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Stellar motions and galaxy mass distribution

Galactic dynamics 
Galactic dynamics 

•  Stars in galaxies subject (only) the force of gravity. 

•  Knowledge of the mass distribution of a galaxy allows to predict how the positions 
and velocities of stars will change over time. 

 
 

d2r/dt2	=	-	GM(r)/r2	r/r 

Galactic dynamics 
 
•  We can also use the stellar motions to derive the mass distribution.  

  
      A star moving on a circular orbit follows an Equation that relates to mass present inside 

orbit:  
                 Vc

2 = G M(r)/r 
 
 
When comparing the mass in stars to the mass 
derived “dynamically”, we find there is more mass  
than can be accounted for by the stars and gas  
à dark matter 

 
 
•  Observed motions do not only tell us about mass distribution at present position 

of a star but along their orbit 
–  e.g. measurement of the escape velocity  
–  this is the velocity that a star must have to be able to escape the system: 
              E = 1/2 v2 + �(r) = 0 à           vesc = (2 |�(r)|)1/2            à the full potential matters 

•  We can consider the stars as point masses 
–  their sizes are small compared to their separations 

 
 
•  The gravitational potential of a galaxy is the sum of: 

–   a smooth component (the average over a region containing many stars) 
–   the very deep potential well around each individual star  

 
 
 
 
 
 

•  The motion of stars within a galaxy is determined almost entirely by the smooth 
part of the force.  
–  Two-body encounters are only important within dense star clusters  

Important points to remember    



The main role of gravity
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Two components in the gravitational potential
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Stellar collisions    The net gravitational force acting on a star in a galaxy is 
determined by the gross structure of the galaxy,       
not by its nearest stars  

 
•  Example: 

•  The force on a star located at the apex of the cone of constant density: 

 dF1 = -G m* dm1/r1
2 = -G m* r1

2 ρ dr dΩ /r1
2 = -G m* ρ dr dΩ,  

 
 while the force from the more distant shell is 

 dF2 = -Gm* dm2/r2
2 = -G m* ρ dr dΩ. 

 
     The force produced by shells at different distances is the same  

–   makes explicit the long-range nature of gravity 

Are collisions important in gravitational 
systems? 

•  The gravitational force is long-range 
•  The average (smoother) mass distribution determines the motion of  stars 

•  Close encounters are not important in galaxies 
•  This is different from other physical systems such as molecules of air or dust particles. These reach 

equilibrium through collisions, where they exchange energy and momentum. The forces between 
molecules only strong when they are very close to each other;  they experience violent and short-lived 
accelerations, in between long periods when they move at nearly constant speeds.  

•  The timescales/frequency of encounters tell how important they are in galaxies 
  

•  We can consider two types of encounters: 
–  Strong (near): the trajectory of the star changes significantly 
–  Weak (distant): perturbation on the initial trajectory  

•  Take place when a star comes so close another that the collision completely 
changes its speed and direction of motion 

 
•  A strong encounter has happened when the change in potential energy is at least as 

large as the initial kinetic energy.  

       rs  is the strong encounter radius.  

•  Near the Sun, stars have random speeds v ~ 30 km/s, and for m=0.5 M¯ rs ~ 1 AU  

•  The nearest star is at 4.2 light years away ~ 271,000 AU; the average separation between 
stars in galaxies is generally too low for a strong encounter …    

Strong encounters 

•  Any star within a distance rs from another star will have a strong encounter 
•  As the star moves, it defines a cylinder of radius rs centered on its path. The 

volume of this cylinder is π rs
2 V t  

•  If there are n stars per unit volume, this star will on average have one close 
encounter in a time ts such that n π rs

2 v ts  = 1  
 
•  The characteristic time between collisions is  ts ~ 1/(nπ rs

2 v), or ts = v3/(4π G2m2n) 

               
•  Since n ~ 0.1 pc-3 near the Sun, ts ~ 1015 years (>> the age of the Universe)  
•  Strong encounters are only important in the dense cores of globular clusters. 



