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Astrophysical Hydrodynamics

i Teacher: Saleem Zaroubi 

a Room 282, phone 4055, email: saleem@astro.rug.nl

b Office hours: You are always welcome to come to my office for short 
questions. It is better to set an appointment.

ii Teaching assistant: Vibor Jelić

a Office: 138,  phone: 4050, email: vjelic@astro.rug.nl

iii The purpose of the course is to complete the fluid mechanics background 
needed on astrophysics.

iv Problem sets are mandatory and constitute about 30% of the final grade

v Written exam at the end of the term 
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I. The lecture notes and handouts are the main source of material, 
there is no one book on which the material is based. However, 
there are a number of good books that the student can use to 
clarify some of the topics or for extra material.

II. Optional Books: 

■ Astrophysical Flows, J. Pringle and A. King, Cambridge 
University Press

■ Fluid Mechanics, Landau and Lifshitz, (exceptional book but of 
somewhat higher level).

■ A first course in fluid dynamics, A. R. Paterson, Cambridge 
University Press. (Introductory level book).

Astrophysical Fluid Mechanics
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I.1 The Fluid approximationapproximation:
The fluid is an idealized concept in which the matter is described as a 
continuous medium with certain macroscopic properties that vary as 
continuous function of position (e.g., density, pressure, velocity, 
entropy). That is, one assumes that the scales over which these 
quantities  are defined is much larger than the mean free path of the 
individual particles that constitute the fluid.

Where n  is the number density of particles in the fluid and s  is a 
typical interaction cross section. 

Furthermore, for gases the kinetic energy of particles satisfies  
E

k
>>DE, where DE is the energy required to unbind a pair of particles 

in the medium.

I. The basic ideal fluid equations

lmfp~
1
n
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0. Mathematical preliminaries

Gauss's Law Stoke's Theorem
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Convective (Material, Lagrangian) 
Derivative

Consider the change in a given field, say the density              within 
a volume element moving with the fluid. After time δ t the density 
within the volume element is                                . Therefore the 
change that the density experience is:

This derivative is normally called the convictive (Material or 
Lagrangian) derivative.
Notice that if you fix the volume element in space then the equation 
becomes the normal partial derivative:

d 
d t =

 r v t ;tt − r ;t 
t

=
∂
∂ t v ⋅∇ 

r , t t −r , t 
 t

=
∂
∂ t

δδ tt

Lagrangian vs. Eulerian Description of Fluids: The first 
involves a coordinate system that moves with the Fluid while 
the latter involves a coordinate system fixed in space.



  8

I.2 The Continuity equation (mass conservation)

∫V
dV

Consider a volume V which is fixed in space 
and enclose by a surface                where     
is the outward pointing normal vector. The 
total mass of the fluid in V  is 
where ρ(r,t) is the density of the fluid. 
The rate of change in the mass within V is 
equal to the mass flux into V across it 
surface   . 

Using the divergence theorem (Green's 
formula) one obtains 

Since  this holds for every volume this 
relation is equivalent to
  

nn

VV

S

One can also define the mass flux density 
as               which shows that the last 
equation is actually a continuity 
equation: 
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The Euler (momentum) equation is obtained exactly in the same way the continuity equation is 
obtained with the following exceptions:
1- The volume we consider is moving with the fluid, i.e., the rate of change is determined by 
the convictive derivative.
2- The total change in the momentum of volume V is given by the total force working on the 
particles. This force has many component. The first is the integral of the pressure (force per 
unit area) over the surface S (at this stage we'll ignore other stress tensor terms that can 
either be caused by viscosity, electromagnetic stress tensor, etc.):
 
Furthermore, an external force will have to be added as                    , Where    is the force per 
unit mass, also know as body force.
Therefore, the momentum change rate within a volume V satisfies the following integral 
equation:

The left hand term of equation (I.3) is:

Where the first equation is to the fact that rdV, i.e., the mass within dV is invariant.
  

I.3 Euler's equation (momentum conservation):
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I.3 Euler's equation (momentum conservation)

Applying the divergence theorem to the first right hand term of equation (I.3) yields,

Since this is valid for any arbitrary volume, the following differential equation always holds 
for an inviscid medium.  

In this discussion we ignored energy dissipation processes which may occur as a result of 
internal friction within the medium and heat exchange between its parts (conduction). This 
type of fluids are called ideal fluids.

Gravity:

For gravity the force per unit mass is given by               where 
  

− ∇ ∇2=4G
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I.4 Some thermodynamics

Since there is no heat exchange in the flow the entropy per unit mass, s, for any parcel of 
mass remains constant, namely:

Which, together with the continuity equation, yields an entropy density continuity equation:     
         
                                       where               is the entropy flux density.

Notice that this does not imply a constant entropy per unit mass across the fluid, but it 
means that there is no entropy exchange between different parcels of the flow.
However, if the flow started from uniform entropy value the fluid will maintain this value at 
each point during the flow. A flow with uniform constant entropy is said to be isentropic.

