

Lessons from MaNGA and SDSS-IV

Anne-Marie Weijmans
University of St Andrews

My astronomy career in surveys

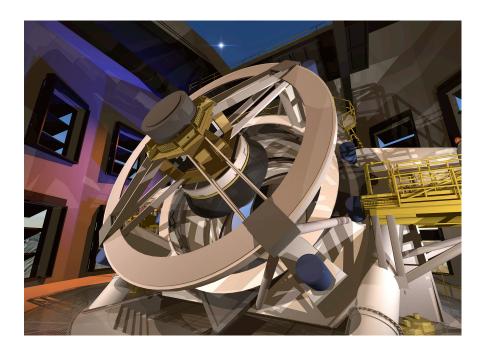
Surveys Past:

- SAURON survey (undergraduate / PhD student)
- Atlas3D survey (PhD student / postdoc)

Surveys Present:

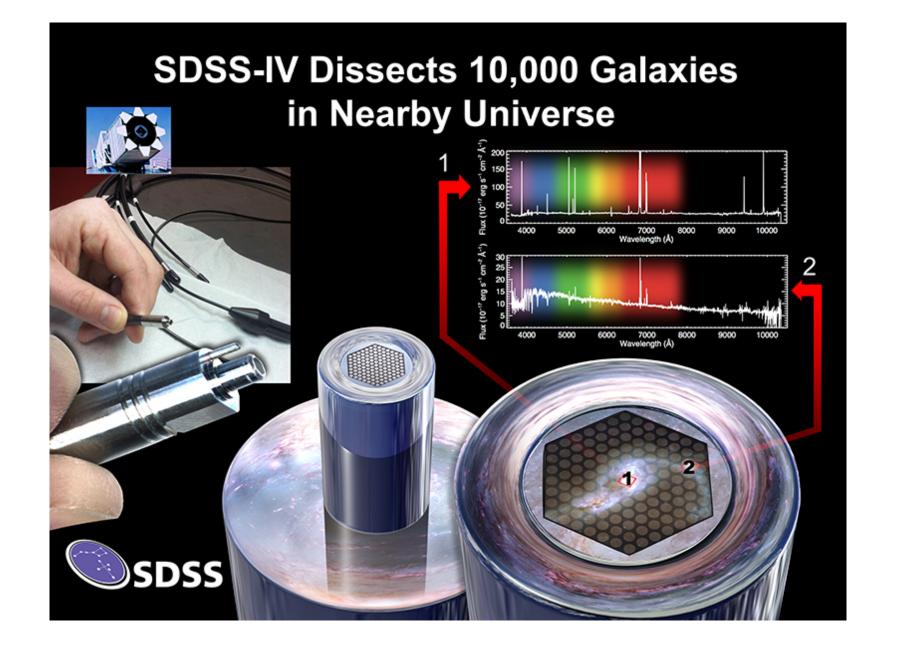
- Atlas3D/Mitchell survey (postdoc)
- SDSS-IV (postdoc / staff)
 - MaNGA lead observer
 - SDSS-IV data release coordinator
 - co-lead of SDSS-IV data team

Surveys Future:


- WEAVE
- SDSS-V

Why surveys?

Big questions need big resources



Credit: LSST


Lessons from MaNGA and SDSS-IV

- Introducing MaNGA
 - survey design and goals
 - science highlights
- How does a large collaboration do science?
 - examples from MaNGA and SDSS-IV
- What makes a successful collaboration?
 - and what makes them fail?
- Should you join a large collaboration?
 - some questions to ask yourself