Strong encounters

    The net gravitational force acting on a star in a galaxy is 
determined by the gross structure of the galaxy,       
not by its nearest stars  

 
•  Example: 

•  The force on a star located at the apex of the cone of constant density: 

 dF1 = -G m* dm1/r1
2 = -G m* r1

2 ρ dr dΩ /r1
2 = -G m* ρ dr dΩ,  

 
 while the force from the more distant shell is 

 dF2 = -Gm* dm2/r2
2 = -G m* ρ dr dΩ. 

 
     The force produced by shells at different distances is the same  

–   makes explicit the long-range nature of gravity 

Are collisions important in gravitational 
systems? 

•  The gravitational force is long-range 
•  The average (smoother) mass distribution determines the motion of  stars 

•  Close encounters are not important in galaxies 
•  This is different from other physical systems such as molecules of air or dust particles. These reach 

equilibrium through collisions, where they exchange energy and momentum. The forces between 
molecules only strong when they are very close to each other;  they experience violent and short-lived 
accelerations, in between long periods when they move at nearly constant speeds.  

•  The timescales/frequency of encounters tell how important they are in galaxies 
  

•  We can consider two types of encounters: 
–  Strong (near): the trajectory of the star changes significantly 
–  Weak (distant): perturbation on the initial trajectory  

•  Take place when a star comes so close another that the collision completely 
changes its speed and direction of motion 

 
•  A strong encounter has happened when the change in potential energy is at least as 

large as the initial kinetic energy.  

       rs  is the strong encounter radius.  

•  Near the Sun, stars have random speeds v ~ 30 km/s, and for m=0.5 M¯ rs ~ 1 AU  

•  The nearest star is at 4.2 light years away ~ 271,000 AU; the average separation between 
stars in galaxies is generally too low for a strong encounter …    

Strong encounters 

•  Any star within a distance rs from another star will have a strong encounter 
•  As the star moves, it defines a cylinder of radius rs centered on its path. The 

volume of this cylinder is π rs
2 V t  

•  If there are n stars per unit volume, this star will on average have one close 
encounter in a time ts such that n π rs

2 v ts  = 1  
 
•  The characteristic time between collisions is  ts ~ 1/(nπ rs

2 v), or ts = v3/(4π G2m2n) 

               
•  Since n ~ 0.1 pc-3 near the Sun, ts ~ 1015 years (>> the age of the Universe)  
•  Strong encounters are only important in the dense cores of globular clusters. 



Average time between collisions

    The net gravitational force acting on a star in a galaxy is 
determined by the gross structure of the galaxy,       
not by its nearest stars  

 
•  Example: 

•  The force on a star located at the apex of the cone of constant density: 

 dF1 = -G m* dm1/r1
2 = -G m* r1

2 ρ dr dΩ /r1
2 = -G m* ρ dr dΩ,  

 
 while the force from the more distant shell is 

 dF2 = -Gm* dm2/r2
2 = -G m* ρ dr dΩ. 

 
     The force produced by shells at different distances is the same  

–   makes explicit the long-range nature of gravity 

Are collisions important in gravitational 
systems? 

•  The gravitational force is long-range 
•  The average (smoother) mass distribution determines the motion of  stars 

•  Close encounters are not important in galaxies 
•  This is different from other physical systems such as molecules of air or dust particles. These reach 

equilibrium through collisions, where they exchange energy and momentum. The forces between 
molecules only strong when they are very close to each other;  they experience violent and short-lived 
accelerations, in between long periods when they move at nearly constant speeds.  

•  The timescales/frequency of encounters tell how important they are in galaxies 
  

•  We can consider two types of encounters: 
–  Strong (near): the trajectory of the star changes significantly 
–  Weak (distant): perturbation on the initial trajectory  

•  Take place when a star comes so close another that the collision completely 
changes its speed and direction of motion 

 
•  A strong encounter has happened when the change in potential energy is at least as 

large as the initial kinetic energy.  

       rs  is the strong encounter radius.  

