Appendix A

Kinematic Extraction Methods

The spectrum extracted from a galaxy is the superposition of the individual
spectra of each star in that region of the galaxy, along the line of sight. As the
line of sight of each star is different , the spectra of the stars with respect to
the others will be shifted by a certain amount in wavelength. The net effect
is a broadening in the galaxy spectrum owing to these shifts. In other words.
the galaxy spectrum is the convolution of the spectrum of the stars with an

appropriate velocity distribution along the line of sight.

In order to quantify these offsets and broadening Line of Sight Velocity Distri-
bution (LOSVD, F(uv,,s)) has been defined as the fraction of stars contributing
to the spectrum with a line of sight between v;,; and v;,5+dv;,s. Assuming that
all the stellar spectra are identical (S(u)), with u the stellar velocity, the galaxy

spectrum can be given by the equation:

Glu) ~ / Fluis) - S(t — v103) - dvtos (A1)

This is the most important equation in the analysis of galactic kinematics. In
order to obtain the kinematics of a particular galaxy we need to make use of a
"stellar template’, whose spectrum is required to be a good approximation of the
galaxy’s spectrum. From this point, the better selection of the template star, the
more accurate the fit to the galaxy spectrum and therefore the better kinematics
we will get. The simplest properties of the LOSVD are its mean velocity and

velocity dispersion:
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v = / F(Ulos) * Vips - dvlus (AQ)

Ulzos = /F(Ulos) : (Ulos - Elos)Q * dvjos (A3)

To first approximation, it is assumed that the LOSVD of the stars is Gaussian.
However the improvements of the detectors has made it possible to measure
deviations from Gaussian shape through a new set of algorithms. We review
the most relevant methods in the literature in the following paragraphs. All the
methods shown here take advantage of the fact that the convolution shown in A.1
becomes a multiplication in ' Fourier space’ and therefore it is easier to extract and
analyse the LOSVD there. Note that there is no distinction between a function
and its Fourier transform. The main advantage of working if Fourier space is the
possibility of filtering residual low-order and high frequency components in the
original spectrum that are due to an imperfect continuum subtraction and Poisson
noise respectively. Some computer codes have been developed to fit the LOSVD
in ’Real space’ (Rix & White 1992; van der Marel & Franx 1993), although they

won’t be discussed here.

e Fourier Quotient (Sargent et al. 1977)
Sargent et al. (1977) based their algorithm on the assumption that the F'(v;,s) has

a Gaussian shape. Under this consideration they fit a Gaussian to the quotient

between the galaxy spectra and the template spectra in Fourier space:

G(k) 12rko  2mvki

F(k):%zfy-exp “9T N + N

(A.4)

where F(k),G(k) and S(k) are the fourier transforms of the F(vs), G(v) and
S(v) respectively, 7y is the mean relative line-strength, o is the velocity dispersion
and v is the mean radial velocity of the assumed Gaussian. N is the number of

pixels in the input spectra.

e Cross-Correlation Method (Simkin 1974; Tonry & Davis 1979)
The Cross-Correlation approach, initiated by Simkin (1974) and improved by
Tonry & Davis (1979), is a simple method based on the fitting of the cross-

correlation peak defined by the functions: G(k) and S(k)
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G(k) - §*(k) (A.5)

where A, and A; are the rms of the galaxy and template respectively and *
indicates complex conjugation. Cross-correlating a template spectrum with the
galaxy spectrum then produces a function C'(k) with a peak at the redshift of
the galaxy with a width related to the dispersion of the galaxy. The resultant

function is then fitted with a Gaussian in Fourier space.

e Fourier Correlation Quotient (Bender 1990)

The two previous methods were based on the assumption that the broadening

function was a Gaussian. The Fourier Correlation Quotient (FCQ) is an im-
provement of the two and a generalization of the problem because it provides
the full LOSVD function instead of the results of a specific parametrisation. The
main advantage of this procedure lies in the fact that one can choose the most
appropriate function to fit the LOSVD a posteriori rather than a priori. This
approach is based on the deconvolution of the peak of the template-galaxy cor-

relation function with the autocorrelation function of the template star:

G(k) - S*(k)

0= 5w s

(A.6)

Compared to previous methods (i.e. Fourier Quotient) FCQ is less sensitive to
template mismatch because the LOSVD comes from the ratio of template-galaxy
correlation and template autocorrelation functions which are smooth functions,

instead of the division of 2 spectra.

e Unresolved Gaussian Decomposition (Kuijken & Merrifield 1993)

This method assumes deviations from pure gaussian are due to the composition of
several gaussians uniformly distributed in mean velocity and velocity dispersion,

but not in amplitude:

F(k)NZa .exp[_w (A7)
k 20k .

where ayg, vg, 0 represents the amplitude, mean velocity and velocity dispersion
of each gaussian. The algorithm, under certain physical constraints, determines
the different amplitudes a; for each component that best fit the galaxy spectrum

in the least square sense. Those physical constraints are:
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e The LOSVD must be non-negative everywhere
e The LOSVD is expected to be smoothly varying on small scales

e The LOSVD is expected to be non-zero over only a fairly small range in

velocity

The Rayleigh criterium is also required to define the separation between 2 adja-

cent peaks. This should be less than 20 in order to avoid dips between 2 peaks.

e Gauss-Hermite Expansion (van der Marel & Franx 1993)

This approach defines the LOSVD as the product of a normal Gaussian and a

truncated expansion of the Hermite polynomials:

o

F(v5) ~ [7“(“’)} [+ Z hiHj(w)] (A8)

_ (Ulos - U)
o
where v, v, 0 characterise the line-strength, mean velocity and velocity dispersion
of the traditional Gaussian and the Hermite coefficients (h;) describe deviations

from the gaussian shape (i.e. hy measures asymmetries and h, symmetries) of the
LOSVD. «a(w) is the standard Gaussian.

For most of the work presented in this thesis we have made use of FOURFIT,
a computer code developed by van der Marel & Franx (1993) (chapters 2, 3, 4).
In chapter 5 we also use an adapted implementation of Bender (1990) that deals
with SAURON data.