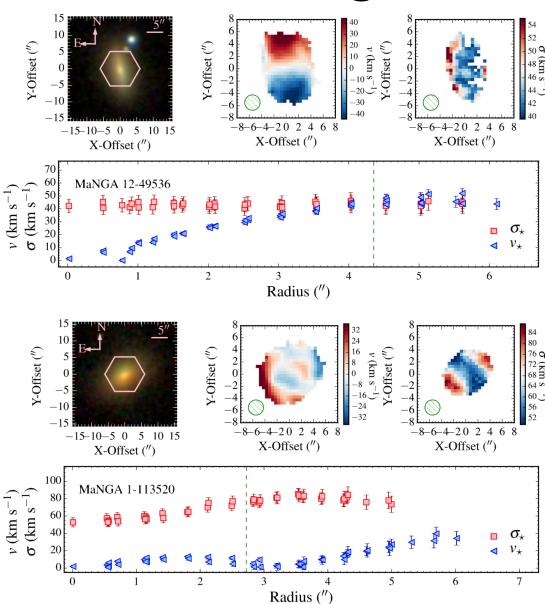
Key Questions

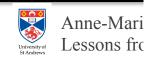
- Lives of galaxies
 - How does gas accretion drive the growth of disks?
 - What are the relative roles of stellar accretion, major mergers and instabilities for forming bulges?
- Death of galaxies
 - What quenches star formation?
 - How is star formation affected by groups and clusters?
- Birth of galaxies
 - What was the initial distribution of angular momentum?
 - How do baryons and stars trace and influence the dark halo?
 - Is galaxy growth the same at low and high z?

Concept

- Bundle single fibers together in IFUs
 - use BOSS spectrographs
 - create 17 IFUs, from 19 to 127 fibers per bundle
- Plug bundles in plates, similar to single fibers
 - integrate sky fibers with IFUs
 - 12 mini-IFUs for standard stars (7 fibers each)
- Observe 10,000 galaxies, 3hr dithered exposures
 - spatial resolution: 2" fibers or 1-4 kpc
 - spectral resolution: 50 80 km/s (R = 2500)
 - spectral coverage: 3600 10,000 A
 - S/N: \sim 30 in central fiber, \sim 4-8 at 1.5 R_e