•  Near the Sun, stars have random speeds v ~ 30 km/s, and for m=0.5 M¯ rs ~ 1 AU  

•  The nearest star is at 4.2 light years away ~ 271,000 AU; the average separation between 
stars in galaxies is generally too low for a strong encounter …    

Strong encounters 

•  Any star within a distance rs from another star will have a strong encounter 
•  As the star moves, it defines a cylinder of radius rs centered on its path. The 

volume of this cylinder is π rs
2 V t  

•  If there are n stars per unit volume, this star will on average have one close 
encounter in a time ts such that n π rs

2 v ts  = 1  
 
•  The characteristic time between collisions is  ts ~ 1/(nπ rs

2 v), or ts = v3/(4π G2m2n) 

               
•  Since n ~ 0.1 pc-3 near the Sun, ts ~ 1015 years (>> the age of the Universe)  
•  Strong encounters are only important in the dense cores of globular clusters. 



Distant weak encounters
Distant weak encounters 

•  In a distant encounter, the force of one star on another is so weak that the stars 
hardly deviate from their original paths after the encounter.  

 
•  We will consider the case of a star moving through a system of N identical stars of 

mass m. 

 

•  We assume that  
–  the change in velocity is very small: δv/v << 1,  
–  the perturbing star is stationary  

–  This is known as the impulse approximation. 
 

•  The pull by m induces a motion dv perpendicular to the original trajectory. The full 
force is  F = - GmM/r2 ε, and that in the perpendicular direction is  

  
 

  

•  The change in velocity of star  M 

 
à the faster the relative velocity, the smaller the perturbation is. 

θ

              Cumulative effect of the individual encounters: 
    relaxation time  

 
•  If the surface density of stars in system is n, the number of (weak) encounters dne 

with impact parameter b that a star suffers when crossing the system over time t  
    dne = n V t  2 π b db 

•  Each of these encounters will produce a change in dv, but because the 
perturbations are randomly oriented, the mean vector change is zero  
             (there is no change in direction, but the road is “bumpy”) 

 
•  The accumulation of weak encounters can be measured by Sum of (ΔV�)2 

•  After a time trelax, such that ��V�2�=  V2  the memory of the initial path is lost. 
		

	 	 

•  This is called the relaxation timescale:  
 

•  It is the timescale required for a star to change its velocity by the same order, due 
to weak encounters with a “sea” of stars. Compared to the strong collisions 
timescale, trelax < ts 

 
•  Some characteristic values: 

–  Typically ln Λ ~ 20.  
–  Exact values of bmin and bmax are not very important (logarithmic dependence): bmax = system size, 

and bmin = rs, for example for 300 pc < bmax < 30 kpc, and rs = 1 AU (near the Sun),  ln Λ ~ 18 – 22.  

•  For an elliptical galaxy, N ~ 1011 stars, R ~ 10 kpc, and the average relative velocity 
of stars is v ~ 200 km/s, then trelax ~ 108 Gyr!  

•  For stars in a globular cluster like Ω Cen, trelax ~ 0.4 Gyr, so relaxation will be 
important over a Hubble time.     

•  This implies that when calculating the motions of stars like the Sun, we can ignore pulls of 
individual stars, and consider them to move in the smooth potential of the entire Galaxy. 

 



Momentum transfer in weak encounters



Star deflection due to weak encounter

Distant weak encounters 

•  In a distant encounter, the force of one star on another is so weak that the stars 
hardly deviate from their original paths after the encounter.  

 
•  We will consider the case of a star moving through a system of N identical stars of 

mass m. 

 

•  We assume that  
–  the change in velocity is very small: δv/v << 1,  
–  the perturbing star is stationary  

–  This is known as the impulse approximation. 
 

•  The pull by m induces a motion dv perpendicular to the original trajectory. The full 
force is  F = - GmM/r2 ε, and that in the perpendicular direction is  

  
 

  

•  The change in velocity of star  M 

 
à the faster the relative velocity, the smaller the perturbation is. 

