The Integrated Galaxy View

Karina Caputi

Physics of Galaxies 2019-2020 Q4 Rijksuniversiteit Groningen

The Universe timeline

Galaxies in blank fields

Galaxy Building Blocks in the Hubble Ultra Deep Field Hubble Space Telescope • ACS/WFC

NASA, ESA, and N. Pirzkal (STScI/ESA)

(mainly) galaxy evolution

STScI-PRC07-31

We know many

hundreds of

thousands of galaxies

in the Universe

statistical treatment

Individual sources galaxy physics

but we can't resolve

different regions in

the vast majority of

them

<u>Problem:</u> representativeness

Galaxy Physics from Photometric Measurements

Galaxy photometry

Measure all light encircled in an aperture (and subtract background)

This can be done at different wavelength to measure light from different components (e.g., young stars, old stars, dust emission)

Dealing with images of different resolution

HKs - PSF FWHM~0.8 arscec

3.6 microns - PSF FWHM~1.9 arscec

~4.5 arcmin

Galaxy colour-magnitude diagrams

z=0

Credit: Baldry et al.

The blue and red galaxy sequences are clearly separated up to at least z~1

At higher z, red=passive is not valid any more due to increasing importance of dust extinction

Spectral energy distribution (SED) fitting

SED models

Empirical

stellar

spectrum

IMF

Synthetic

Credit: J. Walcher

Expected photometry from templates

Credit: TAO - Bernyk et al.

$$f_{\nu}^{band}(\lambda) = \frac{\int_{0}^{\infty} f_{\nu}(\lambda) T(\lambda) d\lambda}{\int_{0}^{\infty} T(\lambda) d\lambda}$$

The typical SEDs of star forming galaxies

Dusty Galaxies

Dust in galaxies is relatively unimportant in the present day, but it was much more important in the cosmic past

Credit: ALMA/ESO/ESA - Coe et al.

X-rays

Chandra X-ray Observatory

 Spiral Galaxy M101
 Spitzer Space Telescope • Hubble Space Telescope • Chandra X-Ray Observatory

 NASA / JPL-Caltech / ESA / CXC / STScl
 ssc2009-03b

Emission at different wavelengths does not necessarily come from the same part of the galaxy

Radio

e.g. Condon et al.

Very Large Array (VLA)

Galaxy Physics from Spectroscopy

Spectra of star forming galaxies

the spectra of star-forming galaxies are characterised by the presence of emission lines

Disc galaxies looks as you might expect given their colours:

early-type spirals have older stars and few if any emission lines from starformation regions

late-type spirals have younger stars and emission lines from star-formation regions

- •Abou a cen⁻
- •The

Spectra of passive galaxies

the spectra of 'passive' galaxies only has absorption lines

due to negligible level of on-going star formation

AGN spectra

Multi-object spectroscopy

traditionally with slits or fibres

- ✓ calibrate zphot
- ✓ provide backbone for LSS studies
- ✓ study of physical properties (e.g. metallicities)

Spectral classification - the BPT diagram

Integral Field Spectroscopy

Credit: ESO

Galaxy spectral maps

Foerster-Schreiber et al.

Galaxy spectral maps II - VLT/MUSE

Karman, KC et al.

Far-infrared spectra of dusty galaxies

Gas in the ISM

Swinbank et al.