Let us define a barotropic flow as a flow in which the pressure is a function of the density 
only. In such case the enthalpy, H,  which is defined as dH=Tds+Vdp is given only by the 
second term, i.e., dH=Vdp=dp/rr .  Notice that  barotropic flow is more general than 
isentropic flow.

In general the flow could have many other thermodynamic properties, e.g., isothermal, 
isobaric or isochoric (with constant temperature, pressure or density, respectively)
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I.5 The vorticity equation

For barotropic flow (we'll assume that all external forces are conservative, namely drawn 
from a potential) the Euler equation takes the form

Now one can use the relationship

Which is derived from the identity:

And apply the curl operator to the two side to obtain: 

Where                        is called  the vorticity 
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I.6 Kelvin's circulation theorem

For barotropic flow (we'll assume that all external forces are conservative, namely drawn 
from a potential). Consider the circulation integral,

where the curve C  is a closed curve that is moving with the fluid (material curve).

Now we the convictive derivative of G , namely we want to explore the change of this integral 
around a ”fluid contour” as it moves about. Notice, this is not a fixed contour in space.

=∮C
v⋅l

d 
dt =∮C

d v
dt ⋅l ∮C

v⋅
d
dt l

d 
dt =∮C

−∇H  f 
barotropic

⋅l ∮C
v⋅ v

zero

d 
dt =∮C

−∇H  f ⋅l =−∯S
∇×∇ H  f d S

Stokes theorem

=0
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I.6 Kelvin's circulation theorem (cont.)

For an infinitesimal circulation, one obtains,

Namely, the vorticity moves with the fluid.

Implications: 

Imagine that the fluid is getting compressed along the flow lines then Kelvin's theorem 
implies the the surface are gets smaller, therefore, the vorticity increases. This could be view 
as conservation of the angular momentum within the material curve.

Example: The early Universe went through a phase of very rapid expansion called the 
Inflationary phase in which the scale of the Universe increased by about 60 e-folds. 
Therefore,      decreases by 120 e folds. As a result any primordial vorticity (so called vector 
fluctuations) gets completely suppressed

=∮C
v⋅l ≈∯S

∇×v ⋅d S =∯S
⋅d S =constant
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I.7 Steady flow and Streamlines

Steady flow is a flow in which the velocity, density and  the other fields 
do not depend explicitly on time, namely             .∂/∂t=0

Streamlines:
A streamline is a line whose tangent is parallel to the fluid velocity at 
each point in space. A streamline element,                        ,  satisfies:

In steady flow streamlines do not vary with time and coincide with 



  16

I.8 The Bernoulli equation

For barotropic steady flow Euler equation, ignoring external forces, 
becomes:

Now the operator,                   the change along a streamline. Therefore, 
the last equation becomes 

 known as Bernoulli's law and along streamlines could be written as

Under constant gravitational force, g,

 v⋅∇v≡
1
2

∇ v 2−v× ∇×v =− ∇H

v⋅12 ∇ v 2−v× ∇×v =−v⋅∇H

v⋅∇=∂/∂ l

∂
∂l

v 2/2H =0

v 2/2H =v 2/2P /U =constant

v 2/2H gz =constant
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I.9      Hydrostatics

In hydrostatics no flow occurs. This reduces the fluid equations to very simple ones
In such a case the fluid equations become:

Examples:

1. Archimedes' theorem:

A fluid in hydrostatic equilibrium has a uniform density show that is a body is immersed
in it, the body experience a force equal to the gravity force exerted on the fluid that the 
body displaced and opposite in direction.

The force that  is experienced by the displaced fluid (prior to displacement) by the its 
surroundings is 
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I.10 Hydrostatic equilibrium for a spherically 
      symmetric self  gravitating Body

The two equations that govern the system are:

We'll start  from the second equation, the grad and Laplacian operators in spherical 
coordinates are:

 

Therefore, the hydrostatic and Poisson equations become:



  19

I.10 Hydrostatic equilibrium for a spherically 
symmetric self  gravitating Body (cont.)

Integration of the second equation gives

where

Now we add the assumption that we have an ideal gas, namely,

We also have to decide how µ  (the molecular weight) and T behave. Here we'll 
assume they are constants. A flow that have fixed temperature is called isothermal and 
c is called the isothermal sound speed. This assumption results in the equation 

Which has the solution

This is the well known isothermal sphere solution. Notice that it is singular at the 
center. Nevertheless it provides a useful analytic approximation for various 
astronomical problems (sometime with added core). 

In real stars the temperature and, with it, the pressure increase with depth which 
provide enough support against self collapse without the need for the singularity at r=0. 