θ

              Cumulative effect of the individual encounters: 
    relaxation time  

 
•  If the surface density of stars in system is n, the number of (weak) encounters dne 

with impact parameter b that a star suffers when crossing the system over time t  
    dne = n V t  2 π b db 

•  Each of these encounters will produce a change in dv, but because the 
perturbations are randomly oriented, the mean vector change is zero  
             (there is no change in direction, but the road is “bumpy”) 

 
•  The accumulation of weak encounters can be measured by Sum of (ΔV�)2 

•  After a time trelax, such that ��V�2�=  V2  the memory of the initial path is lost. 
		

	 	 

•  This is called the relaxation timescale:  
 

•  It is the timescale required for a star to change its velocity by the same order, due 
to weak encounters with a “sea” of stars. Compared to the strong collisions 
timescale, trelax < ts 

 
•  Some characteristic values: 

–  Typically ln Λ ~ 20.  
–  Exact values of bmin and bmax are not very important (logarithmic dependence): bmax = system size, 

and bmin = rs, for example for 300 pc < bmax < 30 kpc, and rs = 1 AU (near the Sun),  ln Λ ~ 18 – 22.  

•  For an elliptical galaxy, N ~ 1011 stars, R ~ 10 kpc, and the average relative velocity 
of stars is v ~ 200 km/s, then trelax ~ 108 Gyr!  

•  For stars in a globular cluster like Ω Cen, trelax ~ 0.4 Gyr, so relaxation will be 
important over a Hubble time.     

•  This implies that when calculating the motions of stars like the Sun, we can ignore pulls of 
individual stars, and consider them to move in the smooth potential of the entire Galaxy. 

 

Define impact parameter: minimum 
distance between m and the trajectory 
of M in the case that the latter is 
undeflected. This would correspond to 
the linear trajectory with v=v(inf).



Cumulative effect of individual encounters

Distant weak encounters 

•  In a distant encounter, the force of one star on another is so weak that the stars 
hardly deviate from their original paths after the encounter.  

 
•  We will consider the case of a star moving through a system of N identical stars of 

mass m. 
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–  the change in velocity is very small: δv/v << 1,  
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–  This is known as the impulse approximation. 
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à the faster the relative velocity, the smaller the perturbation is. 
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•  If the surface density of stars in system is n, the number of (weak) encounters dne 

with impact parameter b that a star suffers when crossing the system over time t  
    dne = n V t  2 π b db 

•  Each of these encounters will produce a change in dv, but because the 
perturbations are randomly oriented, the mean vector change is zero  
             (there is no change in direction, but the road is “bumpy”) 

 
•  The accumulation of weak encounters can be measured by Sum of (ΔV�)2 
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•  This is called the relaxation timescale:  
 

•  It is the timescale required for a star to change its velocity by the same order, due 
to weak encounters with a “sea” of stars. Compared to the strong collisions 
timescale, trelax < ts 

 
•  Some characteristic values: 

–  Typically ln Λ ~ 20.  
–  Exact values of bmin and bmax are not very important (logarithmic dependence): bmax = system size, 

and bmin = rs, for example for 300 pc < bmax < 30 kpc, and rs = 1 AU (near the Sun),  ln Λ ~ 18 – 22.  

•  For an elliptical galaxy, N ~ 1011 stars, R ~ 10 kpc, and the average relative velocity 
of stars is v ~ 200 km/s, then trelax ~ 108 Gyr!  

•  For stars in a globular cluster like Ω Cen, trelax ~ 0.4 Gyr, so relaxation will be 
important over a Hubble time.     

•  This implies that when calculating the motions of stars like the Sun, we can ignore pulls of 
individual stars, and consider them to move in the smooth potential of the entire Galaxy. 

 



Relaxation time
Relaxation is the cumulative effect of individual encounters

Distant weak encounters 

•  In a distant encounter, the force of one star on another is so weak that the stars 
hardly deviate from their original paths after the encounter.  

