
What are the HI community needs for the SKA Regional Centres (SRCs)?

Lourdes Verdes-Montenegro

Instituto de Astrofísica de Andalucía (CSIC) 🕤 📧 csic

Co-chair of the HISWG (together with Sarah Blyth, UCT) **Member AENEAS project & of the SRC Coordination Group**

Blok et al 2015, Picture courtesy B. Koribalski

12th September 2018, The HI/Story of the Nearby Universe (Groningen)

What are the HI community needs for the SKA Regional Centres (SRCs)?

Lourdes Verdes-Montenegro

Instituto de Astrofísica de Andalucía (CSIC) 🕤 🔼

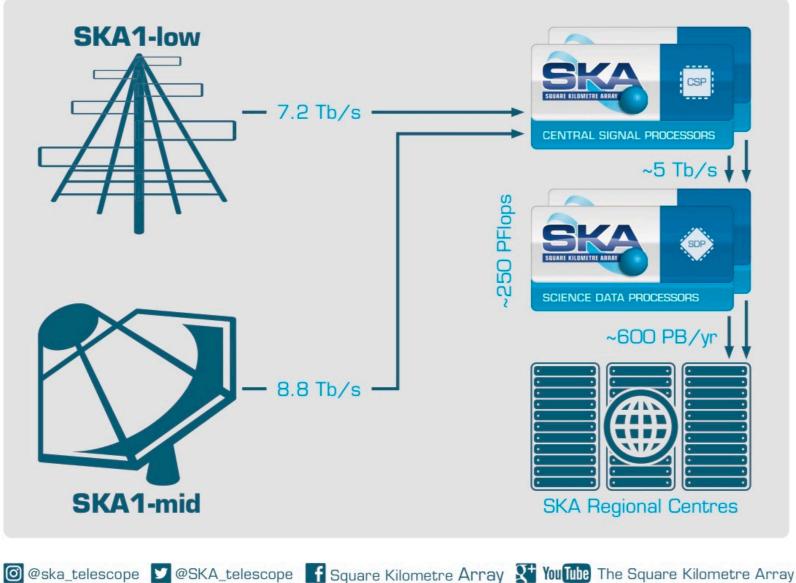
Co-chair of the HISWG (together with Sarah Blyth, UCT) **Member AENEAS project & of the SRC Coordination Group**

Diamond & Bolton, SC17

Blok et al 2015, Picture courtesy B. Koribalski

12th September 2018, The HI/Story of the Nearby Universe (Groningen)

OUTLINE


- SDP, SRCs, AENEAS, SWGs and all these acronyms
- <u>Initial set</u> of processing considerations, data products and associated volumes, formats, and tools: your input is needed!
- As written in my abstract

"The HI/StoryNU workshop seems a right place to present this talk, and hopefully **motivate further discussions** and hence make sure that <u>the needs</u> <u>of the HI community are well integrated within the SRCs early in the</u> <u>process</u>."

The data journey

Basic data products will be produced and stored in Cape Town for SKA1-mid and Perth for SKA1-low. From there, they will be delivered to a global alliance of SKA Regional Centres for further processing and archiving and access by the user community.

New data models will need to be developed as current software packages for radio astronomy data reduction don't have the capabilities to handle the SKA's large bandwidths and Field of View datasets.

The SKA will be:

Distributed

One observatory operating two telescopes on three continents for a global scientific community.

Accessible

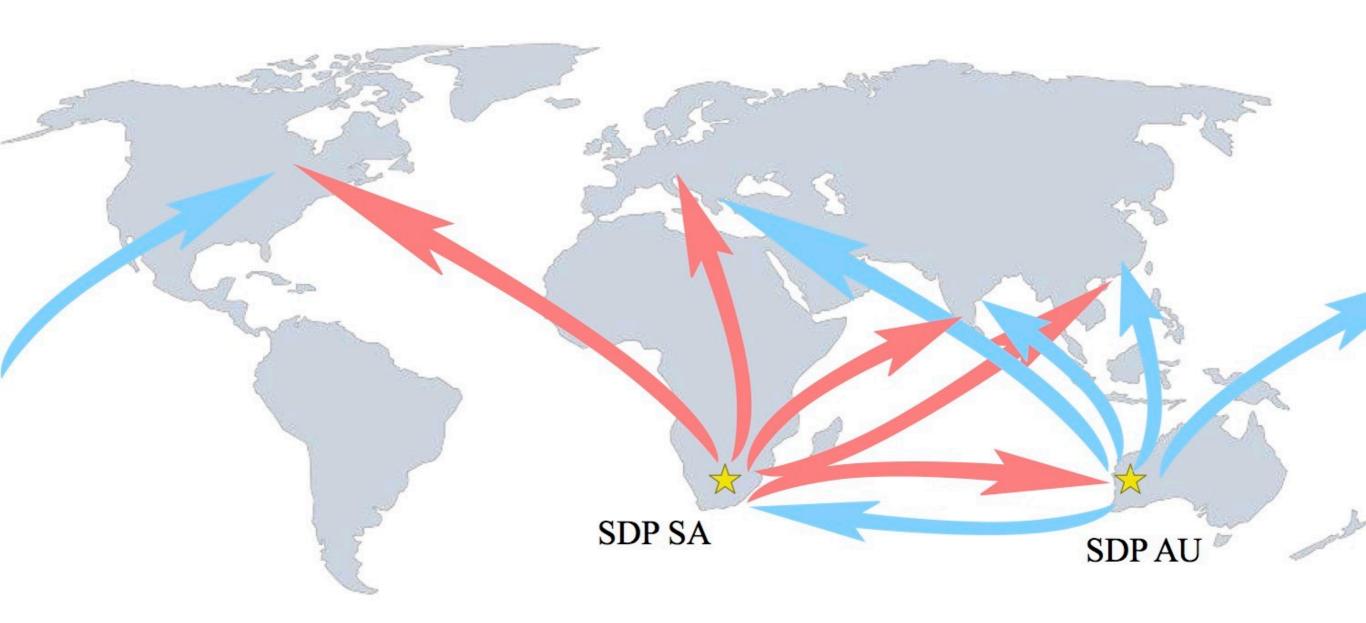
Common software and user interface. Preprogrammed algorithms. Training at the SKA **Regional Centres.**

Open

Open Access to non-proprietary data.

Citizen-ready

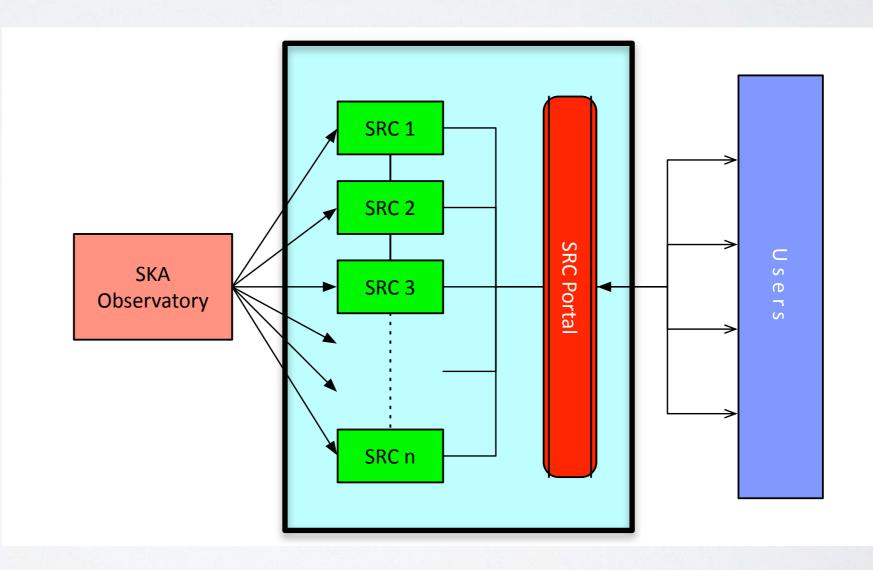
Access to SKA public data for citizen science projects.