=
cs
2

2Gr 2 , p=
cs
4

2Gr 2
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I.11 The Virial Theorem

Consider Euler equation of a self gravitating fluid and remember that the velocity

vector is given by

Hence Euler's equation can take the form:

We then multiply both sides of the equation with       and integrate over the whole 
volume:

The LHS of this equation could be written as:

where                are the moment of inertia and the total kinetic energy of the fluid. The 
first term in the RHS could written as:

With the first term is zero due to vanishing pressure at the boundaries.
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I.11 The Virial Theorem (cont.)

The last term on the RHS is the one controlled by gravity and could be written as:

Where Φ  is the total gravitational energy.
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I.11 The Virial Theorem (cont.)

Finally we arrive to the relation we are after, which also known as the scalar 
virial theorem:

One can also derive a tensor virial theorem which could be obtained by multplying
the ith component of Euler's eq. With the jth component of the radius vector,   .
This equation take the form:

where,
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I.12 The energy and momentum fluxes 

The Energy Flux: 
Let us now consider the change of the energy per unit volume in a fluid at a 
fixed point in space (Eulerian coordinate). The energy per unit volume is 
composed of two components, the kinetic energy per unit volume and the 
internal energy per unit volume. The rate of change in the energy per unit 
volume is,                               , where U is the internal energy per unit mass.

The first component can be shown, using the continuity and Euler's equation,  
to satisfy the equality,

Using the thermodynamic relation                                                                      
one obtains

For the ρU part we use the thermodynamic relation                                         
which leads                                                                  (where                       ).

 



  24

I.12 The energy and momentum fluxes 
(cont.)

Therefore, 

Combining these results we obtain

The last equation is a continuity equation, where one can identify the term
as the energy flux term. There is a difference however between what appears in the RHS 
and the LHS of the equation. In the energy flux the energy that appears is the enthalpy. 
This has a simple explanation if one writes the integral of the two side over a volume, 
namely, calculate the rate of change of the energy within a given volume V, the RHS 
could converted to a surface integral of the following form

The first term on the right hand side represent the flux of kinetic and internal energies 
while the second is the work that is done by the pressure on the fluid in the volume V.

v  12 v
2H 

∫S v  12 v
2H ⋅dS =∫S v 12 v

2U ⋅d S ∫S p v⋅d S

∂ U 
∂ t =H

∂
∂ t  T

∂s
∂ t=−H ∇ v −T v⋅∇ s

∂
∂t  12 v2U =−∇⋅[v  12 v2H  ]
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I.12 The energy and momentum fluxes 

The Momentum Flux: 
Similarly the rate of change in the momentum per unit volume is,  

where the continuity and Euler equations have been used.
One could further proceed by defining the tensor

which could be placed at the RHS of the previous equation

P
ik
 is called the momentum flux density tensor.  In the future we'll show that 

accounting for viscosity in the fluid equations could be easily done by 
adding another tensor, the viscous stress tensor, to the tensor P.  

Through integrations over a given volume one can easily see that the RHS 
of the last equation gives a surface integral over,                             which is 
interpreted as the change in the momentum across a surface due to the 
pressure forces and the actual flow of the momentum through the surface. 
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I.13 Boundary conditions

The equations of motion have to be supplemented by initial and 
boundary conditions. The initial conditions normally give the flow 
properties t the t=0 (but not necessarily). The boundary conditions give 
the conditions which the fluid has to satisfy at the surface bounding the 
fluid. For example, if the surface is at rest then the perpendicular 
component of the velocity at the surface must vanish, i.e., v.n=0. If the 
surface is moving then the perpendicular velocity at the surface must 
have the same value as the velocity of the surface.

There are other types of boundary conditions that might apply and 
those will depend on the problem at hand. For example in astronomy 
boundary conditions could be asymptotic (e.g., density of galaxy drops 
to zero at infinity) 
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I.14 Potential flow 

Potential floe is a flow in which the vorticity vanishes everywhere in the fluid, 
i.e.,                          . In such case Euler's equation could be written as:

In such case the velocity could be drawn from a potential, y, or v=∇y.
For barotropic and potential forces, Euler's equation then becomes very 
simple.

or 

Where f  is the force potential and T(t) is some function of time.
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II.1 Incompressible fluids

Incompressible fluid is a fluid in which the density within a fluid parcel is 
constant, namely, dr/dt=0. If this is combined with the continuity equation 
one obtains that for incompressible fluid, 

If the flow is also potential then one of the equations of motion become
Laplace equation                  .

There are many other properties that one can develop for incompressible 
fluid, however, we'll develop some of those when we discuss viscous 
flows. 
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I.13 Example of Potential
      incompressible flow

Potential floe is a flow in which the vorticity vanishes everywhere in the fluid, 
i.e.,                         . In such case Euler's equation could be written as:

In such case the velocity could be drawn from a potential, y, or v=∇y.
For barotropic and potential forces, Euler's equation then becomes very 
simple.

or 

Where f  is the force potential and T(t) is some function of time.
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II.2 Incompressible example

A uniformly rotating incompressible fluid (liquid) calculate the shape of the 
fluid surface given that a uniform and constant gravitational force is acting 
on it. This problem is a steady flow problem, however if one chooses to 
view the fluid from a rotating frame of reference the fluid becomes static 
with the following equations 

with the solution:

At the surface p=p
0
 which gives the famous parabola solution. 