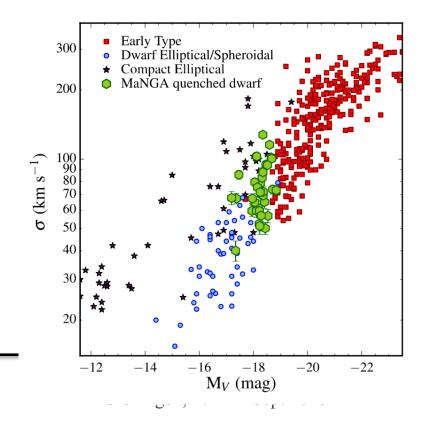
Bundy et al. 2015 Weijmans et al. 2016


Plugging a plate

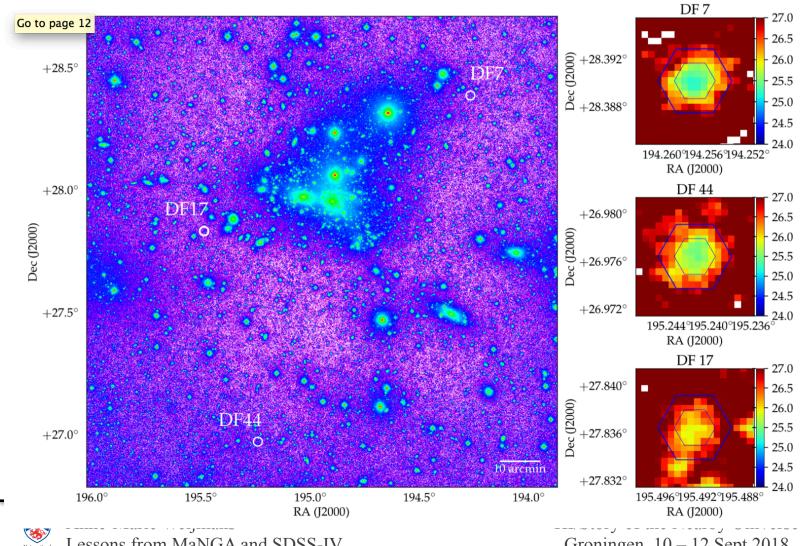

Sloan Observing

Youtube video: https://www.youtube.com/watch?v=AHsS57NMQjE

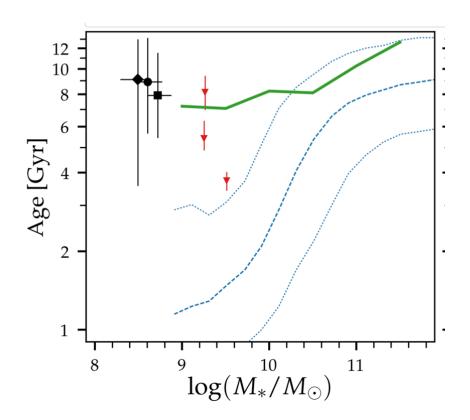
MaNGA: dwarf galaxies

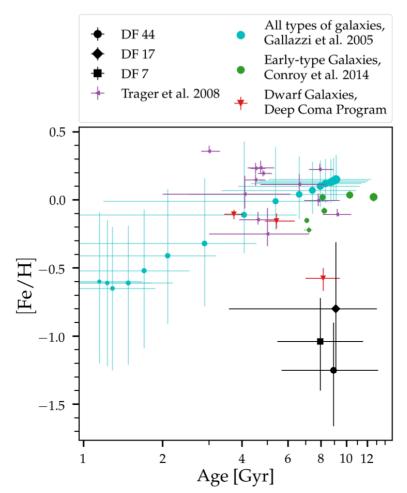

Penny et al. 2016

MaNGA: dwarf galaxies


- Only 6/39 (~15%) have rotation < 15 km/s
 - these are pressure supported at all radii
- Two have kinematically distinct cores
- Sample follows
 σ-luminosity scaling
 relations of early-types

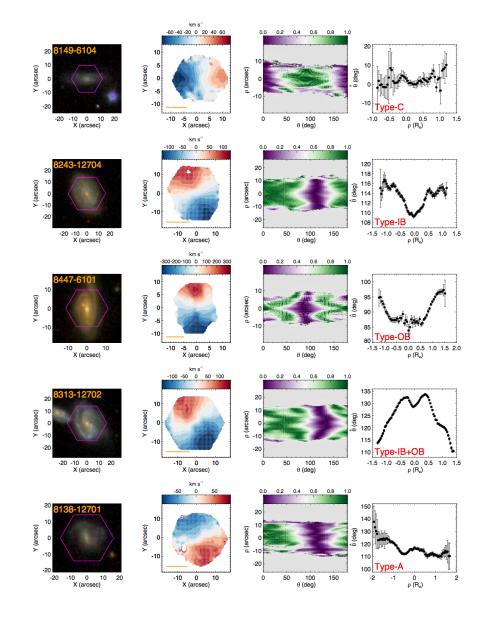
Penny et al. 2016



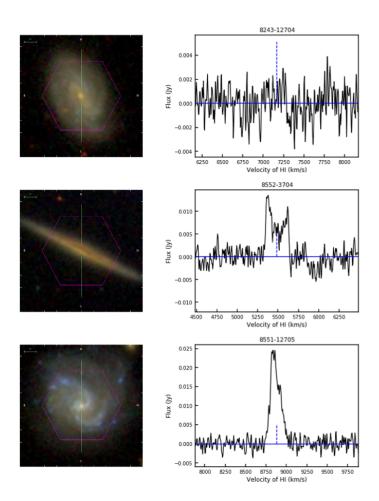

MaNGA: Coma Cluster

Gu et al. 2018

Gu et al. 2018



- UDGs are old and metal-poor
 - slightly older than ETGs
 not recently quenched
 - brief SF period at high redshift

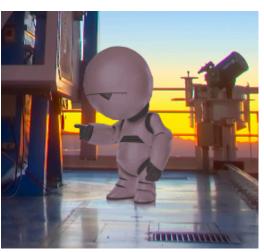

MaNGA: position angles of velocity fields

 Uses radon method to characterize position angle profiles of velocity fields

Stark et al. 2018

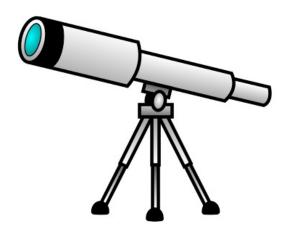
MaNGA and Hi

- 21 cm follow-up with Greenbank Telescope
- 331 galaxies observed so far
- additional data from ALFALFA
- value added catalog in preparation (available this December in DR15)


Next SDSS-IV Data Release: DR15

- More MaNGA data cubes!
- New: MaNGA maps!