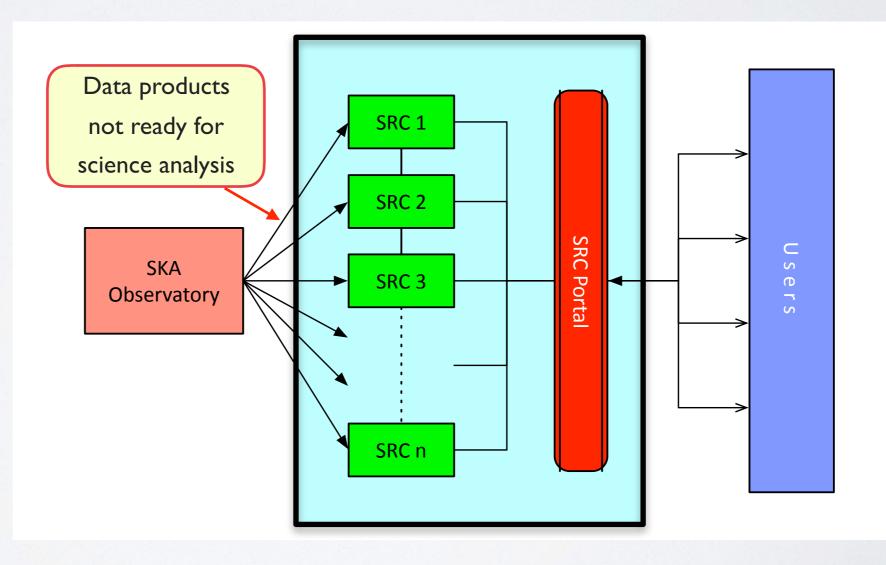


1.2 August 2018

SKA Fact sheets. August 2018. skatelescope.org

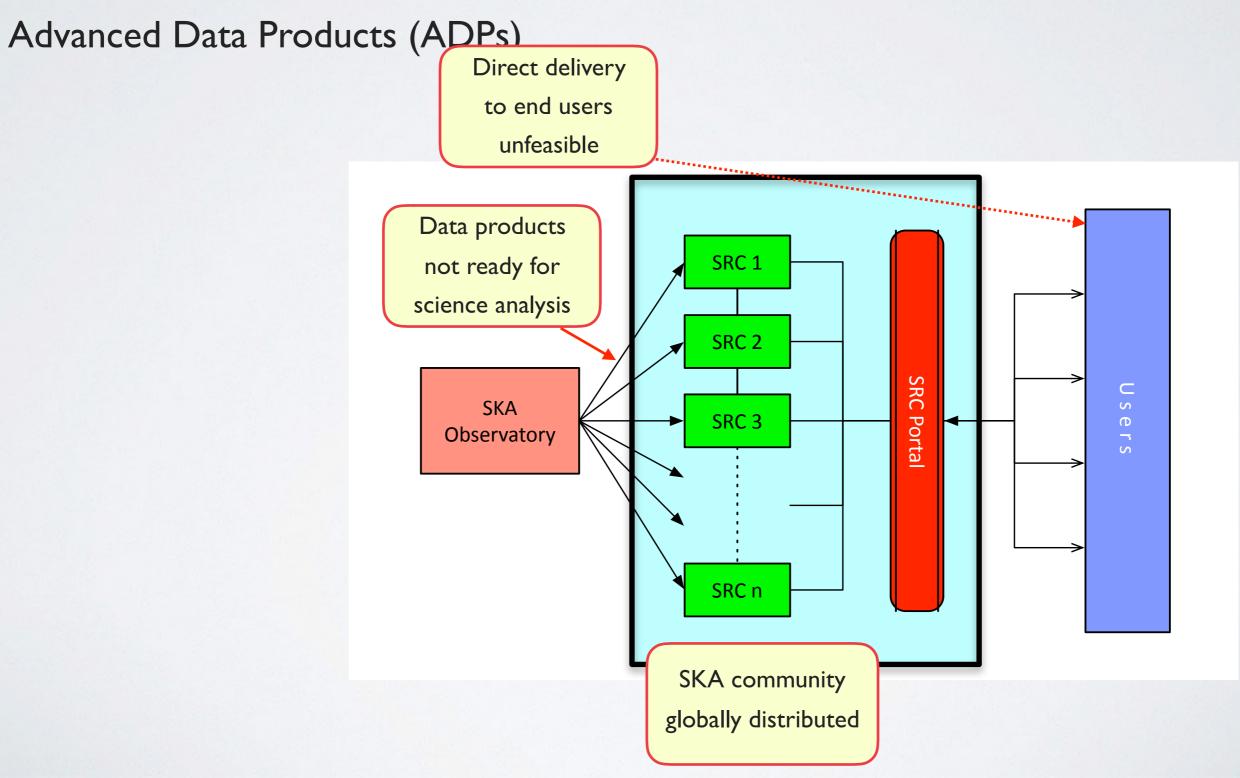
SKA1 Data flow




Observatory Data Products flow from the Science Data Processors in Perth and Cape Town to Science Regional Centres around the globe

J. Wagg. PHISCC 2018

 SRCs will provide access to the SKA community to data products they are authorised to, as well as the tools and processing power to generate and analyse Advanced Data Products (ADPs)


 SRCs will provide access to the SKA community to data products they are authorised to, as well as the tools and processing power to generate and analyse Advanced Data Products (ADPs)

• SRCs will provide access to the SKA community to data products they are authorised to, as well as the tools and processing power to generate and analyse

• SRCs will provide access to the SKA community to data products they are authorised to, as well as the tools and processing power to generate and analyse

 SRCs will provide access to the SKA community to data products they are authorised to, as well as the tools and processing power to generate and analyse Advanced Data Products (ADPs)

Essential functions:

- Provision of a **common platform** to enable the access to SDP Data Products and the creation of ADPs of high science value
- •User support, curation and preservation of SKA and user-generated data products and workflows leading to advanced science data products
- Provision of resources for post-processing analysis and data visualization
 - Provide platform for continued development of software
 - Provide a scientific platform for user to allow innovation in research methodologies
- Application of SKAO data policies and procedures for access to SKA data
- Sharing data products, processing resources and workflows between SRCs
- Supporting VO services and protocols

Design and specification of a distributed, European SKA Regional Centre to support the pan-European astronomical community in achieving the scientific goals of the SKA

Advanced European Network of E-infrastructures for Astronomy with the SKA

eneas

- WP1: Project Management
- WP2: Governance Structure and Business Models
- WP3: Computing and Processing Requirements
- WP4: Data Transport and Optimal European Storage Topologies
- WP5: Data Access and Knowledge Creation
- WP6: User Services

February 28, 2017

EC Horizon 2020 (\in 3 million)

13 countries, 28 partners, SKAO, host countries, e-infrastructures (EGI, GÉANT, RDA), NREN's

Three year project (2017-2019)

Slide courtesy of M. Wise

19

AENEAS Kickoff Meeting

Getting inputs from the SKA scientific community is key (SWGs, FGs)

Processing requirements and technologies?

Interfaces, tools and techniques for analysis?

THE SCIENCE WORKING GROUPS

SKA Science Working Groups & Focus groups

The Science Working Groups (SWGs) and Focus Groups (FGs) are scientific advisory bodies that provide input to the SKA Organisation on issues related to the design, construction, and future operations of the SKA that are likely to affect the Observatory's scientific capability, productivity and user relations. In addition, the FGs have a more specific, technical focus.

If you are interested in participating in any of the groups, please contact the current chairs or corresponding project scientists via the website link below.

