maps in Fig. 1 (lower left: SPH, lower
right: DTFE) represent 2D cuts through the corresponding 3D
density field reconstructions (note that contrary to the finite
width of the corresponding particle slice, upper left frame,
these constitute planes with zero thickness).

Immediately visible is the more crispy appearance of the
DTFE density field, displaying substantially more contrast in
conjunction with more pronounced structural features. Look
e.g. at the compact clump in the lower righthand corner (X ≈
0.5,Y ≈ 0.12), forming a prominent and tight spot in the DTFE
density field. The clump at (X ≈ 0.48,Y ≈ 0.52) represents
another telling example, visible as a striking peak in the DTFE
rendering while hardly noticeable in the SPH reconstruction.
Structures in the SPH field have a more extended appearance
than their counterparts in the DTFE field, whose matter con-
tent has been smeared out more evenly, over a larger volume,
yielding features with a significantly lower contrast. In this as-
sessment it becomes clear that the DTFE reconstruction ad-
heres considerably closer to the original particle distribution
(top lefthand frame). Apparently the DTFE succeeds better in
rendering the shapes, the coherence and the internal composi-
tion in the displayed particle distribution. At various locations,
the DTFE even manages to capture structural details which
seem to be absent in the SPH density field.
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DTFESPH
Fig. 1. Comparison of the DTFE performance versus that of the regular SPH method in a characteristic configuration, that of a hydrodynamic
simulation of the multiphase interstellar medium. Top left panel: the particle distribution in a 0.6 × 0.6 kpc simulation region, within a slice
with a width of 0.005 kpc. Bottom left frame: 2D slice through the resulting (3D) SPH density field reconstruction. Bottom right frame: the
corresponding (3D) density field reconstruction produced by the DTFE procedure. Top righthand frame: summary, in terms of a quantitative
point-by-point comparison between the DTFE and SPH density estimates,ρDTFE andρSPH. Abscissa: the value of the SPH density estimate
(normalized by the average density〈ρ〉). Ordinate: the ratio of DTFE estimate to the SPH density estimate,ρDTFE/ρSPH. These quantities are
plotted for each particle location in the full simulation box.

To quantify the visual impressions of Fig. 1, and to ana-
lyze the nature of the differences between the two methods, we
plot the ratioρDTFE/ρSPH as a function of the SPH density es-
timateρSPH/〈ρ〉 (in units of the average density〈ρ〉). Doing so
for all particles in the sample (Fig. 1, top righthand, Fig. 2, top
lefthand) immediately reveals interesting behaviour. The scat-
ter diagram does show that the discrepancies between the two

methods may be substantial, with density estimates at various
instances differing by a factor of 5 or more.

Most interesting is the finding that we may distinguish
clearly identifiable and distinct regimes in the scatter diagram
of ρDTFE/ρSPH versusρSPH/〈ρ〉. Four different sectors may be
identified in the scatter diagram. Allowing for some arbitrari-
ness in their definition, and indicating these regions by digits 1
to 4, we may organize the particles according to density-related
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Fig. 2.Systematic analysis of the differences between the DTFE and SPH density estimates,ρDTFE andρSPH. Basis of the analysis is a point-by-
point comparison of these two density estimates. Top lefthand frame: diagram of the value of the ratioρDTFE/ρSPH (ordinate) versusρSPH/〈ρ〉
(abscissa) for each of the points in the simulation volume. Indicated in this scatter diagram are four sectors, each of which corresponds
to particles residing in a physically different regime/phase. On the basis of this identification, the full set of particles is dissected into the
corresponding four composing particle samples. Top righthand frame: the spatial distribution of the full set of particles in a 0.04 kpc wide slice.
The subsequent 4 frames (from central left to bottom right) show, for each indicated sector in the scatter diagram, the spatial distribution of the
corresponding particles (within the same 0.04 kpc slice).
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criteria, roughly specified as (we refer to Fig. 2, top left frame,
for the precise definitions of the domains):

1. low density regions:
ρSPH/〈ρ〉 < 1

2. medium density regions, DTFE smaller than SPH:
ρDTFE < ρSPH; 1 < ρSPH/〈ρ〉 < 10