If the fluid is not at rest relative to the rotating frame then one has to 
consider Coriolis forces which normally are much more important that the 
centrifugal force (e.g., the Earth's weather system).
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       III. Compressible flows
III.1 Sound waves

Consider a small perturbation to a uniform state of a fluid in 
hydrostatic equilibrium,

Then the Fluid equations become:

Apply the operator ∂/∂t on the first equation and ∇· on the second:
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III.1 Sounds waves (cont.)

In order to solve the system we need another equation. For an ideal 
fluid with adiabatic fluctuations we can add the equation

Which yields

This equation could be written as

where the adiabatic speed of sound cs is, 

Homework: do the same thing for isothermal fluctuations

∂2 1
∂t2

−∂p∂ s∇2 1=0
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III.2 Time scales in a fluid
The sound speed is a fundamental quantity characterizing a compressible 
fluid. It sets the maximum speed in which information about pressure, 
density, velocity and temperature can pass through the fluid. 

Therefore, if one has a system with a typical scale length, L, pressure, p and 
density r, then the typical time scale for the fluid to react is:  τ∼L/(p/r)1/2.

Now, if the system has other forces like gravity, they come with their own 
time scale. For example gravity acts within a time scale, known as the 
dynamical time scale, of τ

dyn
∼ 1/(Gr)1/2. In gravitational collapse problems 

the dynamical time scale and the sound speed time scale are present, if the 
dynamical time scale is much shorter than the hdyrodynamical time scale 
then the fluid has no time rearrange itself to adjust (i.e., resist) to the 
collapse and system will collapse until other forces if any overcome Gravity. 
Whereas if the hydrodynamical time scale is shorter than the dynamical one 
then the system will adjust in time to equilibrate Gravity (e.g., in stars)  
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III.3 Surface Gravity waves

As a second example of small fluctuations we consider incompressible 
fluid with constant density which occupied a region z < 0 and under the 
influence of constant and uniform gravitation force 
This is a reasonable model for ocean waves in deep water. The fluid 
equations for                        is:

which after taking the divergence becomes

We seek a solution of the form:

Laplace equation solution is:

The condition that perturbation is finite everywhere yields B=0 
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III.3 Surface Gravity waves (cont.)

Now let us solve for the z component of the velocity:

which gives:
From this one can obtain the the displacement at the boundary

The RHS of the last equation is due to the change in the energy due 
to the pressure work, while the LHS is due to gravity and these two 
must be equal. Therefore one obtains the dispersion relation,

Therefore, the group velocity of these waves increases with 
wavelength:
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III.4 Hydrodynamical Instabilities

In the previous section we discussed fluctuations that either 
oscillate to produce wave phenomena or decay. However a third 
category is also possible, perturbations that grow exponentially 
rendering the system unstable. A useful way to view the reaction 
of a system to perturbations is to write the perturbation fields 
(normally possible to do) in the following form:

Obviously the type of reaction the system has to these 
perturbations. i.e., stable, oscillating or unstable,  depends on 
whether  g  is negative, zero or positive. respectively.

Here we'll deal with a number of instabilities that are common in 
astrophysical systems.
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III.5 Convective Instability 

Convection plays an important role in stellar interiors and planetary 
atmospheres. Here we'll consider a simple stratified fluid under 
constant gravity force in equilibrium.  A small parcel of material is 
displaced adiabatically while remaining at pressure equilibrium.

Initial position

perturbed position

The equilibrium 
condition

The adiabatic 
condition (p=k rg)

The parcel is 
heavier: stable

The parcel is 
lighter: unstable
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III.5 Convective Instability (cont.) 

Which leads to the 
instability criterion:

Recall that the equation of state for an ideal fluid is given 
by  p=(R/m)rT. In the case of a constant molecular weight 
(uniform chemical composition) the previous instability 
criterion becomes:

This is known as the Schwarzschild criterion for instability.
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities

Rayleigh Taylor Instability

The Crab nebula
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities (cont.)

Kelvin Helmholtz Instability
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities (cont.)

Consider the basic flow of incompressible inviscid fluids (1) and (2) in 
two horizontal parallel infinite streams of different velocities U1 and 
U2 and densities ρ

1
 and ρ

2
, the faster stream above the other. The two 

fluids are immiscible (i.e., do not mix). The force pre unit mass is
For both sides                . Now suppose that the fluids are perturbed 
weekly at the surface at which z=ξ  the following equations hold:

¡ gẑ

ξ
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities (cont.)

The first equation is the perturbation velocity along the z direction:

which yields,                      , where U is the unperturbed fluid velocity.

The other equation that the system satisfies is Bernoulli's equation.

where B is a constant.  We write                     and expand the last 
equation to first order:

The constant is                       (obtained from the unperturbed case).