- Cosmology
- Cradle of Life
- Epoch of Reionization
- Extragalactic Continuum (galaxies/AGN, galaxy clusters)
- Extragalactic Spectral Line
- HI galaxy science
- High Energy Cosmic Particles (FG)
- Magnetism
- Our Galaxy
- Pulsars
- Solar, Heliospheric & Ionospheric Physics
- Transients
- VLBI (FG)

- @ska_telescope
 @SKA_telescope
- f Square Kilometre Array
- **X⁺** You Tube The Square Kilometre Array

For more, visit

astronomers.skatelescope.org/science-working-groups

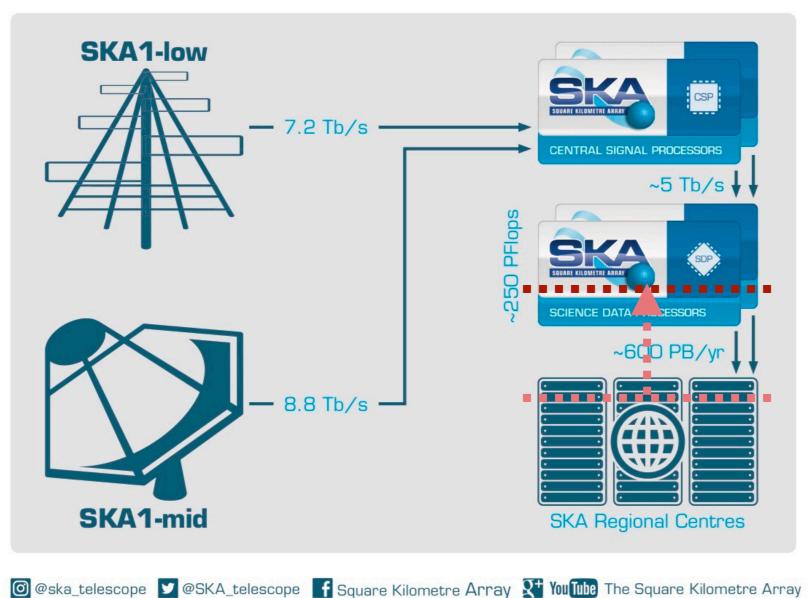
SKAI SCIENCE GOALS. HI SCIENCE

Science Goal	SWG	Objective		SWG Rank	SKA1 SCIENCE PRIORITY OUT	OMES
1	CD/EoR	Physics of the early universe IGM - I. Imaging			SKAI SCIENCE PRIORITI OUT	
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum				
3	CD/EoR	Physics of the early universe IGM - III. HI absorption line spectra (21cm forest)			Document number	SKA-TEL-SKO-
4	Pulsars		r population and MSPs for gravity tests and Gravitational Wave detection	1/3	Context	SC
5	Pulsars		n timing for testing gravity and GW detection	1/3	Revision	
6	Pulsars		ng the pulsar population	2/3	Author R. Braun, T.	
7	Pulsars	-	using (Millisecond) Pulsars in Globular Clusters and External Galaxies	2/3	Date Document Classification	
8	Pulsars Pulsars		ars in the Galactic Centre measurements of pulsars to enable improved tests of GR	2/3 2/3	Status	
10	Pulsars		pulsar beam	3/3		
11	Pulsars		ng pulsars and their environments through their interactions	3/3		
12	Pulsars		Galactic Structure	3/3	2014	100/25
13	HI		kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5	2014	/09/25
14			esolution studies of the ISM in the nearby Universe.	2/5	and the first and an an an and the first and the first and the second states of the second states of the	and the state of the
3		11	Resolved HI kinematics and morphology of		0 M sol mass galaxies out to z~0.8	1/5
4	Ь		High spatial resolution studies of the ISM			2/5
	н					
.5			Multi-resolution mapping studies of the IS	a the first of the bullet of the	i Galaxy	3/5
16		HI absorption studies out to the highest r				4/5
17	H		The gaseous interface and accretion physi		een galaxies and the IGM	5/5
24	Cradle of Life	-	arby (~100 pc) stars for radio emission from technological civilizations.	3/5		
25	Cradle of Life		n of pre-biotic molecules in pre-stellar cores at distance of 100 pc.	4/5		
26	Cradle of Life		the sub-structure and dynamics of nearby clusters using maser emission.	5/5		
27	Magnetism	and the second se	all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5		
28	Magnetism		rigin, maintenance and amplification of magnetic fields at high redshifts - I.	2/5		
29 30	Magnetism		polarised emission in Cosmic Web filaments rigin, maintenance and amplification of magnetic fields at high redshifts - II.	3/5 4/5		
30	Magnetism Magnetism		perties of polarised sources	5/5		
32	Cosmology		on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5		
33	Cosmology		elation functions to probe non-Gaussianity and the matter dipole	2/5		
34	Cosmology		k Universe with a completely new kind of weak lensing survey - in the radio.	3/5		
35	Cosmology		& GR via power spectrum, BAO, redshift-space distortions and topology.	4/5		
36	Cosmology		ergy & general relativity with fore-runner of the 'billion galaxy' survey.	5/5		
37	Continuum		Star formation history of the Universe (SFHU) - I. Non-thermal processes	1/8		
	Continuum	Measure the	Star formation history of the Universe (SFHU) - II. Thermal processes	2/8		
38		Probe the role of black holes in galaxy evolution - I.		3/8		
38 39	Continuum	Probe the role of black holes in galaxy evolution - II.		4/8		
	Continuum Continuum					
39 40 41		Probe cosmi	c rays and magnetic fields in ICM and cosmic filaments.	5/8		
39 40 41 42	Continuum Continuum Continuum	Probe cosmi Study the de	c rays and magnetic fields in ICM and cosmic filaments. tailed astrophysics of star-formation and accretion processes - I.	5/8 6/8		
39 40 41	Continuum Continuum	Probe cosmi Study the de	c rays and magnetic fields in ICM and cosmic filaments. tailed astrophysics of star-formation and accretion processes - I. matter and the high redshift Universe with strong gravitational lensing.	5/8		

provided by the SWG Chairs. The eight different groups of SWG contributions are listed in the Table in an arbitrary sequence.

PREVIOUS RELATED DISCUSSIONS

- 2015 SDP/SWG meeting
- A document was circulated on "Science Data Processor: anticipated data products"
- The HISWG gave comments/requests to the SDP
 - this to be the beginning of further discussions on what could be realistic,
 - Post processing by SWGs will have to be done by computing nodes or centres outside the central processor


Note that:

- This meeting was previous to the decision by the Board (April 2016) confirming its preference for a regional network model for provision of science data
- So now the feedback should have as a starting point the boundary between the SDP and the SRCs

The data journey

Basic data products will be produced and stored in Cape Town for SKA1-mid and Perth for SKA1-low. From there, they will be delivered to a global alliance of SKA Regional Centres for further processing and archiving and access by the user community.

New data models will need to be developed as current software packages for radio astronomy data reduction don't have the capabilities to handle the SKA's large bandwidths and Field of View datasets.

The SKA will be:

Distributed

One observatory operating two telescopes on three continents for a global scientific community.

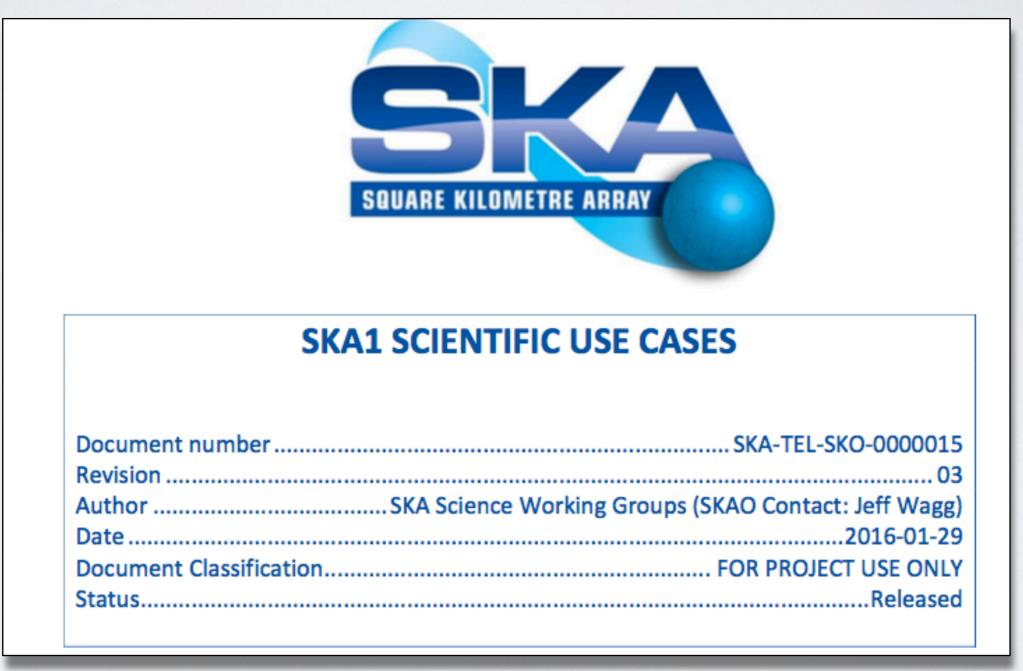
Accessible

Common software and user interface. Preprogrammed algorithms. Training at the SKA **Regional Centres.**

Open

Open Access to non-proprietary data.