3. medium density regions, DTFE larger than SPH:
ρDTFE > ρSPH; 1 < ρSPH/〈ρ〉 < 10

4. high density regions:
ρDTFE & ρSPH; ρSPH/〈ρ〉 > 10

The physical meaning of the distinct sectors in the scatter dia-
gram becomes apparent when relating the various regimes with
the spatial distribution of the corresponding particles. This may
be appreciated from the five subsequent frames in Fig. 2, each
depicting the related particle distribution in the same slice of
width 0.04 kpc. The centre and bottom frames, numbered 1
to 4, show the spatial distribution of each group of particles,
isolated from the complete distribution (top right frame, Fig. 2).
These particle slices immediately reveal the close correspon-
dence between any of the sectors in the scatter diagram and
typical features in the spatial matter distribution of the two-
phase interstellar medium. This systematic behaviour seems to
point to truly fundamental differences in the workings of the
SPH and DTFE methods, and would be hard to understand in
terms of random errors. The separate spatial features in the gas
distribution seem to react differently to the use of the DTFE
method.

We argue that the major share of the disparity between the
SPH and DTFE density estimates has to be attributed to SPH,
mainly on the grounds of the known fact that SPH is poor in
handling nontrivial configurations such as encountered in mul-
tiphase media. By separately assessing each regime, we may
come to appreciate how these differences arise. In sector 1, in-
volving the diffuse low density medium, the DTFE and SPH es-
timates are of comparable magnitude, be it that we do observe a
systematic tendency. In the lowest density realms, whose rela-
tively smooth density does not raise serious obstacles for either
method, DTFE and SPH are indeed equal (with the exception
of variations to be attributed to random noise). However, near
the edges of the low density regions, SPH starts to overesti-
mate the local density as the kernels do include particles within
the surrounding high density structures. The geometric inter-
polation of the DTFE manages to avoid this systematic effect
(see e.g. Schaap & van de Weygaert 2002a,b), which explains
the systematic linear decrease of the ratioρDTFE/ρSPH with in-
creasingρSPH/〈ρ〉. To the other extreme, the high density re-
gions in sector 4 are identified with compact dense clumps
as well as with their extensions into connecting filaments and
walls. On average DTFE yields higher density estimates than
SPH, frequently displaying superior spatial resolution (see also
greyscale plot in Fig. 1). Note that the repercussions may be
far-reaching in the context of a wide variety of astrophysi-
cal environments characterized by strongly density dependent
physical phenomena and processes! The intermediate regime of
sectors 2 and 3 clearly connects to the filamentary structures in
the gas distribution. Sector 2, in which the DTFE estimates are
larger than those of SPH, appears to select out the inner parts

of the filaments and walls. By contrast, the higher values for
the SPH produced densities in sector 3 are related to the outer
realms of these features. This characteristic distinction can be
traced back to the failure of the SPH procedure to cope with
highly anisotropic particle configurations. While it attempts to
maintain a fixed number of neighbours within a spherical ker-
nel, it smears out the density in a direction perpendicular to
the filament. This produces lower estimates in the central parts,
which are compensated for with higher estimates in the periph-
ery. Evidently, the adaptive nature of DTFE does not appear to
produce similar deficiencies.

4. The DTFE particle method

Having demonstrated the improvement in quality of the DTFE
density estimates, this suggests a considerable potential for in-
corporating the DTFE in a self-consistent manner within a hy-
drodynamical code. Here, we first wish to indicate a possible
route for accomplishing this in a particle hydrodynamics code
through replacement of the kernel based density estimates (1)
by the DTFE density estimates. We are currently in the pro-
cess of implementing this. The formalism on which this im-
plementation is based can be easily derived, involving nontriv-
ial yet minor modifications. Essentially, it uses the same dy-
namic equations for gas particles as those in the regular SPH
formalism, the fundamental adjustment being the insertion of
the DTFE densities instead of the regular SPH ones. In addi-
tion, a further difference may be introduced through a change
in treatment of viscous forces. Ultimately, this will work out
into different equations of motion for the gas particles. A fun-
damental property of a DTFE based hydrocode, by construc-
tion, is that it conserves mass exactly and therefore obeys the
continuity equation. This is not necessarily true for SPH imple-
mentations (Hernquist & Katz 1989).

