HI Studies of the Closest GRB host galaxy

Maryam Arabsalmani (CEA Paris-Saclay)

Sambit Roychowdhury (IAS-Orsay)

and

Lise Christenses (DARK), Emeric Le Floc'h (CEA), Nissim Kanekar (NCRA), Martin Zwaan (ESO)

> Groningen September 2018

Bimodal Distribution

Short GRBs: < a couple of seconds

Long **GRBs:** > a couple of seconds

Bimodal Distribution

Production

Short GRBs: < a couple of seconds

Merging binary systems

Long GRBs: > a couple of seconds

Core-collapse of massive stars

Bimodal Distribution

Production

Gravitational Wave

Short GRBs: < a couple of seconds

Merging binary systems

Long GRBs: > a couple of seconds

Core-collapse of massive stars

Bimodal Distribution

Production

Short GRBs: < a couple of seconds

Merging binary systems

Core-collapse of massive stars

Star Formation

Beacons of Star Formation

- Located in actively star forming regions
- Young stellar population
- SN-GRB connection

Fruchter+2006

Probes of Galaxy Evolution ...

- Located in actively star forming regions
- Young stellar population
- SN-GRB connection
- ★ Detectable up to high redshift (z > 8)
- ✤ Independent of galaxy luminosity

How they sample SF galaxies or In which environment they form

Fruchter+2006

More star formation

— More massive star

→ More GRBs

Tracers of Cosmic Star Formation?

More star formation → More massive star → More GRBs

Metal Poor Environments?

Not linked to overall SFR

How about metallicity?

- Low mass / metallicity hosts
- Top Heavy IMF

Metal Poor Environments?

Not linked to overall SFR

How about metallicity?

- Low mass / metallicity hosts
- Top Heavy IMF

Metal rich GRB hosts

Perley+2016

***** More massive stars

e.g., Schneider+2018, Zhang+2018

*** More massive stars**

- High Σ_{SFR}
- High sSFR values
- Powerful outflows

Regions with high densities of SFR common in interacting systems

GRB hosts commonly interacting systems?

Structure and kinematic of gas

GRB 980425 / SN 1998bw z = 0.0087

- M* = 10^{8.7} M_{Sun}
- SFR = 0.45 M_{sun} yr⁻¹
- 12 + log[O/H] = 8.27
- Massive stars < 8 Myr

★ No interacting companion was found (Foley+2006)

Closest Known GRB Host

Closest Known GRB Host

10 hours on-source 30 antennas of the GMRT

Total Intensity Map of HI

 $M_{HI} = 10^{8.9} M_{sun} \sim 1.6 M_{*}$

Total Intensity Map of HI

Arabsalmani+ about to be submitted

GRB environment: $N(HI) = 10^{21} \text{ cm}^{-2}$

Velocity Map of HI

Arabsalmani+ about to be submitted

Channel Map of HI

More than 20% of the gas not rotating with the gas disk

Arabsalmani+2015, Arabsalmani+ about to be submitted

Interaction ...

 $M_{HI} = 10^{7.1 M} sun \sim M*$

 $SFR = 0.004 M_{sun} yr^{-1}$

Massive stars < 10 Myr

Arabsalmani+ about to be submitted

To Explore ...

z = 0.040

 \cap

Large sample with future radio telescopes

Quick Summary

- **☆** GRBs: Beacons of star formation
- ★ SFR density, the likely driver
- **A** GRB hosts, interacting systems?
- ★ Ongoing interaction in the closest GRB host

Gamma Ray Bursts