Citizen-ready


Access to SKA public data for citizen science projects.

1.2 August 2018

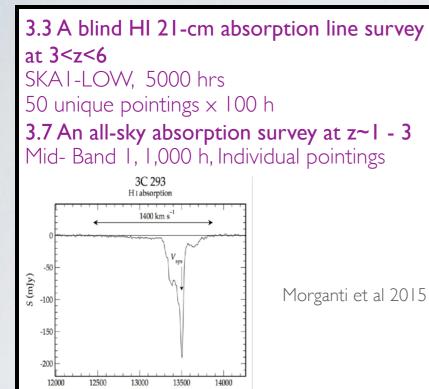
SKA Fact sheets. August 2018. skatelescope.org

• Initial set of requirements extracted from the sample use cases scenarios indicated below (that intended to serve to guide requirements for SKAI design)

January 2016

**SKA-TEL-SKO-0000015_Rev_03_SKA1_SCIENCE_USE_CASES_COMBINED-PART-1-SIGNED.PDF

• Initial set of requirements extracted from the sample use cases scenarios indicated below (that intended to serve to guide requirements for SKAI design)

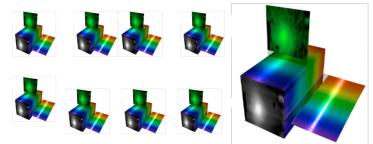

TABLE OF CONTENTS SKA1 SCIENTIFIC USE CASES Document number			
SKA1 SCIENTIFIC USE CASES SKA1 SCIENTIFIC USE CASES Occurrent number SKA TCL SOCIONES Autor SKA TCL SOCIONES Occurrent number SKA TCL SOCIONES SKA TCL SOCIONES OCCURRENTIFIC USE CASES OCCURRENTIFIC USE CASES SCIENTIFIC USE CASES SKA TCL SOCIONES Autor Colspan="2">OCCURRENTIFIC USE CASES OCCURRENTIFIC USE CASES SCIENTIFIC USE CASES			TABLE OF CONTENTS
SKA1 SCIENTIFIC USE CASES SKA1 SCIENTIFIC USE CASES Occurrent number SKA TCL SOCIONES Autor SKA TCL SOCIONES Occurrent number SKA TCL SOCIONES SKA TCL SOCIONES OCCURRENTIFIC USE CASES OCCURRENTIFIC USE CASES SCIENTIFIC USE CASES SKA TCL SOCIONES Autor Colspan="2">OCCURRENTIFIC USE CASES OCCURRENTIFIC USE CASES SCIENTIFIC USE CASES			
SKA1 SCIENTIFIC USE CASES Occurrent number SKA Science Working Groups (SKA) Content: ref Weight 2000) Occurrent Classification SKA Science Working Groups (SKA) Content: ref Weight 2000) Scientific use case examples Scientific u	SQUARE KILOMETRE ARRAY		
SKA1 SCIENTIFIC USE CASES 2 References 7 Decomment number SKA Science Working Groups (SKA0 Contract: Jeff Wage Contract:			•
Document number SXA-TELSED 000015 Author SXA-TELSED 000015 Author SXA-Science Working Groups (SXO Contect: Jeff Weight 000000000000000000000000000000000000		1.2	Scope of the document6
Decement number SKA TEL-SKO 000005 Redulan 1.1 Applicable documents 7 Author SKA Science Working Groups (SKAC contact: jeff warg Date 216:01:30 7 3 Scientific use case examples 8 3.1 A sensitive measurement of the power spectrum of 21cm brightness temperature fluctuations and tomographic cubes during the EoR and the Cosmic Dawn 8 3.2 Global EoR with SKA1-IOW 12 3.3 A blind HI 21-cm absorption line survey at 3 32 3.4 Scientific use Case examples 8 3.3 A blind HI 21-cm absorption line survey at 3 32 3.4 Scientific use Case examples 12 3.5 Deep Galakic and Magellanic HI Survey 24 3.6 Medium-Deep HI Imaging Survey 26 3.7 An all-sky absorption survey at z*1 - 3 33 3.8 Cosmic Web: The extended environment of galaxies and the IGM 26 3.11 High spatial resolution imaging Survey 31 3.12 Probe the role of black holes in galaxy evolution 32 3.11 High spatial resolution imaging of the HI in nearby galaxies 54 3.12 Probe the role o	SKA1 SCIENTIFIC USE CASES	2	References
Decision Soft (Second Working Groups (SSA) Contract. HV second Working Gr		1.1	
Author Sch Seiner Working Groups (SKAD Contact: leff Wage) 3 Scientific use Scientific use case examples 8 3 A sensitive measurement of the power spectrum of 21cm brightness temperature 8 3.1 A sensitive measurement of the power spectrum of 21cm brightness temperature 8 3.2 Global EoR with SKA1-LOW 14 3.3 A blind HI 21-cm absorption line survey at 3 3 3.4 SKA1 All-Sky HI Survey 24 3.5 Deep Galactic and Magellanic HI Survey 24 3.6 Medium-Deep HI Imaging Survey 24 3.7 An all-sky absorption survey at 2*1 - 3 37 3.8 Cosmic Web: The extended environment of galaxies and the IGM 42 3.9 Deep HI Imaging Survey 46 3.10 Medium-Wide HI Imaging Survey 46 3.11 High spatial resolution imaging of the HI in nearby galaxies 56 3.11 High spatial resolution imaging of the HI in nearby galaxies 56 3.11 High spatial resolution imaging of the HI in nearby galaxies 56 3.11 High spatial resolution imaging of the HI in nearby galaxies 56 3	Revision	KO-0000015	
Decrement Classification FOR PROJECT USE ONLY 3 Scientific use case examples 8 3.1 A sensitive measurement of the power spectrum of 21cm brightness temperature 8 3.2 Global EoR with SKA1-LOW 14 3.3 A blind HI 21-cm absorption line survey at 3 <z<6 (200="" 350="" mhz)="" ska1-low<="" td="" using="" –=""> 19 3.4 SKA1 All-Sky HI Survey 24 3.5 Deep Galactic and Magellanic HI Survey 24 3.6 Medium-Deep HI Imaging Survey 24 3.7 An all-sky absorption survey at 2*1 - 3 37 3.8 Cosmic Web: The extended environment of galaxies and the IGM 42 3.9 Deep HI Imaging Survey 46 3.10 Medium-Wide HI Imaging Survey 50 3.11 High spatial resolution imaging of the HI in nearby galaxies 50 3.12 Probe the role of black holes in galaxy evolution 50 3.13 Radio mode feedback in clusters of galaxies 55 3.1</z<6>	Author SKA Science Working Groups (SKAO Contact	:: Jeff Wagg)	
3.1 A sensitive measurement of the power spectrum of 21cm brightness temperature fluctuations and tomographic cubes during the EoR and the Cosmic Dawn 8 3.2 Global EoR with SKA1-LOW 14 3.3 A blind HI 21-cm absorption line survey at 3 <z<6 (200="" -="" 350="" mhz)="" ska1-low<="" td="" using=""> 19 3.4 SKA1 All-Sky HI Survey 24 3.5 Deep Galactic and Magellanic HI Survey 28 3.6 Medium-Deep HI Imaging Survey 28 3.6 Medium-Deep HI Imaging Survey 32 3.7 An all-sky absorption survey at z*1 - 3 37 3.8 Cosmic Web: The extended environment of galaxies and the IGM 42 3.9 Deep HI Imaging Survey 46 3.10 Medium-Wide HI Imaging Survey 50 3.11 High spatial resolution imaging of the HI in nearby galaxies 54 3.12 Probe the role of black holes in galaxy evolution 60 3.13 Radio mode feedback in clusters of galaxies 65 3.14 SKA Low Multi-tiered Continuum Survey 71 3.15 Probing the evolution of non-thermal components in Galaxy Clusters 75 3.16 Studying AGN in TGSS Fields with SKA1-MID 84</z<6>	Document Classification FOR PROJEC	T USE ONLY 3	Scientific use case examples8
3.2Global EoR with SKA1-LOW	Status	Released 3.1	A sensitive measurement of the power spectrum of 21cm brightness temperature
3.3A blind HI 21-cm absorption line survey at 3<2<6 (200 – 350 MHz) using SKA1-LOW			fluctuations and tomographic cubes during the EoR and the Cosmic Dawn
3.4SKA1 All-Sky HI Survey243.5Deep Galactic and Magellanic HI Survey283.6Medium-Deep HI Imaging Survey323.7An all-sky absorption survey at z~1 - 3373.8Cosmic Web: The extended environment of galaxies and the IGM423.9Deep HI Imaging Survey463.10Medium-Wide HI Imaging Survey503.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589		3.2	Global EoR with SKA1-LOW14
These are not real (Key) Science projects3.5Deep Galactic and Magellanic HI Survey283.6Medium-Deep HI Imaging Survey323.7An all-sky absorption survey at z~1 - 3373.8Cosmic Web: The extended environment of galaxies and the IGM423.9Deep HI Imaging Survey463.10Medium-Wide HI Imaging Survey503.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589		3.3	A blind HI 21-cm absorption line survey at 3 <z<6 (200="" 19<="" 350="" mhz)="" ska1-low="" td="" using="" –=""></z<6>
Science projects3.6Medium-Deep HI Imaging Survey3.23.7An all-sky absorption survey at z~1 - 33.73.8Cosmic Web: The extended environment of galaxies and the IGM423.9Deep HI Imaging Survey463.10Medium-Wide HI Imaging Survey503.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589		3.4	SKA1 All-Sky HI Survey24
Science projects3.6Medium-Deep HI Imaging Survey3.23.7An all-sky absorption survey at z~1 - 33.73.8Cosmic Web: The extended environment of galaxies and the IGM423.9Deep HI Imaging Survey463.10Medium-Wide HI Imaging Survey503.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589		3.5	Deep Galactic and Magellanic HI Survey28
Science projects3.7An all-sky absorption survey at z~1 - 3		3.6	Medium-Deep HI Imaging Survey
3.8Cosmic Web: The extended environment of galaxies and the IGM423.9Deep HI Imaging Survey463.10Medium-Wide HI Imaging Survey503.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589	These are not	3.7	
3.10Medium-Wide HI Imaging Survey50Science projects3.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589		3.8	
3.10Medium-Wide HI Imaging Survey50Science projects3.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589	roal (Kay)	3.9	Deep HI Imaging Survey
Science projects3.11High spatial resolution imaging of the HI in nearby galaxies543.12Probe the role of black holes in galaxy evolution603.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589	rear (Ney)	3.10	
SCIENCE Projects 3.12 Probe the role of black holes in galaxy evolution 60 3.13 Radio mode feedback in clusters of galaxies 65 3.14 SKA Low Multi-tiered Continuum Survey 71 3.15 Probing the evolution of non-thermal components in Galaxy Clusters 75 3.16 Studying AGN in TGSS Fields with SKA1-MID 80 3.17 An all sky survey across the SKA1-LOW 84 3.18 Extended diffuse radio sources in galaxy clusters with SKA1-MID band 5 89	c ·	3.11	
3.13Radio mode feedback in clusters of galaxies653.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589	Science projects		
3.14SKA Low Multi-tiered Continuum Survey713.15Probing the evolution of non-thermal components in Galaxy Clusters753.16Studying AGN in TGSS Fields with SKA1-MID803.17An all sky survey across the SKA1-LOW843.18Extended diffuse radio sources in galaxy clusters with SKA1-MID band 589			
3.15 Probing the evolution of non-thermal components in Galaxy Clusters			-
3.16 Studying AGN in TGSS Fields with SKA1-MID			•
3.17 An all sky survey across the SKA1-LOW			•
3.18 Extended diffuse radio sources in galaxy clusters with SKA1-MID band 5			
			• •