 
•  We will consider the case of a star moving through a system of N identical stars of 

mass m. 

 

•  We assume that  
–  the change in velocity is very small: δv/v << 1,  
–  the perturbing star is stationary  

–  This is known as the impulse approximation. 
 

•  The pull by m induces a motion dv perpendicular to the original trajectory. The full 
force is  F = - GmM/r2 ε, and that in the perpendicular direction is  

  
 

  

•  The change in velocity of star  M 

 
à the faster the relative velocity, the smaller the perturbation is. 

θ

              Cumulative effect of the individual encounters: 
    relaxation time  

 
•  If the surface density of stars in system is n, the number of (weak) encounters dne 

with impact parameter b that a star suffers when crossing the system over time t  
    dne = n V t  2 π b db 

•  Each of these encounters will produce a change in dv, but because the 
perturbations are randomly oriented, the mean vector change is zero  
             (there is no change in direction, but the road is “bumpy”) 

 
•  The accumulation of weak encounters can be measured by Sum of (ΔV�)2 

•  After a time trelax, such that ��V�2�=  V2  the memory of the initial path is lost. 
		

	 	 

•  This is called the relaxation timescale:  
 

•  It is the timescale required for a star to change its velocity by the same order, due 
to weak encounters with a “sea” of stars. Compared to the strong collisions 
timescale, trelax < ts 

 
•  Some characteristic values: 

–  Typically ln Λ ~ 20.  
–  Exact values of bmin and bmax are not very important (logarithmic dependence): bmax = system size, 

and bmin = rs, for example for 300 pc < bmax < 30 kpc, and rs = 1 AU (near the Sun),  ln Λ ~ 18 – 22.  

•  For an elliptical galaxy, N ~ 1011 stars, R ~ 10 kpc, and the average relative velocity 
of stars is v ~ 200 km/s, then trelax ~ 108 Gyr!  

•  For stars in a globular cluster like Ω Cen, trelax ~ 0.4 Gyr, so relaxation will be 
important over a Hubble time.     

•  This implies that when calculating the motions of stars like the Sun, we can ignore pulls of 
individual stars, and consider them to move in the smooth potential of the entire Galaxy. 

 

In a relaxation time, the stellar velocity distribution randomizes

4



Motion under gravity

Motion under gravity 

•  Newton’s law of gravity:   
 
 
•  In a cluster of N stars with masses m�, at positions xα 
 

   

 

      (Note heavy and light stars suffer the same acceleration) 
 
 

•  In terms of the gradient of the gravitational potential Φ(x): 
 

 
 with 

•  The potential at point x produced by a continuous mass distribution represented 
by density ρ(x)   

  
 
 

   Essentially replaced the discrete summation by an integral, and the masses by ρ(x) d3x 

 

•  If the potential is known, rather than the density, we obtain Poisson’s equation: 
  
 
  
 
 

•  Not all Φ(x) are physically meaningful: only those for which ρ(x) > 0 everywhere (mass is 
always positive).  

 
•  Note similarity to the electromagnetism and electric field: (∇Φe= - E) and the charge 

distribution ρe: ∇2Φe = - 4π k ρ e, where k is Coulomb’s constant.  
     ρe may be positive or negative: electric force can be repulsive or attractive. 

Spherical systems: Newton’s theorems 

•  Theorem 1: A body that is inside a spherical shell of matter 
experiences no net gravitational force from that shell. 

	
	
δm1 = ρ r1

2 dr1
 dΩ1    and     δm2 = ρ r2

2 dr2 dΩ2 

But   dr1 = dr2 = dr    and    dΩ1 = dΩ2 = dΩ. 
Then δ m1/r1

2 = δ m2/r2
2. 

 
A particle M located at r experiences a force  
F = f1 + f2 where 
f1 = - GM δm1/r1

2 ε1 and f2 = -GM δm2/r2
2 ε2 

 
Since ε1 = -ε2,  
then        F = -GM(δ m1/r1

2 - δ m2/r2
2) = 0 

 
  

Theorem 2: The gravitational force on a body that lies outside a closed 
spherical shell of matter is the same as it would be if all the shells’ 
mass was concentrated in a point at its centre. 