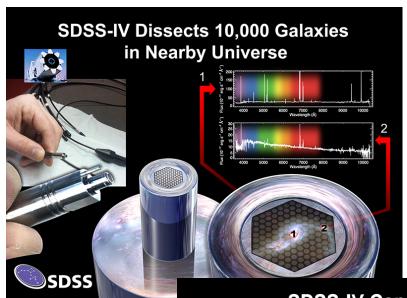
New: Marvin!



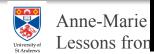
www.sdss.org

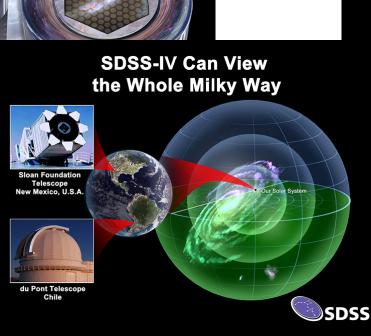
How does a large collaboration science?

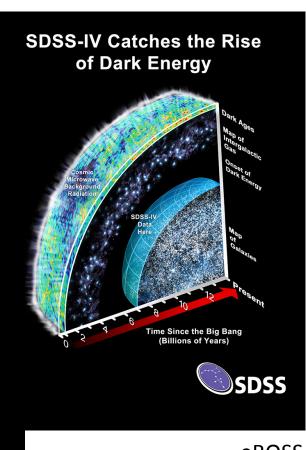
How does a large collaboration science?


Infrastructure

How does a large collaboration science?


 Infrastructure People


Sloan Digital Sky Surveys IV

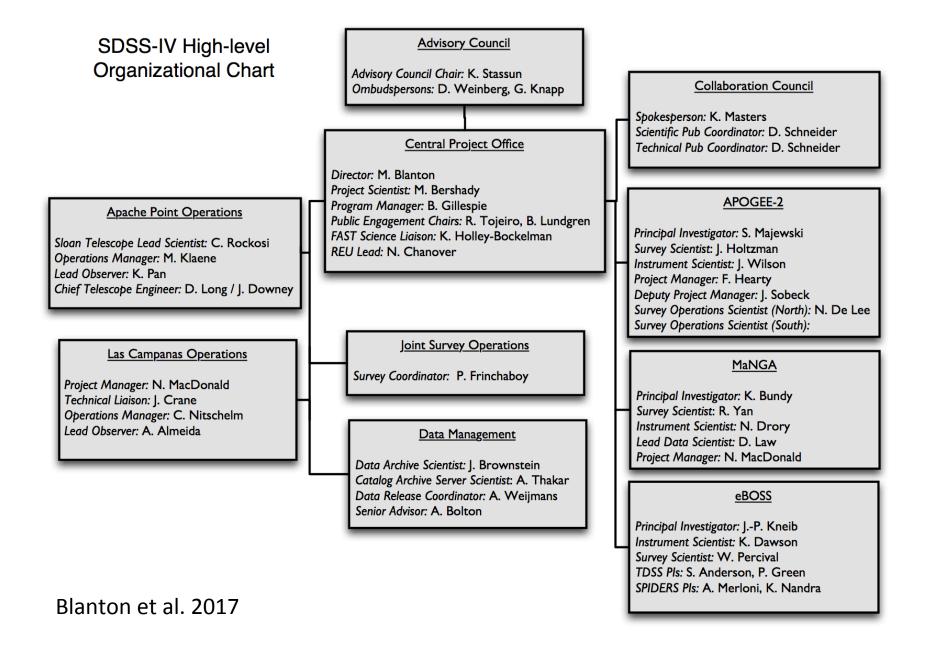


MaNGA

APOGEE-2

eBOSS

What does SDSS deliver?