The start of the suggested DTFE particle method is formed
by the discretized expression for the LagrangianL for a com-
pressible, nondissipative flow,

L =
∑

i

mi

(
1
2
v2i + ui(ρi , si)

)
, (6)

wheremi is the mass of particlei, vi its velocity, si the cor-
responding entropy andui its specific internal energy. In this
expression,ρi is the density at locationi, as yet unspecified.
The resulting Euler-Lagrange equations are

dvi
dt
= −

∑
j

mj

(
∂uj

∂ρ j

)
s

∂ρ j

∂xi
. (7)

The standard SPH equations of motion then follow after insert-
ing the SPH density estimate (Eq. (1)). Instead, insertion of the
DTFE density (Eq. (4)) will lead to the corresponding equa-
tions of motion for the DTFE-based formalism. Note that the
usual conservation properties related to Eq. (6) remain intact.
After some algebraic manipulation, thereby using the basic
thermodynamic relation for a gas with equation of stateP(ρ),(
∂ui

∂ρi

)
s

=
Pi

ρ2
i

, (8)
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we finally obtain the equations of motion for the gas particles
(moving inD-dimensional space),

dvi
dt
=

1
D + 1

NT∑
m=1

P(Tm,i)
∂V(Tm,i)
∂xi

· (9)

This expression involves a summation over allNT Delaunay
tetrahedraTm,i, with volumesV(Tm,i), which have the particlei
as one of its four vertices. The pressure termP(Tm,i) is the sum
over the pressuresPj at the four verticesj of tetrahedronTm,i,
P(Tm,i) =

∑
Pj .

As an interesting aside, we point out that unlike in the con-
ventional SPH formalism, this procedure implies an exactly
vanishing acceleration dvi/dt in the case of a constant pressure
P at each of the vertices of the Delaunay tetrahedra containing
particlei as one of their vertices. The reason for this is that one
can then invoke the definition of the volume of the contiguous
Voronoi cell corresponding to pointi (Eq. (3)), yielding

dvi
dt
=

1
D + 1

P
∂WVor,i

∂xi
· (10)

Since the volume of the contiguous Voronoi cell does not de-
pend on the position of particlei itself (it lies in the inte-
rior of the contiguous Voronoi cell), the resulting acceleration
vanishes. Another interesting notion, which was pointed out
by Icke (2002), is that Delaunay tessellations also provide a
unique opportunity to include a natural treatment of the vis-
cous stresses in the physical system. We intend to elaborate on
this possibility in subsequent work dealing with the practical
implementation along the lines sketched above.

5. Delaunay tessellations
and “moving grid” hydrocodes

Ultimately, the ideal hydrodynamical code would combine
the advantages of the Eulerian as well as of the Lagrangian
approach. In their simplest formulation, Eulerian algorithms
cover the volume of study with a fixed grid and compute the
fluid transfer through the faces of the (fixed) grid cell vol-
umes to follow the evolution of the system. Lagrangian for-
mulations, on the other hand, compute the system by following
the ever changing volume and shape of a particular individual
element of gas (interestingly, the “Lagrangian” formulation is
also due to Euler 1862, who employed this formalism in a letter
to Lagrange, who later proposed these ideas in a publication by
himself, 1762; see Whitehurst 1995).

For a substantial part the success of the DTFE may be as-
cribed to the use of Delaunay tessellations as an optimally cov-
ering grid. This suggests that they may also be ideal for the
use in moving grid implementations for hydrodynamical cal-
culations. As in our SPH application, such hydrocodes with
Delaunay tessellations at their core would warrant a close con-
nection to the underlying matter distribution. Indeed, attempts
towards such implementations have already been introduced in
the context of a few specific, mainly two-dimensional, appli-
cations (Whitehurst 1995; Braun & Sambridge 1995; Sukumar
1998). Alternative attempts towards the development of mov-
ing grid codes, in an astrophysical context, have shown their
potential (Gnedin 1995; Pen 1998).

