Physics of Galaxies 2019/2020

Problem Set 4

1. Consider a star (or any other object) moving under gravity within a galaxy.

a) Balance the centripetal force against the gravitational force to determine the angular frequency $\Omega(r) = v(r)/r$. Show that, if the density ρ of the galaxy is constant, then Ω is also constant.

b) Show that a star moving on a radial orbit, i.e., in a straight line through the center, will oscillate harmonically in radius with period

$$P = \sqrt{\frac{3\pi}{G\rho}} \approx 3 t_{\rm ff},\tag{1}$$

where $t_{\rm ff}$ is the free-fall time

$$t_{\rm ff} = \sqrt{\frac{1}{G\rho}}.$$
 (2)

c) Show that if you bored a hole through the center of the Earth to the other side and dropped a golf ball down it, then (ignoring air resistance, and all other practical problems, and assuming that the Earth has a constant density) you could return about an hour and a half later to retrieve the golf ball when it would return to its starting point.

Tip: consider that the mass of the Earth is $M \approx 6 \times 10^{27}$ g and its radius is $R \approx 6.4 \times 10^8$ cm.

2. Let us consider the relaxation time of globular clusters and the importance of collisions in these dense systems.

Assume that a typical star in the globular cluster 47 Tucanae (47 Tuc) has a mass $M = 0.5 \,\mathrm{M}_{\odot}$ and that the Coloumb parameter for this cluster is $\Lambda = r_c/1 \,\mathrm{AU}$. The Coulomb parameter Λ is the ratio between the maximum and minimum values of the impact parameters $\Lambda = b_{\text{max}}/b_{\text{min}}$ (see lecture notes).

a) Use Table 3.1 in Sparke & Gallagher (see below) to determine the relaxation time in this cluster. Note that the density ρ given in this table is actually log10(ρ), not ρ itself! 47 Tuc is about 12 Gyr old – is it relaxed?

b) Now compute the collision time for a star in this cluster. How many strong encounters has a single star had (on average) in the lifetime of 47 Tuc?

c) How many encounters in total have occured in 47 Tuc during its lifetime?

Cluster		$\sigma_{\rm r}$ (km s ⁻¹)	$\begin{array}{c} \log_{10}\rho_{\rm c} \\ (\mathcal{M}_\odot~{\rm pc}^{-3}) \end{array}$	r _c (pc)	t _{relax,c} (Myr)	Mass $(10^3 M_{\odot})$	${\cal M}/L_V \ ({\cal M}_\odot/L_\odot)$
NGC 5139	ωCen	20	3.1	4	5000	2600	2.5
NGC 104	47 Tuc	11	4.9	0.7	50	800	1.5
NGC 7078	M15	12	>7	< 0.1	<1	900	2
NGC 6341	M92	5	5.2	0.5	2	200	1
NGC 6121	M 4	4	4-5	0.5	30	60	1
	Pal 13	~0.8	2	1.7	10	3	3–7
NGC 1049	Fornax 3	9	3.5	1.6	600	400	~3
Open cluster	Pleiades	0.5	0.5	3	100	0.8	0.2

 Table 3.1 Dynamical quantities for globular and open clusters in the Milky Way

Note: σ_r is the dispersion in radial velocity V_r in the cluster core; ρ_c is central density; $t_{relax,c}$ is the relaxation time at the cluster's center found using Equation 3.55 with $V = \sqrt{3}\sigma_r$, $\langle m_* \rangle = 0.3 M_{\odot}$, and $\Lambda = r_c/1$ AU. Clusters with upper limits to r_c probably have collapsed cores.

3. In cylindrical coordinates centered on the Galactic Center (R, ϕ, z) , the double-exponential profile for the distribution of stars in the disk is written (Sparke & Gallagher Eq. 2.8):

$$n(R, z, S) = n(0, 0, S) \exp[-R/h_R(S)] \exp[-|z|/h_z(S)],$$
(3)

where S represents some population of stars with scale length $h_R(S)$ and scale height $h_z(S)$.

a) Show that at radius R, the number per unit area (i.e., the surface density) of stars of type S is $\Sigma(R, S) = 2 n(0, 0, S) h_z(S) exp[-R/h_R(S)]$.

b) If each star has luminosity L(S), then the surface brightness is $I(R, S) = L(S) \Sigma(R, S)$. Assuming that h_R and h_z are the same for all S, show that the disk's total luminosity is $L_D = 2\pi h_R^2 I(R = 0)$.

c) For the Milky Way, $L_D \approx 1.5 \times 10^{10} \,\mathrm{L_{\odot}}$ in the V band and $h_R \approx 4 \,\mathrm{kpc}$.

Show that the disk's surface brightness at the Sun's position, which is 8 kpc from the Galactic Center, is $\sim 20 \, L_{\odot} \, pc^{-2}$.

d) The stellar mass density in the disk is $40 - 60 \,\mathrm{M_{\odot} \, pc^{-2}}$, so $M/L_V \sim 2-3$ (in solar units). Why is this larger than $M/L_V \approx 0.67$ for stars within 100 pc from the Sun?