**SKA-TEL-SKO-0000015_Rev_03_SKA1_SCIENCE_USE_CASES_COMBINED-PART-1-SIGNED.PDF

				DATA ANALYSIS	
3.4	SKA1 All-Sky HI S	Survey		Procedures required	RFI mitigation, flagging, calibration, continuum subtraction, widefield imaging, mosaicing, source-finding and source parameterisation
PRO	JECT DETAILS				Likely processing issues:
Title		SKA1 All-Sky H	l Survey	Processing	Large data volumes
Prine	cipal Investigator	Oort	-	considerations	 Widefield images with non-coplanar baselines
Co-A	Authors	HI-Galaxy SWG	ì		 Accurate primary beam for mosaicing
Time	e Request	10,000 hrs			Flagging of RFI
FACI	ILITY	Preconditions			Requirement to search cubes multiple times (source
					detection).
	SKA1-LOW				 Requirement to stack at a given set of coordinates Stokes I data cubes; image cut-outs; spectra; minicubes;
?				Data products	catalogues
	SKA1-MID				Collect visibilities on multiple days
				Pipeline	Apply barycentric correction
REC	EIVER(S) REQUIRED		Time (hrs)		Apply flagging
	SKA1-LOW				Calibrate visibilities
	SKA1-MID Band 1				Peel strong continuum sources
2	SKA1-MID Band 2		10,000		 Subtract remaining continuum sources using global sky model
	SKA1-MID Band 3				 Make daily cubes at multiple resolutions for each pointing
	SKA1-MID Band 4				 Combine cubes (and beams) for individual pointings in
	SKA1-MID Band 5				the image domain
					Residual polynomial continuum subtraction in image
OPE	RATIONAL MODE		Details		domain
(as d	lefined in Concept-of-	Operations)			 Linear mosaicking of multiple fields, followed by cutouts
?	Normal		Mosaic observations		 In RA, Dec, Freq Multiscale deconvolution of strongest sources
	Fixed schedule (give cadence)			Quality assessment plan & cadence	Inspect RFI occupancy plots
	Time-critical override				 Examine rms and histogram of pixel values in daily cubes.
	Custom Experiment				 Compare flux densities of known sources in daily cubes.
?			Continuum, polarisation, co	Latency (Desired time lag between	On completion of observations and data reduction
	Collaborative & Coordinated		Latency		
	Sub-arrays required			This sould as a from the four control of	
	This document was prepared			This could range from 'a few seconds' for transient detections using the fast imaging pipeline, to 'usion completion of scheduling block and pipeline	
when only the SDP "existed"			"existed"	reduction' (approximately 24 hours), to 'at completion of the full project'.)	

-	_		_
	_		
	1	~	
		n	
	_	.	

HI absorption studies out to the highest redshifts.


HI

• RFI mitigation and flagging

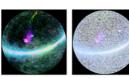
 $V_{\rm hel} \,({\rm km \, s}^{-1})$

- Gain calibration
- Generate continuum visibility dataset
- Generate continuum image
- Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset
- Subtract continuum from the line dataset
- Doppler correct (CVEL) line dataset
- Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution
- Deconvolve channels with line detections, if needed.

Calibrated continuum and spectral line visibilities to be **combined with the data from other observing runs** to generate `final' stokes-I spectral-line cube(s). 3.4 SKA1 All-Sky HI Survey
3.6 Medium-Deep HI Imaging Survey
3.9 Deep HI Imaging Survey
3.10 Medium-Wide HI Imaging Survey
Mid-Band 2, Mid- Band 1 × 310,000 h, 2,000 h, 3000 h, 2000h
Mosaic observations, 20,000 targets, One deep field, Single pointing

- Collect visibilities on multiple days
- Apply barycentric correction
- Apply flagging
- Calibrate visibilities
- Peel strong continuum sources
- Subtract remaining continuum sources using global sky model / Polynomial continuum subtraction
- Daily cubes at **multiple resolutions** for each pointing (will SDP produce the required number?)
- **Combine cubes** (and beams) for individual pointings in the image domain
- Residual cont. subtraction in image domain
- Multiscale deconv. of strongest sources
- Residual polynomial continuum subtraction in image domain
- Linear mosaicking of multiple fields, followed by cutouts in RA, Dec, Freq

3.5 Deep Galactic and Magellanic HI Survey


Mid- Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets

3.8 Cosmic Web: The extended

environment of galaxies and the IGM Mid- Band 2, 100 h, Individual pointings with multiple objects

3.11 High spatial resolution imaging of the HI in nearby galaxies

Mid-Band 2, 300 h, multiple fields of view

McClure-Griffiths et al 2015 Agertz, Teyssier, Moore 2009

- Calibration, flagging, imaging
- Combination of spectral line data cubes from different observing runs
- Gridding the UV data so that new data can be combined in this grid as it is observed.