For a variety of astrophysical problems it is indeed essen-
tial to have such advanced codes at one’s disposal. An exam-
ple of high current interest may offer a good illustration. Such
an example is the reionization of the intergalactic medium by
the ionizing radiation emitted by the first generation of stars,
(proto)galaxies and/or active galactic nuclei. These radiation
sources will form in the densest regions of the universe. To
be able to resolve these in sufficient detail, it is crucial that the
code is able to focus in onto these densest spots. Their emphasis
on mass resolution makes Lagrangian codes – including SPH –
usually better equipped to do so, be it not yet optimally. On the
other hand, it is in the low density regions that most radiation
is absorbed at first. In the early stages the reionization process
is therefore restricted to the huge underdense fraction of space.
Simulation codes should therefore properly represent and re-
solve the gas density distribution within these voidlike regions.
The uniform spatial resolution of the Eulerian codes is better
suited to accomplish this. Ideally, however, a simulation code
should be able to combine the virtues of both approaches, yield-
ing optimal mass resolution in the high density source regions
and a proper coverage of the large underdense regions. Moving
grid methods, of which Delaunay tessellation based ones will
be a natural example, may indeed be the best alternative, as
the reionization simulations by Gnedin (1995) appear to indi-
cate. There have been many efforts in the context of Eulerian
codes towards the development of Adaptive Mesh Refinement
(AMR) algorithms (Berger 1989), which have achieved a de-
gree of maturity. Their chief advantage is their ability to con-
centrate computational effort on regions based on arbitrary re-
finement criteria, where, in the basic form at least, moving grid
methods refine on a mass resolution criterion. However they
are still constrained by the use of regular grids, which may
introduce artifacts due to the presence of preferred directions
in the grid. The advantages of a moving grid fluid dynamics
code based on Delaunay tessellations have been most explic-
itly demonstrated by the implementation of a two-dimensional
lagrangian hydrocode (FLAME) by Whitehurst (1995). These
advantages will in principle apply to any such algorithm, in par-
ticular also for three-dimensional implementations (of which
we are currently unaware). Whitehurst (1995) enumerated var-
ious potential benefits in comparison with conventional SPH
codes, most importantly the following:

1. SPH needs a smoothing lengthh.
2. SPH needs an arbitrary kernel functionW.
3. The moving grid method does not need an (unphysical) ar-

tificial viscosity to stabilize solutions.

The validity of the first two claims has of course also been
demonstrated in this study for particle methods based on
DTFE. Whitehurst showed additionally that there is an advan-
tage of moving grid methods over Eulerian grid-based ones.
The implementation of Whitehurst, which used a first-order
solver and a limit on the shape of grid ce

lls to control the effects of shearing of the grid, was far su-
perior to all tested first-order Eulerian codes, and superior to
many second-order ones as well. The adaptive nature of the
Lagrangian method and the fact that the resulting grid has no
preferred directions are key factors in determining the perfor-
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mance of moving grid methods such as FLAME. For additional
convincing arguments, including the other claims, we may re-
fer the reader to the truly impressive case studies presented by
Whitehurst (1995).

6. Summary and discussion

Here we have introduced the DTFE as an alternative density
estimator for particle fluid dynamics. Its principle asset is that
it is fully self-adaptive, resulting in a density field reconstruc-
tion which closely reproduces, usually in meticulous detail,
the characteristics of the spatial particle distribution. It may
do so because of its complete independence of arbitrary user-
specified smoothing functions and parameters. Unlike conven-
tional methods, such as the kernel estimators used in SPH, it
manages to faithfully reproduce the anisotropies in the local
particle distribution. It therefore automatically reflects the gen-
uine geometry and shape of the structures present in the under-
lying density field. This is in marked contrast with kernel based
methods, which almost without exception produce distorted
shapes of density features, the result of the convolution of the
real structure with the intrinsic shape of the smoothing func-
tion. Its adaptive and local nature also makes it optimally suited
for reconstructing the hierarchy of scales present in the den-
sity distribution. In kernel based methods the internal structural
richness of density features is usually suppressed on scales be-
low that of the characteristic (local) kernel scale. DTFE, how-
ever, is solely based upon the particle distribution itself and
follows the density field wherever the discrete representation
by the particle distribution allows it to do so. Its capacity to re-
solve structures over a large dynamic range may prove to be
highly beneficial in many astrophysical circumstances, quite
often involving environments in which we encounter a hier-
archical embedding of small-scale structures within more ex-
tended ones.

In this study we have investigated the performance of the
DTFE density estimator in the context of a Smooth Particle
Hydrodynamics simulation of a multiphase interstellar medium
of neutral gas. The limited spatial resolution of current parti-
cle hydrodynamics codes are known to implicate considerable
problems near regions with e.g. steep density and temperature
gradients. In particular their handling of shocks forms a source
of considerable concern. SPH often fails in and around these re-
gions, so often playing a critical and vital role in the evolution
of a physical system. Our study consists of a comparison and
confrontation of the conventional SPH kernel based density es-
timation procedure with the corresponding DTFE density field
reconstruction method.