Finally we get
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities (cont.)

The requirement that the pressure at the surface of discontinuity 
should be equal yields:

We substitute Laplace equation solutions of the form (see disussion on 
surface gravity waves):

Resulting in the following equations at z=0:

Requiring a nontrivial solution yields:
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III.6 Rayleigh-Taylor and Kelvin-
Helmholtz Instabilities (cont.)

This solution is unstable when the argument of the square root is 
negative. Which clearly happens when:

If U
1
=U

2
=0 then the instability is know the Rayleigh Taylor instability 

while if there is no gravity the instability is known as Kelvin-Helmholz 
instability. 
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III.7 Jeans Instability

Assume an infinite homogeneous and self gravitating gas cloud with 
unperturbed                       , which are position independent.  A side 
comment, such a setup is unphysical in Newtonian mechanics, still, 
Jeans ignored this and went ahead with his perturbative approach, this 
is know as the Jeans swindle.Jeans swindle.  
The first order Euler equation gives:
Taking the divergence of both sides yields:

Suppose now that the gas is ideal and isothermal then the last equation 
could be written as:

where we used the continuity equation as well. c
T
 is the isothermal 

sound speed.
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III.7 Jeans Instability (cont.)

Now we try the usual form of solution to obtain

The system is clearly unstable if the dynamical time scale is smaller 
than the hydrodynamical time scale. Put differently, the instability 
criterion is:

where λ
J
 is called the Jeans wavelength.

Now if the cloud is roughly spherical one can define Jeans radius (R
J
= 

λ
J
/2).  From this one can define a Jean mass                                       , 

which gives the problem a simple interpretation. If the mass associated 
with the perturbation exceeds Jeans mass then the system can't react 
to it in time and the it becomes unstable.
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III.8 Shock waves: supersonic flow

Mach number, is the ratio between the fluid ambient speed and 
the ambient speed of sound, i.e., 
This could also be interpreted as the ratio between the flow of 
kinetic energy to the thermal energy through the fluid.

Flow with M<1 is called subsonic while that with M>1 is called 
supersonic.

Assume a point is travelling with supersonic speed v speed, the
                                         opening angle of shock is given by: 

2c
t ct θ

2vt

vt vt



  48

III.8 Shock waves (cont.)

1D Shock:

This section will develop relations for normal shock waves in 
fluids with general equations of state. It will be specialized to 
perfect ideal gases to illustrate the general features
of the waves.
Assume for this section we have: 

 one dimensional flow.
 steady flow
 no area change 
 viscous effects and wall friction do not have time to 

influence the flow
 heat conduction and wall heat transfer do not have time to 

influence  the flow.
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III.8 Shock waves (cont.)

Since the problem is self similar, one can show that the only solution that 
satisfies the gas dynamics equations is one in which the fields are constant.
Our aim is to describe the disturbance properties (v

2
,p

2
,r

2
). In the lab 

frame the problem is unsteady, therefore we transform it into another 
frame in which the problem is steady.
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III.8 Shock waves (cont.)

Therefore, we use Galilean transformation to frame that moves with 
the disturbance assuming that the disturbance speed, D, is known. The  
idea is then to find the downstream fields (with index 2) and then to 
invert them in order solve for D.

Rankine Hugoniot equations (the shock jump conditions):
These equation are basically the conservation laws across the shock 
which are as follows:

[Despite the mathematical issues with deriving these equations in the way we did (a 
more proper treatment should be employed),  these equations are correct . ]
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III.8 Shock waves (cont.)

Across the shock these equations yield:

Substituting the mass equation in the momentum equation we obtain

Which is also known as the Rayleigh line [a line in (p,1/r) space] 
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III.8 Shock waves (cont.)

Let us manipulate the energy equation to obtain:

Substituting from the Rayleigh line one obtains the Hugoniot equation:

which is independent of the shock wave speed and the equation of 
state and indicatesxs that the change in the enthalpy is basically the 
pressure change times the mean volume.
For Ideal gases the relation,                                 holds. 

Therefore, the Hugoniot equation, after some manipulation, becomes:
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III.8 Shock waves (cont.)
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III.8 Shock waves (cont.)

There are two solutions for the intersection between the 
Rayleigh line and the Hugoniot curve. The first is basically r

1
=r

2
 

which is not interesting. The second solution gives:

with

For a strong shock (M>>1) the density ratio is constant

For g=5/3 this ratio is 4. While for the acoustic limit (M=1) it is 1.
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III.8 Shock waves (cont.)

Back substitute to get 

For a strong shock (M>>1):

Transform back to the lab frame one obtains:

Finally yielding:

Notice that D always exceeds the speed of sound.
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One of the main things we neglected so far is to account for internal 
friction, viscosity,  in the fluid. In order to so we have to modify the 
form of the stress tensor that we have discussed earlier.

where the term  s
i,k

 is called the stress tensor and s'
i,k 

is called the 
viscous stress tensor. The stress tensor gives the rate of 
momentum that is not due to direct mass transfer with the moving 
fluid. In other words the transfer of momentum due to pressure and 
friction. 

s'
i,k 

is caused by friction it arises from two adjacent fluid parcel 
that are moving relative to each other. Therefore it must depend on 
the velocity gradients across the flow.

