A study of the angular momentum content of WHISP early-type galaxies

Unarine Tshiwawa (M.Sc. candidate) Supervisor: Dr.E.Elson Co-supervisor: Prof.R.Maartens

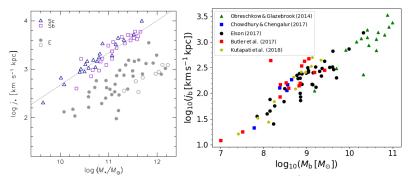
> University of the Western Cape The HI/Story of the Nearby Universe

Overview

- 1 Introduction
- 2 Data set
- 3 Rotation curves
- 4 Comparison to the data
- 5 Preliminary
- 6 Summary

Introduction 1

- Angular momentum (AM) is a fundamental galaxy property.
- In a CDM Universe, AM is closely linked to a galaxy's formation history.
- High-precision studies of the AM content of various types are made possible by current and forthcoming instruments.



Introduction Data set Rotation curves Comparison to the data Preliminary Summary

Introduction 2

■ Fall and his collaborators have shown that early-and late-types have different amounts of AM.

- lacktriangle High-precision studies show a well-defined relationship between $j_{
 m b}$ and $M_{
 m b}$.
- However, all high-precision studies so far have focused on late-types.

Figure : Traditional study of j_{\star} - M_{\star} relation (Romanowsky & Fall (2012)).

Figure: High-precision studies (using rotational curves and radial profiles) of $j_{\rm b}$ - $M_{\rm b}$ relation from several studies.

Introduction Data set Rotation curves Comparison to the data Preliminary Summary

This work

- This study serves as an investigation into the angular momentum of early-type galaxies from WHISP.
- We would like to know whether their AM properties differ significantly from the late-type samples that have already been studied.

Angular momentum measure

Total baryonic mass is given by:

$$M_{
m b} = \int_0^{
m R_{
m out}} \Sigma_{
m b}(
m R) \cdot 2\pi
m R \cdot d
m R$$

 \blacksquare $\Sigma_{\rm b}(R)$ is azimuthally averaged baryonic mass surface density distribution.

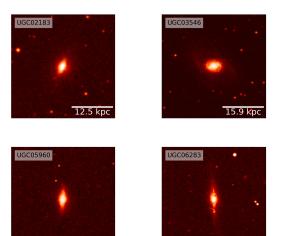
Total baryonic angular momentum $J_{\rm b}$ is given by,

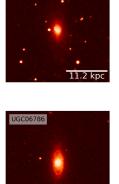
$$J_{b} = \int_{0}^{R_{out}} 2\pi R \cdot \Sigma_{b}(R) \cdot V_{rot} \cdot R \cdot dR$$

where
$$\Sigma_{\rm b}(\mathsf{R}) = \Sigma_{\rm HI+He}(\mathsf{R}) + \Sigma_{\star}(\mathsf{R})$$

Data set

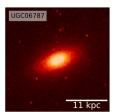
- Primary data set: 30 arcsec HI data cubes from WHISP.
- Sample of 11 galaxies selected from the sample of 68 WHISP early-types from Noordermeer et al. (2005)

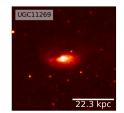

Sample selection criterion

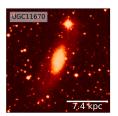

- lacksquare $\mathrm{D_{HI}}$ > 180 arcsec (6 beams) and
- \bullet 40° < i_{HI} < 75°.

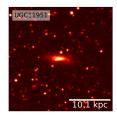
7.0 kpc

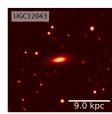
Optical imaging (Digitized Sky Survey 1)





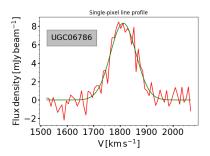

UGC03580


15.0 kpc


6.1 kpc

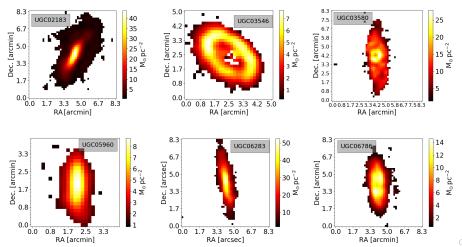
troduction Data set Rotation curves Comparison to the data Preliminary Summary

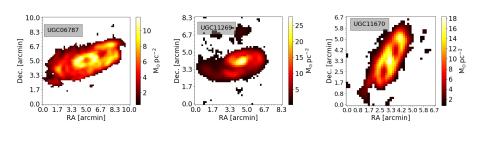
Some basic properties

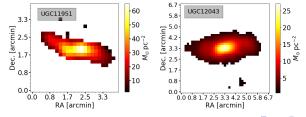

Table : Sample properties (1) UGC number, (2) alternative name, (3) RA, (4) Dec, (5) morphological type, (6) absolute B-band magnitude, (7) heliocentric radial velocity from this study, (8) distance, (9) inclination angle from this study.