The comparison of the density field reconstructions demon-
strated convincingly the considerable improvement embodied
by the DTFE procedure. This is in particular true at locations
and under conditions where SPH appears to fail. Filamentary
and sheetlike structures provide telling examples of the supe-
rior DTFE handling with respect to the regular SPH method,
with the most pronounced improvement occurring in the direc-
tion of the steepest density gradient.

Having shown the success of the DTFE, we are convinced
that its application towards the analysis of the outcome of SPH

simulations will prove to be highly beneficial. This may be un-
derlined by considering a fitting illustration. Simulations of the
settling and evolution of the X-ray emitting hot intracluster gas
in forming clusters of galaxies do represent an important and
cosmologically relevant example (see Borgani & Guzzo 2001
and Rosati et al. 2002 for recent reviews). The X-ray luminos-
ity is strongly dependent upon the density of the gas. The poor
accuracy of the density determination in regular SPH calcula-
tions therefore yields deficient X-ray luminosity estimates (see
Bertschinger 1998 and Rosati et al. 2002 for relevant recent re-
views). Despite a number of suggested remedies, such as sep-
arating particles according to their temperature, their ad hoc
nature does not evoke a strong sense of confidence in the re-
sults. Numerical limitations will of course always imply a de-
gree of artificial smoothing, but by invoking tools based upon
the DTFE technique there is at least a guarantee of an optimal
retrieval of information contained in the data.

Despite its promise for the use in a variety of analysis
tools for discrete data samples, such as particle distributions
in computer simulations or galaxy catalogues in an observa-
tional context, its potential would be most optimally exploited
by building it into genuine new fluid dynamics codes. Some
specific (two-dimensional) examples of succesful attempts in
other scientific fields were mentioned, and we argue for a sim-
ilar strategy in astrophysics. One path may be the upgrade of
current particle hydrodynamics codes by inserting DTFE tech-
nology. In this study, we have outlined the development of such
a SPH-like hydrodynamics scheme in which the regular kernel
estimates are replaced by DTFE estimates. One could interpret
this in terms of the replacement of the user-specified kernel by
the self-adaptive contiguous Delaunay cell, solely dependent
on the local particle configuration. An additional benefit will
be that on the basis of the localized connections in a Delaunay
tessellations it will be possible to define a more physically mo-
tivated artificial viscosity term.

The ultimate hydrodynamics algorithm would combine the
virtues of Eulerian and Lagrangian techniques. Considering the
positive experiences with DTFE, it appears to be worthwhile
within the context of “moving grid” or “Lagrangian grid” meth-
ods to investigate the use of Delaunay tessellations for solving
the Euler equations. With respect to a particle hydrodynamics
code, the self-adaptive virtues of DTFE and its ability to handle
arbitrary density jumps with only one intermediate point may
lead to significant improvements in the resolution and shock
handling properties. Yet, for grid based methods major compli-
cations may be expected in dealing with the non-regular nature
of the corresponding cells, complicating the handling of flux
transport along the boundaries of the Delaunay tetrahedra.

The computational cost of DTFE resembling techniques
is not overriding. The CPU time necessary for generating the
Delaunay tessellation corresponding to a point set ofN parti-
cles is in the order ofO (N logN), comparable to the cost of
generating the neighbour list in SPH. Within an evolving point
distribution these tessellation construction procedures may be
made far more efficient, as small steps in the development in the
system will induce a correspondingly small number of tetrahe-
dron (identity) changes. Such dynamic upgrading routines are
presently under development.
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In summary, in this work we have argued for and demon-
strated the potential and promise of a natural computational
technique which is based upon one of the most fundamen-
tal and natural tilings of space, the Delaunay tessellation.
Although the practical implementation will undoubtedly en-
counter a variety of complications, dependent upon the physi-
cal setting and scope of the code, the final benefit of a natural
moving grid hydrodynamics code for a large number of astro-
physical issues may not only represent a large progress in a
computational sense. Its major significance may be found in its
ability to address fundamental astrophysical problems in a new
and truely natural way, leading to important new insights in the
workings of the cosmos.
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