Data publicly available

Weijmans et al. 2016, arXiv: 1612.05668

- data release 14 (July 2017) contains 325 TB
- Education and public engagement activities
 - Voyages, plates program (www.sdss.org/education)
 - citizen science (galaxy zoo)
 - artist in residence (based in St Andrews)
- Very high impact survey
 - more than 7000 papers based on SDSS data
 - 30% of US community uses SDSS data
 - trusted resource for teachers and general public

SDSS infrastructure

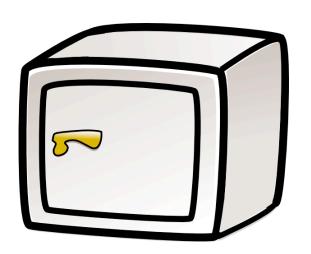
- Survey Design
 - science questions, science requirements
 - targets, observing strategy
- Observations at Telescope
 - maintenance, operation software updates
- Data reductions and analysis
 - data transferred from mountain to data centre
 - data pipelines run on dedicated SDSS servers
 - data products vetted and documented by data teams
 - distributed to science teams
- Science happens
 - papers
 - value added catalogs

SDSS organisation

- Surveys are organised in working groups
 - regular telecons
 - team meetings
- Projects, papers and value added catalogs are announced on mailing lists
 - wiki pages to share progress on projects etc.
- 'You can work on anything that you want, as long as you tell people'
 - external collaborator requests are possible
- Code of Conduct

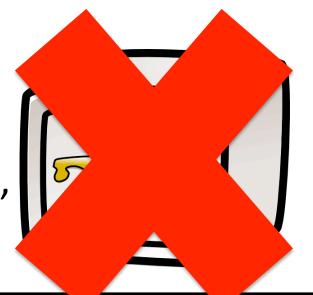
Papers written by survey team members?

- Papers written by survey team members?
 - do papers written with public data count too?


- Papers written by survey team members?
 - do papers written with public data count too?
- Terabytes of data generated?
- Value added catalogs based on survey data?

- Papers written by survey team members?
 - do papers written with public data count too?
- Terabytes of data generated?
- Value added catalogs based on survey data?
- Survey data used by teachers?
- Survey data used for public engagement?

- Papers written by survey team members?
 - do papers written with public data count too?
- Terabytes of data generated?
- Value added catalogs based on survey data?
- Survey data used by teachers?
- Survey data used for public engagement?
- Press coverage?


- Papers written by survey team members?
 - do papers written with public data count too?
- Terabytes of data generated?
- Value added catalogs based on survey data?
- Survey data used by teachers?
- Survey data used for public engagement?
- Press coverage?
- Career advancement for team members?

Make your data accessible!

Make your data accessible!

- My pet peeve: available ≠ accessible
- Each survey needs:
 - where is which data product?
 - data models
 - list of caveats, bugs
 - tutorials
- Not accessible just for public, but also for your own team!

Side note: don't underestimate public data releases...

- DR13 happened July 2016
 - we started prepping in October 2015

Weijmans et al. 2016

- Long process involving whole SDSS team
 - identify core data products for release
 - quality control of data products to be included in release
 - call for value-added catalogs
 - identify software to be posted in SVN depository
 - identify documentation needs
 - prepare and load data into SAS → science archive
 - prepare and load data into CAS → catalog archive
 - construct DR13 website, write DR13 paper
 - mirror archive servers, back-up on HPSS tapes
 - test servers, install metric evaluations
 - organise social media
 - all the things you forgot that pop up in the last month
 - actual data release

- Papers written by survey team members?
 - do papers written with public data count too?
- Terabytes of data generated?
- Value added catalogs based on survey data?
- Survey data used by teachers?
- Survey data used for public engagement?
- Press coverage?
- Career advancement for team members?