UGC	Alternative	RA (2000)	Dec (2000)	Туре	M_B	V_{hel}	D	i
	name	h m s	o ′ ″			${\rm kms^{-1}}$	Мрс	0
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
2183	NGC 1056	02 42 48.3	28 34 27	Sa:	-19.60	1535	21.5	60
3546	NGC 2273	06 50 8.7	60 50 45	SB(r)a	-20.16	1834	27.3	50
3580	-	06 55 30.8	69 33 47	SA(s)a pec:	-18.19	1198	19.2	66
5960	NGC 3413	10 51 20.7	32 45 59	SO	-17.39	637	10.5	63
6283	NGC 3600	11 15 52.0	32 45 59	Sa?	-17.17	710	12.0	71
6786	NGC 3900	11 49 9.4	27 01 19	SA(r)O+	-19.94	1790	25.9	63
6787	NGC 3898	11 49 15.4	56 05 04	SA(s)ab	-20.25	1168	18.9	66
11269	NGC 6667	18 30 39.8	67 59 23	SABab? pec	-20.11	2633	38.3	63
11670	NGC 7013	21 03 33.6	29 53 51	SA(r)O/A	-19.53	769	12.7	68
11951	NGC 7231	22 12 30.1	45 19 42	SBa	-19.14	1082	17.4	67
12043	NGC 7286	22 27 50.5	29 05 45	SO/a	-17.15	1005	15.4	67

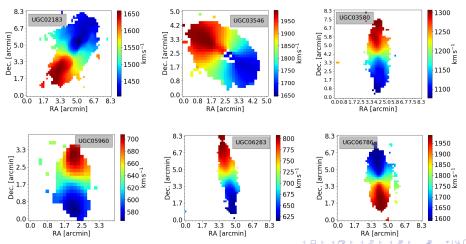
roduction Data set Rotation curves Comparison to the data Preliminary Summary

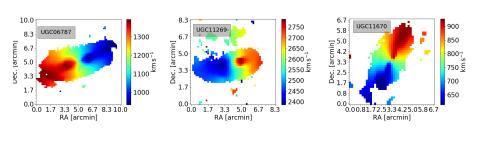

HI cube parameterisation

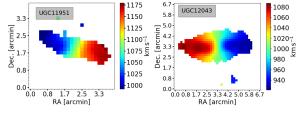

- 1. Line profiles in HI cube were fitted with Gaussians.
- 2. For all fitted Gaussians with peak amplitude $> 3\sigma$:
 - $lue{}$ Areas of Gaussians ightarrow HI total intensity map.
 - Peak-velocities → Velocity field.
 - Dispersions → HI dispersion map.



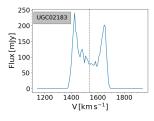
1. HI total intensity maps:

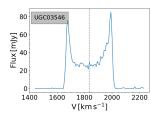


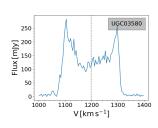


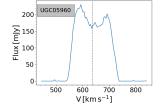


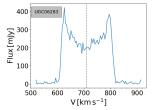
2. Velocity fields:

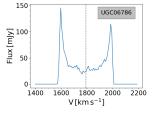


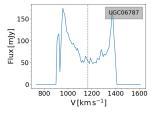


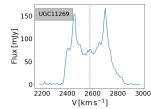


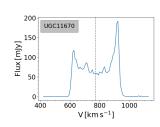


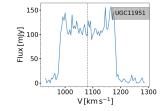

Observed HI Global Profiles

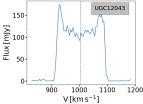






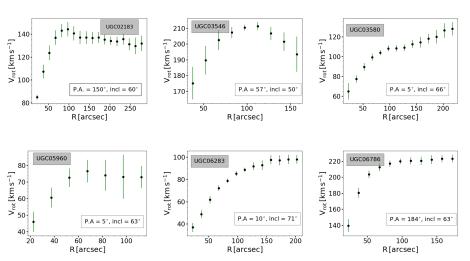





Observed HI Global profiles cont ..

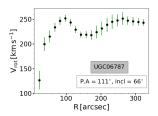
troduction Data set **Rotation curves** Comparison to the data Preliminary Summary

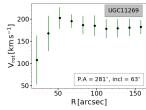
Derive roatation curves

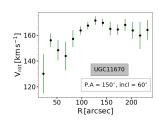

We used ROTCUR routine in GIPSY to derive rotation curves.

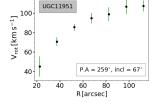
ROTCUR approach

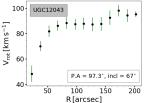
- Fitting tilted-rings to the velocity fields (both halves) in two iterations:
- 1st iteration: all parameters set free.
- \blacksquare 2nd iteration: all parameters (except $V_{\rm rot})$ set to median values from previous iteration.




Rotation curves

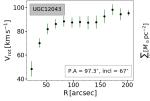


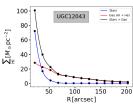


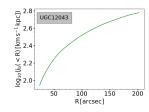

Rotation curves cont ..

Model-data comparisons

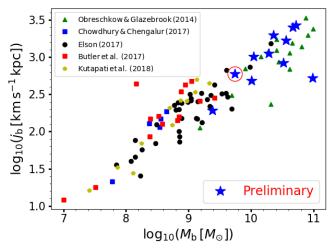
We compared TR models to data in different ways:


- 1. Velocity fields comparisons.
- 2. Used TR models to generate 3D model cubes (GALMOD) in order to comapare directly to HI data cubes:
 - Major axis pv-slice model-data comparisons.
 - Full-channel-by-chanel comparisons.


Main conclusion: Rotation curves are accurate.


Preliminary

UGC12043


 Σ_{\star} profiles .. W1 imaging from Tom Jarrett.

roduction Data set Rotation curves Comparison to the data **Preliminary** Summary

Preliminary

ntroduction Data set Rotation curves Comparison to the data Preliminary **Summary**

Summary

- 11 early-type WHISP galaxies used to study baryonic $j_{\rm b}$ $M_{\rm b}$ relation.
- We re-derived all HI data products and rotation curves.
- Careful model-data comparison show our rotation curves to be acurate.
- No evidence found for an off-set in baryonic angular momentum content of early-types.
- Currently: carefully checking our measurements for all our galaxies.