13	13 <i>HI</i> Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8				
3.3 A blind HI 21-cm absorption line survey at 3 <z<6 SKAI-LOW, 5000 hrs 50 unique pointings × 100 h 3.7 An all-sky absorption survey at z~I - 3 Mid- Band I, I,000 h, Individual pointings 3C 293Hilabsorption 400 km s^{-1}Morganti et al 2015</z<6 			 3.4 SKAI All-Sky HI Survey 3.6 Medium-Deep HI Imaging Survey 3.9 Deep HI Imaging Survey 3.10 Medium-Wide HI Imaging Survey Mid-Band 2, Mid- Band 1 × 310,000 h, 2,000 h, 3000 h, 2000h Mosaic observations, 20,000 targets, One deep field, Single pointing Imaging Imaging Im	 3.5 Deep Galactic and Magellanic HI Survey Mid- Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets 3.8 Cosmic VVeb: The extended environment of galaxies and the IGM Mid- Band 2, 100 h, Individual pointings with multiple objects 3.11 High spatial resolution imaging of the HI in nearby galaxies Mid- Band 2, 300 h, multiple fields of view Mid- Band 2, 300 h, multiple fields of view 	
 RFI mitigation and flagging Gain calibration Generate continuum visibility dataset Generate continuum image Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset Subtract continuum from the line dataset Doppler correct (CVEL) line dataset Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution Deconvolve channels with line detections, if needed. 		tions and ons to the line dataset dataset e cube for full e detections, if ral line he data from	 Combine cubes (and beams) for individual pointings in the image domain Residual cont. subtraction in image domain Multiscale deconv. of strongest sources Residual polynomial continuum subtraction 	 Calibration, flagging, imaging Combination of spectral line data cubes from different observing runs Gridding the UV data so that new data can be combined in this grid as it is observed. BIPELINES 	
stokes-I spec	tral-line cube(s).		 in image domain Linear mosaicking of multiple fields, followed by cutouts in RA, Dec, Freq 		

15	HI	Multi-reso	olution mapping studies of the ISM in our G	Galaxy
3.3 A blind HI 21-cm absorption line survey at 3 <z<6 SKAI-LOW, 5000 hrs 50 unique pointings \times 100 h 3.7 An all-sky absorption survey at z~I - 3 Mid- Band I, I,000 h, Individual pointings $\int_{Habsorption}^{3C293}$Hidokms⁻¹ Hubsorption $\int_{1400 \text{ km s}^{-1}}^{400 \text{ km s}^{-1}}$Morganti et al 2015</z<6 			 3.4 SKAI All-Sky HI Survey 3.6 Medium-Deep HI Imaging Survey 3.9 Deep HI Imaging Survey 3.10 Medium-Wide HI Imaging Survey Mid-Band 2, Mid- Band 1 x 310,000 h, 2,000 h, 3000 h, 2000h Mosaic observations, 20,000 targets, One deep field, Single pointing Imaging Imaging Im	 3.5 Deep Galactic and Magellanic HI Survey Mid- Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets 3.8 Cosmic Veb: The extended environment of galaxies and the IGM Mid- Band 2, 100 h, Individual pointings with multiple objects 3.11 High spatial resolution imaging of the HI in nearby galaxies Mid- Band 2, 300 h, multiple fields of view
 RFI mitigation and flagging Gain calibration Generate continuum visibility dataset Generate continuum image Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset Subtract continuum from the line dataset Doppler correct (CVEL) line dataset Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution Deconvolve channels with line detections, if needed. Calibrated continuum and spectral line visibilities to be combined with the data from other observing runs to generate `final' stokes-I spectral-line cube(s).		ions and ns to the ine dataset ataset cube for full detections, if al line he data from	 Collect visibilities on multiple days Apply barycentric correction Apply flagging Calibrate visibilities Peel strong continuum sources Subtract remaining continuum sources using global sky model / Polynomial continuum subtraction Daily cubes at multiple resolutions for each pointing (will SDP produce the required number?) Combine cubes (and beams) for individual pointings in the image domain Residual cont. subtraction in image domain Multiscale deconv. of strongest sources Residual polynomial continuum subtraction in image domain 	 Calibration, flagging, imaging Combination of spectral line data cubes from different observing runs Gridding the UV data so that new data can be combined in this grid as it is observed. BIPELINES
			Linear mosaicking of multiple fields, followed by cutouts in RA, Dec, Freq	Inputs!

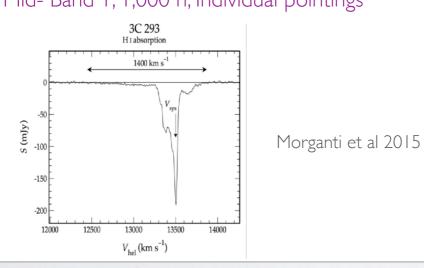
17	HI	The gaseou	is interface and accretion physics between	galaxies and the IGM
at 3 <z<6 SKAI-LOVV, 50 unique pe 3.7 An all-sk Mid- Band I</z<6 	ointings × 100 h cy absorption survey , 1,000 h, Individual p ^{3C 293} ^{1400 km s⁻¹}	y at z∼l - 3	 3.4 SKA1 All-Sky HI Survey 3.6 Medium-Deep HI Imaging Survey 3.9 Deep HI Imaging Survey 3.10 Medium-Wide HI Imaging Survey Mid-Band 2, Mid- Band 1 x 310,000 h, 2,000 h, 3000 h, 2000h Mosaic observations, 20,000 targets, One deep field, Single pointing Imaging Imaging Im	 3.5 Deep Galactic and Magellanic HI Survey Mid- Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets 3.8 Cosmic Web: The extended environment of galaxies and the IGM Mid- Band 2, 100 h, Individual pointings with multiple objects 3.11 High spatial resolution imaging of the HI in nearby galaxies Mid- Band 2, 300 h, multiple fields of view
 RFI mitigation and flagging Gain calibration Generate continuum visibility dataset Generate continuum image Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset Subtract continuum from the line dataset Doppler correct (CVEL) line dataset Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution Deconvolve channels with line detections, if needed. 		tions and ons to the line dataset dataset e cube for full e detections, if ral line the data from	 Collect visibilities on multiple days Apply barycentric correction Apply flagging Calibrate visibilities Peel strong continuum sources Subtract remaining continuum sources using global sky model / Polynomial continuum subtraction Daily cubes at multiple resolutions for each pointing (will SDP produce the required number?) Combine cubes (and beams) for individual pointings in the image domain Residual cont. subtraction in image domain Multiscale deconv. of strongest sources Residual polynomial continuum subtraction 	 Calibration, flagging, imaging Combination of spectral line data cubes from different observing runs Gridding the UV data so that new data can be combined in this grid as it is observed. BIPELINES
stokes-I spec	ctral-line cube(s).		 in image domain Linear mosaicking of multiple fields, followed by cutouts in RA, Dec, Freq 	