Be nice!

Be nice!

- Provide a friendly, safe environment
 - be welcoming to new team members
 - have a Code of Conduct and ombudspersons
- Be inclusive
 - aim for a diverse survey team AND leadership
- Provide opportunities and encouragement for career growth
 - mentoring, early-career networks, deputy positions
- Thank people for their work!

Examples in SDSS

- Code of conduct
 - https://www.sdss.org/collaboration/code-of-conduct/
- Committee on Inclusiveness (COINS)
 - https://www.sdss.org/collaboration/coins/
- FAST and REU programs
 - https://www.sdss.org/education/

What can make a survey fail?

- Lack of communication
- Lack of person power
- Rules
- People

Lack of communication

- Keep all lines of communication open
 - mailing lists, wiki
 - telecons, team meetings
 - accessible data and documentation
- Be transparent
- Be inclusive
 - advertise opportunities
 - beware the time zone bias!
- Be welcoming
 - lower barriers for new team members

Lack of person power

- - do people have the time and resources they need?
 - what are the priorities?
 - don't overpromise!
- Is all knowledge shared within the team?
 - if someone leaves the team, will the survey collapse?
 (single-point failures)
- Do survey contributions get acknowledged?
 - builder or architect status?

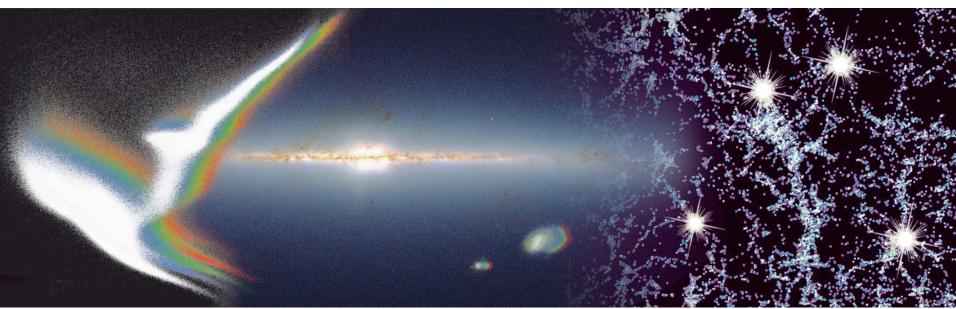
Too strict rules on collaborations

- Can team members still work with their friends who are not in the team?
 - can team members submit external collaborator requests?
 - if yes, what are the rules?
- Sharing data with another survey?
 - survey-wide agreement?
- You don't want to limit science!

The rogue scientist

- Someone thinks the rules don't apply to them...
 - what action should the survey take?
 - what action can the survey take?
 - what is the legal framework?
- Abusive behavior should never be tolerated!

Should you join a large survey?


- Does the survey meet your goals?
 - or should you start your own one?
- Do you want to work in this survey?
 - too big, too small, too formal, too informal?
- Find out how to become a team member
 - are you already a member through your research council, institute or supervisor?
 - membership fee, work-load?
 - talk to people!

Do not get lost!

- Know what you want to get out of the survey
 - science, transferable skills, leadership?
- Learn how the survey is structured
 - attend telecons, meetings, talk to people
- Find out about career support
 - mentoring, early career networks?
- Find your niche
 - do your thing!

Sloan Digital Sky Surveys V Pioneering Panoptic Spectroscopy

Multi-object Spectroscopy: all-sky, optical and near-IR, multi-epoch Integral Field Spectroscopy: 3000 deg², optical, ultra wide-field

White paper:

Kollmeier et al. 2017, arXiv:1711.03234

Webpage:

http://www.sdss.org/future/

My conclusions

- Large surveys are fruitful for science
 - we can all benefit directly or indirectly
- Make survey data publicly accessible
 - available ≠ accessible
 - good documentation is key
- Engage with the wider community
 - impact beyond academia with public engagement
- Be nice, inclusive, and value your colleagues