Interstellar Radiation Fields

Karina Caputi

Interstellar Medium 2015-2016 Q3 Rijksuniversiteit Groningen

Main Interstellar Radiation Field Components

- Galactic synchrotron radiation from relativistic electrons
- The CMB
- Starlight (UV photons from stellar photospheres)
- Mid- and far-IR emission from dust grains heated by starlight
- Emission from plasma at T>10,000 K: free-free, free-bound, bound-bound, X rays

Components of the interstellar continuum radiation

Picture credit: B. Draine's book (fig. 12.1)

Synchrotron Radiation

relativistic electrons moving in magnetic field

synchrotron radiations dominates sky brightness at v < 1 GHz (i.e. $\lambda > 30$ cm)

 $(u_{\nu})_{\rm synchr} \propto \nu^{\beta}$

Magnetic Fields in M51

Fletcher et al. (2011)

The CMB

Picture credit: http://lambda.gsfc.nasa.gov/product/cobe/dmr_image.cfm

The CMB spectrum

Picture credit: http://asd.gsfc.nasa.gov/archive/arcade/cmb_spectrum.html

Starlight

30 Doradus (LMC)

Picture credit: NASA/ESA; Paresci, O'Connell; http://hubblesite.org/gallery/

Mid-/Far-IR Light - Dust Emission

HST

Spitzer

Picture credit: NASA/JPL; N. Flagey; http://photojournal.jpl.nasa.gov/figures

Dust Emission in Andromeda

Dust in Andromeda Galaxy (M31)

NASA / JPL-Caltech / K. Gordon (University of Arizona)

Spitzer Space Telescope • MIPS Visible: NOAO ssc2005-20a

Dust Emission in M82

Picture credit: NASA/JPL; C. Engelbracht et al.

Comparison of galaxy spectral energy distribution

Bremsstrahlung (free-free emission) in Plasma

Free-free emissivity:

$$j_{\rm FF,\nu} = \frac{8}{3} \left(\frac{2\pi}{3}\right)^{1/2} g_{\rm FF,i} \frac{e^6}{m_e^2 c^3} \left(\frac{m_e}{kT}\right)^{1/2} e^{-h\nu/kT} n_e Z_i^2 n_i$$

Radiation in a PDR near a hot star

Picture credit: B. Draine's book (fig. 12.3)

Diffuse X-ray background

ROSAT all-sky X-ray map

red: 0.25 keV; green: 0.75 keV; blue: 1.5 keV (all soft X-rays)

Picture credit: NASA GSFC

Gamma & Cosmic Rays

Cosmic-ray spectrum (> 10 GeV) Gamma rays are emitted by accelerated cosmic rays and high-energy collisions 10 of electrons with ions 10⁻¹ air shower measurements Range: ~ 50MeV - 3 GeV 10⁻³ Flux dΦ/dE_n · E₀ [m⁻² sr⁻¹ s⁻¹] 10⁻⁵ 10-7 Development of cosmic-ray air showers direct measurements 10⁻⁹ Primary particle (e.g. iron nucleus) 10⁻¹¹ ¹⁴N first interaction 10⁻¹³ direct measurements (protons) direct measurements (all particles) 10⁻¹⁵ pion decays air shower data (all particles) pion-nucleus 10⁻¹⁷ 1.1.111 1.1110 1.1.1.000 1 1 1 1 1111 1 1 1 1 1 1 11 interaction 10¹⁰ 10¹¹ 10² 10⁸ 10⁹ 10³ 10⁴ 10⁵ 10^{6} 10^{7} Energy En [GeV] ¹⁴N second interaction Credit: Bluemer et al. (2009) (C) 1999 K. Bernlöhr