14	HI	High spa	tial resolution studies of the ISM in the nea	arby Universe.
at 3 <z<6 SKA1-LOW, 50 50 unique point 3.7 An all-sky at</z<6 	ings × 100 h psorption survey at 000 h, Individual poir s ¹ y ₃₅ Morgan	: z∼l - 3	 3.4 SKAI All-Sky HI Survey 3.6 Medium-Deep HI Imaging Survey 3.9 Deep HI Imaging Survey 3.10 Medium-Wide HI Imaging Survey Mid-Band 2, Mid- Band 1 × 310,000 h, 2,000 h, 3000 h, 2000h Mosaic observations, 20,000 targets, One deep field, Single pointing Imaging Imaging Im	 3.5 Deep Galactic and Magellanic HI Survey Mid- Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets 3.8 Cosmic Web: The extended environment of galaxies and the IGM Mid- Band 2, 100 h, Individual pointings with multiple objects 3.11 High spatial resolution imaging of the HI in nearby galaxies Mid- Band 2, 300 h, multiple fields of view Imaginal Content of the spatial cont
 RFI mitigation and flagging Gain calibration Generate continuum visibility dataset Generate continuum image Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset Subtract continuum from the line dataset Doppler correct (CVEL) line dataset Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution Deconvolve channels with line detections, if needed. 		ns and to the e dataset aset ube for full etections, if	 Collect visibilities on multiple days Apply barycentric correction Apply flagging Calibrate visibilities Peel strong continuum sources Subtract remaining continuum sources using global sky model / Polynomial continuum subtraction Daily cubes at multiple resolutions for each pointing (will SDP produce the required number?) Combine cubes (and beams) for individual pointings in the image domain 	 Calibration, flagging, imaging Combination of spectral line data cubes from different observing runs Gridding the UV data so that new data can be combined in this grid as it is observed.
visibilities to be	nuum and spectral combined with the g runs to generate ` -line cube(s).	data from	 Residual cont. subtraction in image domain Multiscale deconv. of strongest sources Residual polynomial continuum subtraction in image domain Linear mosaicking of multiple fields, followed by cutouts in RA, Dec, Freq 	PIPELINES Inputs

14 <i>HI</i> High spat	tial resolution studies of the ISM in the nea	arby Universe.
SKAI-LOW, 5000 hrs 50 unique pointings × 100 h 3.7 An all-sky absorption survey at z~1 - 3 Mid- Band I, I,000 h, Individual pointings 3C 293 HIADSORPTION HIADSORPTION Morganti et al 2015	global sky model / subtraction	correction uum sources continuum sources using Polynomial continuum
 RFI mitigation and flagging Gain calibration Generate continuum visibility dataset Generate continuum image Apply the self-calibration solutions and direction-dependent corrections to the spectral line visibility dataset Subtract continuum from the line dataset Doppler correct (CVEL) line dataset Generate stokes-I spectral-line cube for full FoV at 4.6 kHz resolution Deconvolve channels with line detections, if needed. 	 Collect visibil Apply baryce Apply flaggin Calibrate visi Peel strong c Subtract rem global sky me subtraction Daily cubes a pointing (will number?) pointing (will number?) pointing (will number?) pointing (will number?) 	raction in image domain of strongest sources al continuum subtraction in of multiple fields, followed
visibilities to be combined with the data from other observing runs to generate `final' stokes-I spectral-line cube(s).	 Multiscale deconv. of strongest sources Residual polynomial continuum subtraction in image domain 	PIPELINES
	 Linear mosaicking of multiple fields, iollowed by cutouts in RA, Dec, Freq 	Inputs!

PROCEDURES REQUIRED

PROCESSING CONSIDERATIONS


DATA PRODUCTS

3.3 A blind HI 21-cm absorption line survey at 3<z<6

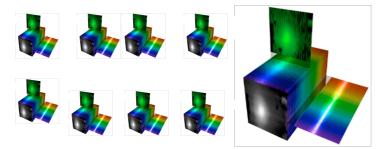
SKAI-LOW, 5000 hrs

50 unique pointings \times 100 h

3.7 An all-sky absorption survey at $z \sim 1 - 3$ Mid-Band I, I,000 h, Individual pointings

Procedures required, not in the SDP

Processing considerations


Reprocessing of calibrated visibilities

Data products

- Stokes I continuum visibility datasets and images at 225, 275 and 325 MHz
- Stokes I spectral-line cube over 200 350 MHz with 4 kHz resolution
- Cubelets and spectra towards all the sources brighter than 10 mJy in the FoV along with the RFI flags applied to the data.

Continuum source and spectral line catalogs Continuum image with 30% bandwidth centered at 600 MHz. This will be used to check the total flux density of the background source which should further be logged in a public database for future sky-model **referenc**e

3.4 SKAT All-Sky HI Survey 3.6 Medium-Deep HI Imaging Survey 3.9 Deep HI Imaging Survey 3.10 Medium-Wide HI Imaging Survey Mid-Band 2, Mid-Band 1 x 310,000 h, 2,000 h, 3000 h, 2000h Mosaic observations, 20,000 targets, One deep field, Single pointing

Procedures required, not in the SDP

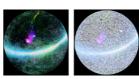
- source-finding and source parameterisation
- data combination to created integrated deep cube (uv and image domain)

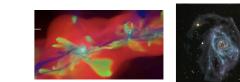
Processing considerations

Large data volumes, search cube multiple times (source detection), stacking

Data products

- Stokes I data cubes
- Calibrated, imaged, continuum subtracted datacubes
- image cut-outs
- spectra
- minicubes
- catalogues
- moment maps
- masks used to make moment maps
- signal-to-noise maps


3.5 Deep Galactic and Magellanic HI Survey


Mid-Band 2, 4,500 h, Maps through multiple fields of view, 1,200 targets

3.8 Cosmic Web: The extended environment of galaxies and the IGM Mid-Band 2, 100 h, Individual pointings with multiple objects

3.11 High spatial resolution imaging of the HI in nearby galaxies

Mid-Band 2, 300 h, multiple fields of view

McClure-Griffiths et al 2015 Agertz, Teyssier, Moore 2009

Procedures required, not in the SDP

- Image cubes at multiple resolutions (will SDP produce the required number?).
- Addition of single dish data for imaging.
- joint deconvolution of mosaic;
- Multi-scale deconvolution;
- Addition of single-dish data for imaging

Processing considerations

Large data volumes due to full spectral resolution?

Data products

- Fully calibrated I, Q, U and V cubes at full spectral resolution
- Image cubes, moment maps, images of the PS
- Data cubes, Total HI image, velocity field, velocity dispersion map. At various resol.
- masks used to make moment maps
- signal-to-noise maps

3.3 A blind HI 21-cm absorption line survey	3.4 SKAT All-Sky HI Survey	3.5 Deep Galactic and Magellanic HI
at 3 <z<6 SKAI-LOW, 5000 hrs</z<6 	3.6 Medium-Deep 3.9 Deep HI Imagi	required, not in the SDP
50 unique pointings x 100 h 3.7 An all-sky absorption survey at z~1 - 3 Mid- Band 1, 1,000 h, Individual pointings	3.10 Medium-Vid • SOUrce-fin Mid-Band 2, Mid- Ba 3000 h, 2000h	ding and source parameterisation pination to created integrated deep
$3C 293$ H i absorption $0 = \underbrace{1400 \text{ km s}^{-1}}_{V_{\text{mod}}} \underbrace{1}_{V_{\text{mod}}} \underbrace$	Mosaic observation: Cube (UV a 20,000 targets, One Processing	and image domain) considerations volumes, search cube multiple times
-1001		ection), stacking
$\begin{array}{c} -200 \begin{bmatrix} -& & & & & \\ -& & & & & \\ 12000 & 12500 & 13000 & 13500 & 14000 \\ & & & V_{hel} (\mathrm{km s}^{-1}) \end{array}$	Data produ	
Procedures required, not in the SDP	0	ata cubes d, imaged, continuum subtracted
Processing considerations Reprocessing of calibrated visibilities	data combination deep cube (uv ar	
 Data products Stokes I continuum visibility datasets and images at 225, 275 and 325 MHz 	Processing conside Large data volumes (source detection), • image cut	-outs
 Stokes I spectral-line cube over 200 – 350 MHz with 4 kHz resolution 	Data productsSpectraminicubes	
Cubelets and spectra towards all the sources brighter than 10 mJy in the FoV	 Stokes I data cub Calibrated, image Catalogues 	
along with the RFI flags applied to the data. ——–– Continuum source and spectral line catalogs	• moment r	maps ed to make moment maps
Continuum image with 30% bandwidth centered at 600 MHz. This will be used to	 image cut-outs spectra minicubes masks use signal-to-i 	
check the total flux density of the background source which should further be logged in a	cataloguesmoment maps	
public database for future sky-model reference	 masks used to m signal-to-noise maps 	Signal-co-noise maps Inputs

MAIN CHARACTERISTICS OF THE DATA PRODUCTS

- Volumes:

- SKAIMID, Band 2: Discovery cube size 2.6Pbytes. HI science a fraction down to 1/10 of the max. Extracted data products at least 10 times smaller (moment maps, pos.vel cuts, spectra)
- continuum data products or spectral postage stamp cubes would be orders of magnitude smaller than the discovery cube
- Data storage and compute access for reducing and calibrating data can be an issue (feedback from PHISCC 2018)

- Formats:

- ongoing work by ICRAR-IT on the jp2 and jpx formats could feed perfectly into the requirements of efficiently extracting sub-cubes of various resolutions from a huge master cube.

