Physics of Galaxies 2019/2020

Problem Set 5

1. This problem is intended to help you interpret l - v diagrams like that in Figure 2.20 in Sparke & Gallagher. Inspect Fig. 2.19 in the book (or see below). Assume that the Galaxy's disc has a constant velocity everywhere, with $v(R) \approx 220 \text{ km/s}$, and the Sun is located at $R_0 = 8 \text{ kpc}$.

Fig. 2.19. Galactic rotation: a star or gas cloud at P with longitude l and Galactocentric radius R, at distance d from the Sun, orbits with speed V(R). The line of sight to P is closest to the Galactic center at the *tangent point* T.

a) Find $v_r(l)$, which is the radial velocity at longitude l, for gas on circular orbits in the Galaxy at R = 4, 6, 10 and 12 kpc. Do this by varying the Galactocentric azimuth ϕ around each ring: find d for each (ϕ, R) , and hence the longitude l and v_R (see geometry in the figure below which corresponds to Fig. 2.19 in Sparke & Gallagher).

b) Make a plot showing v_r as a function of l as seen from the *local stan*dard of rest (LSR). Where is the gas in the Galaxy at the following longitudes and velocities: $(l \sim 50^{\circ}, v_r > 0 \text{ km/s}); (l \sim 50^{\circ}, v_r < 0 \text{ km/s}); (l \sim 120^{\circ}, v_r < 0 \text{ km/s}); (l \sim 240^{\circ}, v_r > 0 \text{ km/s}); (l \sim 300^{\circ}, v_r > 0 \text{ km/s}); and$ $(l \sim 300^{\circ}, v_r < 0 \text{ km/s})$. And where is the gas at $(l \sim 120^{\circ}, v_r > 0 \text{ km/s})$?

2. The Virial Theorem tells us that the mass M(< R) of a spherical system in equilibrium enclosed in a sphere of radius R is

$$M(< R) = \frac{v^2 R}{G} \tag{1}$$

where v is some characteristic velocity of the system. Let us consider this for the Milky Way.

a) Assuming that the circular velocity at $R = R_0 = 8 \text{ kpc}$ is $v(R) = 200 \text{ km s}^{-1}$, what is $M(\langle R)$?

b) What is the average density of the sphere with radius R? Note that the critical density of the Universe is

$$\rho = \frac{3H_0^2}{8\pi G}.$$
 (2)

c) How many times larger is the average density of the Galaxy than the critical density of the Universe?

d) Now assume that the MW disc has an exponential profile with a scale length $h_R = 4 \text{ kpc}$ at $R = R_0$. Show that 60% of the MW's disc mass lies at distances smaller that the distance from the Sun to the Galactic centre.

e) Assume $L_V = 5 \times 10^9 \,\mathrm{L}_{\odot}$ for the bulge and $L_V = 15 \times 10^9 \,\mathrm{L}_{\odot}$ for the disc. Show that the V-band mass-to-light ratio inside the Sun's orbit is $M/L_V(< R_0) \approx 5$ in solar units.

3. Consider a disc galaxy with stellar mass $M = 10^{11} \,\mathrm{M_{\odot}}$.

a) Derive an estimate of its rotational velocity v at a radius r = 8.5 kpc, assuming an ideal point-like mass distribution at the centre. Compare your result with the rotational velocity of 220 km s^{-1} observed near the Sun.

b) Now derive the rotational velocity v at the same distance assuming that the mass density profile varies as $\rho(r) \propto exp[-r/(5 \text{ kpc})]$

c) idem to b) but for $\rho(r) \propto exp[-r/(10\,{\rm kpc})]$.

d) Find the rotational velocity within a spherical dark matter halo whose density is given by $\rho(r) = \rho_s (r/R_s)^n$, where n, ρ and R_s are constants. Find n such that the rotation curve is flat, as observed, i.e., v is idnependent of r.

Note: more recent dark matter halo models have

$$\rho(r) = \frac{\rho_s}{(r/R_s)(1+r/R_s)^2},$$
(3)

which is the so-called NFW profile (Navarro, Frenk & White, ApJ, 490, 493, 1997).