IV.1 Viscous Fluids
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Assuming no abrupt jumps in the velocity field at infinitesimal 
distance the momentum transfer must be a linear function of the 
first derivative of the velocity.  Also it can have no constants as the 
momentum transfer should vanish for uniform flow. There is also no 
momentum transfer for solid body rotation(                 ) . The most 
general form the satisfies these conditions is:

η and ζ  are velocity independent. 
The first term in the LHS of the equation is traceless and symmetric, 
whereas the second is diagonal. 

Notice that for incompressible flow this term considerably simplifies.

IV Viscous Fluids (cont.)
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The viscous fluid equation of motion is:

η and ζ  are called the viscosity coefficients and both are positive. 
The two are not necessarily constant throughout the fluid. In most 
fluids the two coefficients do not significantly change.  So we'll 
assume they are constants. The equation of motion then becomes

which is known as the Navier-Stokes equation. For an incompressible 
fluid the 3rd tern in LHS vanishes.

IV Viscous Fluids (cont.)
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For vorticity the equation one gets:

For incompressible fluid also η is the only viscosity we have to 
consider. The ratio                 is called the kinematic viscosity.
Here is a table of typical values for η and ν  at room temperature.

IV Viscous Fluids (cont.)
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Energy dissipation in a viscous fluid:
For simplicity we'll assume incompressible fluids and no external 
forces. We would like to calculate the change of kinetic over the 
whole fluid volume: 

We'll choose to to take the time derivative at a fixed volume 
element is space. Therefore, the time change in the kinetic energy 
per unit volume is:

Which, using the assumption of incompressibility, could be 
rewritten as:

IV Viscous Fluids (cont.)
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Substituting in the integral the first term of the RHS vanishes at 
infinity (using the divergence theorem). Due to symmetry the 
second term could be written:

Or,

Since there is dissipation h has to be positive.

IV Viscous Fluids (cont.)
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Two horizontal infinite xz plates with one fixed and the other 
moving with constant velocity u along the x direction.

Clearly all quantities are y dependent and the fluid velocity is along 
the x direction.
From the y component of the Navier-Stokes equation we get

and from the x component we get                 .

Together with the boundary conditions this leads to 

IV Viscous Fluids (cont.)

h

u
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The force acting on the lower plate per unit area is given by: 

The only term that counts in this case is
which is the force on the lower plate. 

IV Viscous Fluids (cont.)

Steady incompressible flow in a pipe 
in the presence of a constant
pressure gradient 
Since the flow is steady the only 
relevant velocity component is along 
the axis of symmetry. We'll call this component v. The velocity will 
depend only on r.  The x component of the Navier-Stokes equation 
in cylindrical coordinates is:

x

R
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IV Viscous Fluids (cont.)

Which could be easily solved with:
The constants a and b could be obtained from the boundary 
conditions by v is finite at r=0 and vanishes at r=R. The final 
solution is then parabolic:

Now let us calculate the mass of liquid passing in the pipe per unit 
time, Q.

This result was found empirically by Aagen in 1839. 

Conclusion: Do Not Smoke



  65

V. Similarity

In such a complex set of equations and boundary/initial conditions it is 
often useful to try to workout some of the basic properties of the system 
based on dimensionality arguments.

For example bodies that have the same shape are ”geometrically 
similar”. Therefore, they can be obtained from one another by changing 
the system's linear dimensions. Obviously, one also need to scale the 
other scale dependent constants in the problem.

A simple example of dimensionality argument is the simple ideal 
pendulum where the only three parameters in the system are g, m and l.
The time scale the is relevant therefore is proportional to                   .

For an incompressible fluid for example, one normally has a typical 
length l [cm], a typical velocity u [cm/s],  a typical density, r [g/cm3], and 
a typical h [cm/gs].
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V. Similarity

From those one can construct a dimensionless number call the 
Reynolds number:

The velocity, pressure, etc. of the fluid at any point could be written as 
follows:
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V. Similarity

Sedov-Taylor Solution for a blast wave:

Examples of blast waves include: atmospheric nuclear explosions,
supernova explosions. The wave will look self similar as it is in the 
strong shock limit until it weakens and then the self similar solution 
is not valid anymore , which will eventually happen when the blast 
energy is transfered to the material swept up by the wave. It is of 
obvious importance to be able to calculate how fast and how far the 
shock front will travel.
                                     Let us make an order of magnitude estimate.
                                     The r

0
 be the density of (pre shock) gas and  

                                     after time t the radius of the shock is R(t).    
                                   The mass swept up by the blast wave is  
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V. Similarity

The fluid velocity behind the shock will be roughly the radial velocity 
of the shock front,                     , and the kinetic energy swept by 
the gas is                 .  There will also be internal energy change 
which is roughly equal to the post shock pressure

The last relation is obtained from employing the strong shock jump 
conditions for the pressure (see shock tube section). Namely, from:

                                             and

For strong shocks these result is
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V. Similarity

The total change in internal energy  is of the order of the kinetic 
energy. Equating either of the two to the total energy gives:

with ε of order 1. Which implies that the shock radius at a function 
of time is: 

Which should hold from the beginning of the blast until the shock 
weakens and one can no longer use the strong shock limit to describe 
the post shock pressure.