  The gravitational force within a spherical system that a  
   particle feels at a radius R is only due to the mass inside  
  that radius.  

 
 
 
•  Therefore if a star moves on a circular orbit, its acceleration is given by  

   vc
2/r = GM(r)/r2 

•  For a point mass, the circular velocity vc
2 = GM/r, and so   vc � 1/r1/2 

 
•  Since M generally increases with radius this implies that for a spherical galaxy, the circular 

velocity never falls off more rapidly than the Kepler case 1/r1/2, except beyond its edge… 



Poisson’s equation

Motion under gravity 

•  Newton’s law of gravity:   
 
 
•  In a cluster of N stars with masses m�, at positions xα 
 

   

 

      (Note heavy and light stars suffer the same acceleration) 
 
 

•  In terms of the gradient of the gravitational potential Φ(x): 
 

 
 with 

•  The potential at point x produced by a continuous mass distribution represented 
by density ρ(x)   

  
 
 

   Essentially replaced the discrete summation by an integral, and the masses by ρ(x) d3x 

 

•  If the potential is known, rather than the density, we obtain Poisson’s equation: 
  
 
  
 
 

•  Not all Φ(x) are physically meaningful: only those for which ρ(x) > 0 everywhere (mass is 
always positive).  

 
•  Note similarity to the electromagnetism and electric field: (∇Φe= - E) and the charge 

distribution ρe: ∇2Φe = - 4π k ρ e, where k is Coulomb’s constant.  
     ρe may be positive or negative: electric force can be repulsive or attractive. 

Spherical systems: Newton’s theorems 

•  Theorem 1: A body that is inside a spherical shell of matter 
experiences no net gravitational force from that shell. 

	
	
δm1 = ρ r1

2 dr1
 dΩ1    and     δm2 = ρ r2

2 dr2 dΩ2 

But   dr1 = dr2 = dr    and    dΩ1 = dΩ2 = dΩ. 
Then δ m1/r1

2 = δ m2/r2
2. 

 
A particle M located at r experiences a force  
F = f1 + f2 where 
f1 = - GM δm1/r1

2 ε1 and f2 = -GM δm2/r2
2 ε2 

 
Since ε1 = -ε2,  
then        F = -GM(δ m1/r1

2 - δ m2/r2
2) = 0 

 
  

Theorem 2: The gravitational force on a body that lies outside a closed 
spherical shell of matter is the same as it would be if all the shells’ 
mass was concentrated in a point at its centre. 

  The gravitational force within a spherical system that a  
   particle feels at a radius R is only due to the mass inside  
  that radius.  

 
 
 
•  Therefore if a star moves on a circular orbit, its acceleration is given by  

   vc
2/r = GM(r)/r2 

•  For a point mass, the circular velocity vc
2 = GM/r, and so   vc � 1/r1/2 

 
•  Since M generally increases with radius this implies that for a spherical galaxy, the circular 

velocity never falls off more rapidly than the Kepler case 1/r1/2, except beyond its edge… 



Derivation of Poisson’s equation



Derivation of Poisson’s equation (cont.)



Derivation of Poisson’s equation (cont.)



Spherical Systems: Newton’s theorem I

Motion under gravity 

•  Newton’s law of gravity:   
 
 
•  In a cluster of N stars with masses m�, at positions xα 
 

   

 

      (Note heavy and light stars suffer the same acceleration) 
 
 

•  In terms of the gradient of the gravitational potential Φ(x): 
 

 
 with 

•  The potential at point x produced by a continuous mass distribution represented 
by density ρ(x)   

  
 
 

   Essentially replaced the discrete summation by an integral, and the masses by ρ(x) d3x 

 

•  If the potential is known, rather than the density, we obtain Poisson’s equation: 
  
 
  
 
 

•  Not all Φ(x) are physically meaningful: only those for which ρ(x) > 0 everywhere (mass is 
always positive).  