- ...

- Metadata:

- E.g. for spectra, description of the parameters that went into making them, like the size of the extraction region.

Inputs!

POTENTIAL SOFTWARE TO INTEGRATE IN THE SRCs SCIENCE PLATFORM

- Developed by precursors/pathfinders, KSPs, etc:
 - Analysis, e.g. SoFiA, TiRiFiC, GalAPAGOS, GIPSY/GuiPSY, 2DBAT, FAT, MAGMO, Barolo, GBKFit, CASA, etc (TBD)
 - Visualization: e.g SlicerAstro, VISIONS, X3D
- Interaction/connection with the VO (e.g. in order to request complementary data or input data for modeling;)

POTENTIAL SOFTWARE TO INTEGRATE IN THE SRCs

SCIENCE PLATFORM

- Developed by precursors/pathfinders, KSPs, etc:
 - Analysis, e.g. SoFiA, TiRiFiC, GalAPAGOS, GIPSY/GuiPSY, 2DBAT, FAT, MAGMO, Barolo, GBKFit, CASA, etc (TBD)
 - Visualization: e.g SlicerAstro, VISIONS, X3D
- Interaction/connection with the VO (e.g. in order to request complementary data or input data for modeling;)

GUIpsy a VO compliant tool for the kinematical modelling of HI datacubes Sánchez-Exposito, S.; Ruiz, J.E.; Vogelaar, M.G.R; Terlouw, J.P.; Verdes-Montenegro, L.; Santander-Vela, J.D.; van der Hulst, J.M; Garrido, J. 3GC4: HI Fidelity, 28th October, 2016. Port Alfred, South Africa

OPEN SCIENCE AT THE SRCs

- SKA data exploitation through a platform that **facilitates**:
 - collaboration among international teams in order to extract the maximum scientific knowledge
 - data sharing + re-use & re-purposing of the analysis tools
 - the accuracy and the **reproducibility of our scientific methods**

OPEN SCIENCE AT THE SRCs

- SKA data exploitation through a platform that facilitates:
 - collaboration among international teams in order to extract the maximum scientific knowledge
 - data sharing + re-use & re-purposing of the analysis tools
 - the accuracy and the reproducibility of our scientific methods

OPEN SCIENCE AT THE SRCs

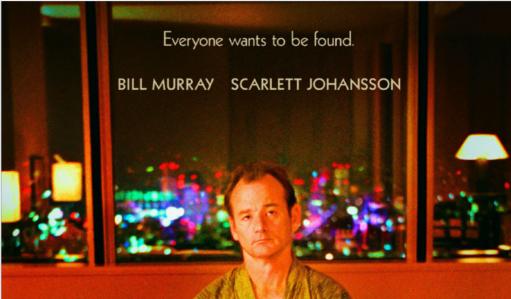
- SKA data exploitation through a platform that **facilitates**:
 - collaboration among international teams in order to extract the maximum scientific knowledge
 - data sharing + re-use & re-purposing of the analysis tools
 - the accuracy and the **reproducibility of our scientific methods**

	SQUARE KILOMETRE ARRAY
5	SKA REGIONAL CENTRE REQUIREMENTS

- (REQ) Open Access: enabling users to provide public links to SKA science data products in their research publications.
- (REQ) Reproducibility: saving the complete workflow and provenance associated with any ADP*, in such a way that they can be queried, viewed and the associated workflows can be re-used to create new ADPs.
- (Goal) Advanced data product re-generation: Preserving the software environment associated with the provenance and workflow of an ADP that is required to re-execute the workflow

*ADP = Advanced Data Product

- Other items/feedback:


- Interested in reuse of SDP pipelines in the SRCs (e.g imaging with different parameters)
- Commensality?
- Will need flexibility to adapt the processing strategy once the precursors/ pathfinders are underway
- Get details on the computing systems already envisaged at this stage
- Best QA metrics to be using? (Feedback from PHISCC 2018)

(MY) CONCLUSIONS

In order to allow mutual feedback between astronomers/SWGs and SRCs designers there is something we should avoid:

(MY) CONCLUSIONS

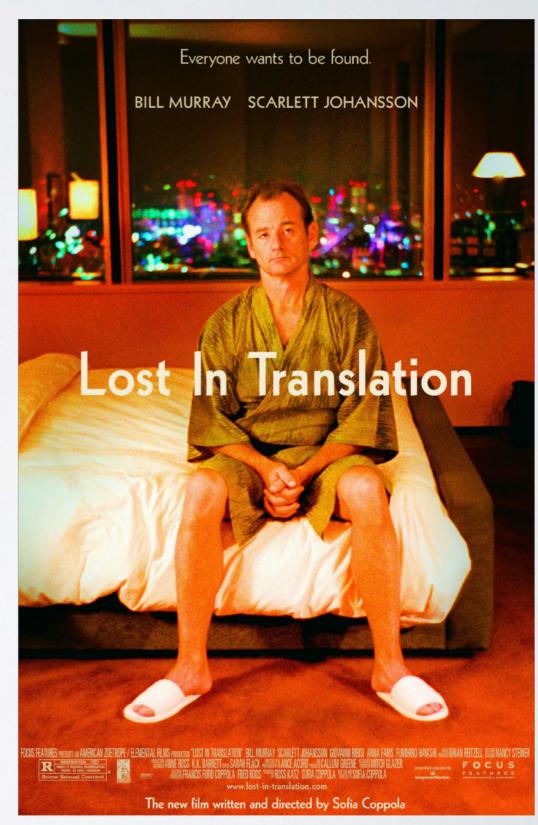
In order to allow mutual feedback between astronomers/SWGs and SRCs designers there is something we should avoid:

Lost In Translation

The new film written and directed by Sofia Coppola

(MY) CONCLUSIONS

In order to allow mutual feedback between astronomers/SWGs and SRCs


designers there is something we should avoid:

Specific session in the next SKA Science meeting?

"New Science enabled by New Technologies in the SKA Era"

SKA HQs @ Jodrell Bank, April 8th - 12th, 2019

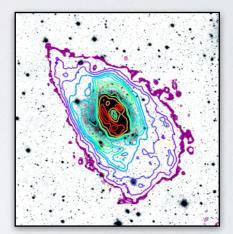
- Key Science Projects
- Science Data Processor
- SKA Regional Centres Coordination Group
- Initiatives to prepare for the SRCs
- SKA data challenges
- How do PI projects fit in

WHAT'S NEXT?

Please go back to the slides for further details

Any feedback will be welcome!

lourdes@iaa.es



POSTDOCTORAL POSITION IAA-CSIC, GRANADA, SPAIN

Lourdes Verdes-Montenegro lourdes@iaa.es

Origin of asymmetries in isolated galaxies: study of their outskirts with deep optical images and HI interferometric data

- Job conditions
 - To start as soon as possible
 - Duration: till 31/12/2019, with good chances to extend it further.
- Candidates
 - Expertise in reducing deep optical images <u>and/or</u> HI interferometric data is required
- Work environment
 - AMIGA group (Analysis of the interstellar Medium of Isolated GAlaxies, amiga.iaa.es)
 - AMIGA PI: coordinator of the Spanish participation in the SKA & co-Chair of the SKA <u>HI SWG</u>
 - The IAA-CSIC has recently obtained the <u>Center of Excellence Severo Ochoa</u> distinction and AMIGA team leads the development of a <u>prototype of an SKA</u> <u>Regional Centre</u> fully engaged with Open Science