Homework: Derive the last equation from dimensional analysis.
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V. Similarity

For the full solution of this problem we should actually solve the 
following equations:

The first two equations here are the continuity and Euler equations 
whereas the third holds for adiabatic expansion (P=krg).
The solution of this set of equations will depend on the explosion initial 
conditions. Fortunately, at late times, when most of the mass has been 
swept up, the fluid evolution is independent of the details of the initial 
expansion and in fact can be understood analytically as a similarity 
solution. By this, we mean that the shape of the radial profiles of 
pressure, density and velocity are independent of time.
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V. Similarity

We'll cast this solution in terms of the dimensionless quantity                  .

Then one can have equations for the twiddled quantities, these equation 
can be analytically solved (see figure). This self similarity anszatz and the 
resulting self similar solution for the flow are called the Sedov-Taylor 
blast-wave solution, since L. I. Sedov and G. I. Taylor independently 
developed it. 
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V. Similarity

The solution satisfies the following 
conditions:
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VI. Turbulence
What is turbulence? Fluid dynamicists can certainly recognize it but they 
have a hard time defining it precisely and even harder time describing it 
qualitatively. One feature of turbulence is that it is composed of eddies or 
vortices. Large vortices continually break up into small ones, which in turn 
break up into even smaller ones, until the effect of fluid viscosity dissipates 
the kinetic energy of the smallest vortices into heat. 



  74

VI. Turbulence
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VI. Turbulence: Weak Turbulence

At a first glance a quantitative description at least in the weak 
turbulence limit appears straightforward.  Fourier decompose the 
velocity and density fields, the nonlinear terms will introduce coupling 
between different Fourier modes (normally called wave-wave coupling). 
Next, solve this system perturbatively. Obviously, this will work only in 
the weak perturbation limit, or the so called weak turbulence theory. 
In this theory, one averages over many realizations of a stationary 
turbulent flow to obtain an average power spectrum of the field as a 
function of wavenumber (inverse scale). Then if the energy density 
scales over many octaves of wavelength, scaling argument could be 
invoked to infer the shape of the spectrum. This type of argument 
results in the famous Kolmogorov Spectrum for turbulence which is 
useful and have been experimentally verified in many cases. Note 
however, that this type of description does not work for strong 
turbulence, where the turbulence  develops.
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Most turbulent flows come under the heading of fully developed or 
strong turbulence and cannot be well described in this weak turbulence 
manner. Part of the problem is that the                   term in the Navier-
Stokes equation is a strong nonlinearity, not a weak coupling between 
linear modes which has the following properties:  
● Eddies persist for typically no more than one turnover timescale 

before they are broken up and so do not behave like weakly coupled 
normal modes.

● The phases of the modes are NOT random, neither spatially nor 
temporally. Namely, the flow has well-defined coherent structures 
like eddies and jets, suggesting some organization.

● Intermittency – the irregular starting and ceasing of turbulence.
Strong turbulence is therefore not just a problem in perturbation 
theory and alternative, semi-quantitative approaches must be devised.

VI. Turbulence: Strong Turbulence
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VI. Turbulence (Kolmogorov spectrum)

When a fluid exhibits turbulence over a large volume that is well 
removed from any boundaries (solid body) then there will be no 
preferred direction and no substantial gradients in the statistically 
averaged properties of the turbulent field. 

●The turbulent velocity field will be idealized as made of a set of large 
eddies, each of which contains a set of smaller eddies and so on. 

●We assume that each eddy is split roughly half of its size after a few 
turnover times. 

︁ This could be described as nonlinear velocity correlation terms that 
transfer energy from large scale eddies to small scale eddies (energy 
cascade).
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VI. Turbulence (Kolmogorov spectrum)

Lets decompose the velocity field into its Fourier components, i.e.,

where       is the velocity in Fourier space. Remember that                   .
We could then define a Reynolds number that is associated with each 
scale in the flow, 

For very large scale Reynolds number is very big and energy lose through 
viscosity, i.e. dissipation, in the Navier-Stkoes equation is negligible. 
However, small eddies have a  small Reynolds number associated with 
them and therefore dissipation is important. One could therefore say 
that the scale at which the turbulence is suppressed is when  
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VI. Turbulence (Kolmogorov spectrum)

For a stationary turbulent field the transfer of kinetic energy from 
scale to scale is constant , this is the basis for the derivation of 
Kolmogorov spectrum. We'll derive the Kolmogorov spectrum in a 
simplistic manner. 
We define the total energy per unit mass     which could be written as

where                      is energy spectrum as a function of k.   