 
•  Note similarity to the electromagnetism and electric field: (∇Φe= - E) and the charge 

distribution ρe: ∇2Φe = - 4π k ρ e, where k is Coulomb’s constant.  
     ρe may be positive or negative: electric force can be repulsive or attractive. 

Spherical systems: Newton’s theorems 

•  Theorem 1: A body that is inside a spherical shell of matter 
experiences no net gravitational force from that shell. 

	
	
δm1 = ρ r1

2 dr1
 dΩ1    and     δm2 = ρ r2

2 dr2 dΩ2 

But   dr1 = dr2 = dr    and    dΩ1 = dΩ2 = dΩ. 
Then δ m1/r1

2 = δ m2/r2
2. 

 
A particle M located at r experiences a force  
F = f1 + f2 where 
f1 = - GM δm1/r1

2 ε1 and f2 = -GM δm2/r2
2 ε2 

 
Since ε1 = -ε2,  
then        F = -GM(δ m1/r1

2 - δ m2/r2
2) = 0 

 
  

Theorem 2: The gravitational force on a body that lies outside a closed 
spherical shell of matter is the same as it would be if all the shells’ 
mass was concentrated in a point at its centre. 

  The gravitational force within a spherical system that a  
   particle feels at a radius R is only due to the mass inside  
  that radius.  

 
 
 
•  Therefore if a star moves on a circular orbit, its acceleration is given by  

   vc
2/r = GM(r)/r2 

•  For a point mass, the circular velocity vc
2 = GM/r, and so   vc � 1/r1/2 

 
•  Since M generally increases with radius this implies that for a spherical galaxy, the circular 

velocity never falls off more rapidly than the Kepler case 1/r1/2, except beyond its edge… 



Spherical Systems: Newton’s theorem II

Motion under gravity 

•  Newton’s law of gravity:   
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always positive).  

 
•  Note similarity to the electromagnetism and electric field: (∇Φe= - E) and the charge 
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2/r = GM(r)/r2 
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The orbits of stars on a plane
The orbits of stars in spherical systems 

•  In a time-independent gravitational potential: energy is conserved 
–  try to prove analytically this is the case using dE/dt = d(1/2 v2 + ϕ(r)), recalling what dr/dt and dv/dt are 

•  In a spherical potential: angular momentum is conserved.  
–  The motion of a star is restricted to the orbital plane 

•  try to prove this using L = r x v and taking dL/dt, using derivatives and definitions 

 
–  Only two coordinates are needed to describe the location of a star. Typically: polar 

coordinates in the plane (r, φ) to describe the motion.   

 
              “rosetta” or precessing “ellipses” 

Orbits of stars in a disk galaxy   
•  We use a cylindrical coordinate system (R,φ,z), where z = 0 corresponds to the 

symmetry plane/  mid-plane for the disk 
–  Preferred because of the symmetries of the mass distribution.  
–  The disk is axisymmetric: it is independent of the angular coordinate φ.  

•  We neglect non-axisymmetric features such as the bar, the spiral arms...  

 
 
•  For an axisymmetric system, the gravitational potential Φ is independent of φ à    

Φ = Φ(R,z) 
 

•  The equations of motion for a star in the disk are 
    d2r/dt2 = -∇Φ,  
  
 or, in each direction, and using that r = RεR + z εz,  

  
  d2R/dt2 – R(dφ/dt)2 = -∂Φ/∂R       (1)  
  d2z/dt2 = -∂Φ/∂z          (2) 
  d(R2 dφ/dt)/dt = - ∂Φ/∂φ = 0         (3) 

 
•  Eq. (3)    Lz = R2 dφ/dt = cst. 

     conservation of angular momentum about z-axis 
 
 

•  Eq.(1) can also be written as     d2R/dt2  = -∂Φeff/∂R   (4) 
     where    Φeff = Φ(R,z) + Lz