Assuming that the energy transfer from scale to scale is constant and 
we are considering scales with half the wavelength each step in the 
cascade then the total energy per unit mass is 

U
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VI. Turbulence (Kolmogorov spectrum)

Denote the energy per unit mass per unit time that cascades is q. 
Then one can write
                            .
where we used                       . which yields                     .

Remember that we have also the relation                     .

Combining those together we get,                               for the range
                                 .

The limiting wave numbers are set by the largest scale in the 
turbulence and the scale at which Reynolds number is ~1. 
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VII. Magnetohydrodynamics
      The Basic Equations

The interaction of Magnetic fields with (fully or partially) ionized 
fluids (plasma) play a major role in astrophysical systems.  The 
equations that describe the fluid in this case are the normal fluid 
equations (with Lorentz force) in conjunction with Maxwell's 
equations. 

Gauss' Law

Faraday's Law

Ampère's Law

and Ohm's law:                                                   s is the conductivity. 

      Maxwell's
    Equations
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VII. Magnetohydrodynamics (cont.)
      Magnetic Pressure

Let us consider the magnetic force term in Euler's equation and use 
Ampère's Law to obtain:

Since the pressure in the right hand side of Euler's equation could 
be written as the negative of the divergence of the stress tensor, it 
is interesting to ask whether this could also be done for the 
magnetic terms? The answer to this is yes and the form of the 
magnetic stress tensor is:

It is easy to show that: 



  83

VII. Magnetohydrodynamics (cont.)
      Magnetic Pressure

Therefore one can write the RHS of Euler's equation:

Note that T is the magnetic component of the spatial part of the 
electromagnetic stress energy tensor. Assume for simplicity that 
the magnetic field is along the z direction, then this tensor could be 
written as:

Which has clearly two parts, an isotropic part which adds to the 
normal pressure and anisotropic part.
In order to characterize relative importance of the two terms it is 
useful to define the so called the plasma b: 
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VII. Magnetohydrodynamics (cont.)
      The frozen field theorem

The time evolution of the magnetic field could be obtained from a 
combination of Ampère's and Ohm's laws.

The RHS of the above equation contain two terms, the first involves 
the conductivity is a diffusion term, whereas the second, which 
involves the velocity,  is called the convection term.
To determine which of the two terms dominates it is useful to 
define the so called, magnetic Reynolds number,

If R
m
>>1 then the magnetic field evolves according to,
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VII. Magnetohydrodynamics (cont.)
      The frozen field theorem

There are two different but equivalent statements of the frozen 
field theorem.
Statement 1: The magnetic flux threading any closed curve moving 
with the fluid is constant.
Statement 2: if a line moving with the flow is a magnetic field 
initially it will remain so indefinitely.
Here we'll prove the first statement (the second requires a lengthy 
proof). 
The last equation could be written in terms of the vector potential,

The convictive derivative of the magnetic flux through a material 
surface S.
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VII. Magnetohydrodynamics (cont.)
      The frozen field theorem

©B =
Z

S
~B ¢d~S

The magnetic flux within a given area form a flux tube 
that is constant with the flow. Since the tube can be 
shrunk to infinitesimal area containing basically one 
magnetic field line, the theorem basically is applicable 
for any field line.

See next page 
for proof
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VII. Magnetohydrodynamics (cont.)
      The frozen field theorem

Therefore, 

Then use the following relations  with the equation on slide 82 to 
get the proof:
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VII. Magnetohydrodynamics (cont.)
      The frozen field theorem

Sunspots
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VII. Magnetohydrodynamics (cont.)
 Diffusion time scales and reconnection
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VII. Magnetohydrodynamics (cont.)
      Hydromagnetic waves

Next we consider  the propagation of small perturbations in MHD. For 
simplicity, the medium is taken to be homogeneous, static and infinitely 
conducting with initial constant magnetic field which are slightly 
perturbed, namely, 
We also assume isentropic flow which gives. 
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VII. Magnetohydrodynamics (cont.)
      Hydromagnetic waves

Combining all of these equation together and assuming a solution of the 
form                                   . After substituting for the pressure from 
the last equation and eliminating  B

1
 from the equation next to last, one 

obtains the following set of equations -- expressed in matrix terms.

                           Where V
A
 is called the Alfvèn velocity and defined as: 

                                  

                                In order to get non trivial solution the determinant
                                 should be zero.x

z

y

~B0

x

~k θ
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VII. Magnetohydrodynamics (cont.)
      Hydromagnetic waves

It is easy to show that the dispersion relation has three roots:

These are called the slow magnetosonic mode, the transverse Alfvèn 
mode and the fast magnetosonic mode respectively. 
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