2/(2 R2).  
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•  Eq.(1) can also be written as     d2R/dt2  = -∂Φeff/∂R   (4) 
     where    Φeff = Φ(R,z) + Lz
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Equations of motion

The orbits of stars in spherical systems 

•  In a time-independent gravitational potential: energy is conserved 
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    d2r/dt2 = -∇Φ,  
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  d2R/dt2 – R(dφ/dt)2 = -∂Φ/∂R       (1)  
  d2z/dt2 = -∂Φ/∂z          (2) 
  d(R2 dφ/dt)/dt = - ∂Φ/∂φ = 0         (3) 

 
•  Eq. (3)    Lz = R2 dφ/dt = cst. 
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•  Eq.(1) can also be written as     d2R/dt2  = -∂Φeff/∂R   (4) 
     where    Φeff = Φ(R,z) + Lz

2/(2 R2).  



Equations of motion (cont.)

•  If we multiply Eq. (4) by dR/dt, and integrate wrt t, then 
  

   ½ (dR/dt)2 + Φeff(R,z;Lz) = cst. 
  
      which is like an energy-conservation law. 
  

•  The effective potential Φeff  ( = Φ(R,z) + Lz
2/(2 R2)) behaves like a potential energy 

for the star’s motion in R and z.  
 
 
•  Note that the effective potential is minimum when: 
 
	� ∂Φeff /∂R = 0 à ∂Φ/∂R – Lz

2/R3 = 0,   
             at R = Rg     ∂Φ/∂R|Rg

 = Lz
2/Rg

3 = Rg (dφ/dt)2 
  this is the radius of a circular orbit 

 
and  
	

	� ∂Φeff/∂z = ∂Φ/∂z = 0 à z = 0        on the plane 
 
 

Epicycles 
•  We will now derive approximate solutions to the eq. of motion for stars on nearly 

circular orbits in the symmetry plane (e.g. the disk).  
–  Since gas moves on circular orbits (why?), the stars born will also move on very nearly circular orb 

 
•  Define: x = R – Rg, and expand the effective potential around the point (Rg,0): 	

		

	Φeff(R,z) ~ Φeff(Rg,0) + ½ ∂2Φeff/∂R2|Rg,0 x2 + ½ ∂2Φeff/∂z2|Rg,0 z2 + … 
    

 (the linear terms disappear because this expansion is performed around a stationary point of 
the potential). 

•  Let us define  
	κ2 = ∂2Φeff/∂R2|Rg,0  
 and  

 ν2 = ∂2Φeff/∂z2|Rg,0  

The eq. of motion become 
•  d2R/dt2 = -∂Φeff/∂R, or d2x/dt2 = - ∂2Φeff/∂R2|Rg,0 x  

              d2x/dt2 = -κ2 x 
 
•  d2z/dt2 = -∂Φeff/∂z, or d2z/dt2 = - ∂2Φeff/∂z2|Rg,0 z  

        d2z/dt2 =  -ν2 z 
 

•  These are the equations of motion of two decoupled harmonic oscillators with 
frequencies κ and ν. 	
	κ is the epicyclic frequency and  
 ν as the vertical frequency:  
	 		
	 	 	 	κ2(Rg) = ∂2Φ/∂R2|Rg,0 + 3 Lz

2/Rg
4   

	 	 	 	ν2 (Rg)= ∂2Φ/∂z2|Rg,0  	

•  The solution to the eq. of motion is 
 
 

x = Xo cos(κ t + Ψ)   and z = Zo cos(ν t + θ)             for κ2 > 0. 
 
  

The motion of a star in the disk can be described as an oscillation about a guiding 
center that is moving on a circular orbit.  

 
The approximation to 2nd order in z in the effective 
potential is only valid if ρ(z) ~ cst (from Poisson’s 

eq). However, the disk density decreases 
exponentially. This means that the approximation 

can at most be valid for 1 scale-height (z < 300 pc).  
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Epicycles (cont.)
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