theory of star formation

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

theory of star formation

Ralf Klessen

this talk contains

strong personal biases

and selection effects

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

theory of star formation

this talk contains

strong personal biases

and selection effects

agenda

- prolegomenon
- theoretical remarks
- ISM dynamics and star formation on large scales
- some thoughts about the future

prolegomenon

Platon 428/427 – 348/347 BC

Capitoline Museum, Rome.

Plato's allegory of the cave*

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Plato's allegory of the cave*

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Plato's allegory of the cave* ↔ **Astronomical observations**

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Plato's allegory of the cave* ↔ **Astronomical observations**

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Plato's allegory of the cave* ↔ **Astronomical observations**

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Plato's allegory of the cave^{*} ↔ Astronomical observations

Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com

Example: from CO emission to total column density

thoughts on theory

decrease in spatial scale / increase in density

- density
 - density of ISM: few particles per cm³
 - density of molecular cloud: few 100 particles per cm³
 - density of Sun: I.4 g/cm³
- spatial scale
 - size of molecular cloud: few 10s of pc
 - size of young cluster: ~ I pc
 - size of Sun: 1.4×10^{10} cm

decrease in spatial scale / increase in density

- contracting force
 - only force that can do this compression is **GRAVITY**
- opposing forces
 - there are several processes that can oppose gravity
 - GAS PRESSURE
 - TURBULENCE
 - MAGNETIC FIELDS
 - RADIATION PRESSURE

decrease in spatial scale / increase in density

- contracting force
 - only force that can do this compression is **GRAVITY**

- opposing forces
 - there are several processes that can oppose gravity
 - GAS PRESSURE
 - TURBULENCE
 - MAGNETIC FIELDS
 - RADIATION PRESSURE

Modern star formation theory is based on the complex interplay between *all* these processes.

early theoretical models

- Jeans (1902): Interplay between self-gravity and thermal pressure
 - stability of homogeneous spherical density enhancements against gravitational collapse
 - dispersion relation:

- instability when

$$\omega^2 < 0$$

- minimal mass:

$$M_J = \frac{1}{6}\pi^{-5/2} G^{-3/2} \rho_0^{-1/2} c_s^3 \propto \rho_0^{-1/2} T^{+3/2}$$

Sir James Jeans, 1877 - 1946

first approach to turbulence

- von Weizsäcker (1943, 1951) and Chandrasekhar (1951): concept of MICROTURBULENCE
 - BASIC ASSUMPTION: separation of scales between dynamics and turbulence

l_{turb} « l_{dyn}

- then turbulent velocity dispersion contributes to effective sound speed:

$$\mathbf{C}_{c}^{2}\mapsto\mathbf{C}_{c}^{2}+\sigma_{rms}^{2}$$

- \rightarrow Larger effective Jeans masses \rightarrow more stability
- BUT: (1) turbulence depends on k: $\sigma_{rms}^2(k)$
 - (2) supersonic turbulence $\rightarrow \sigma_{rms}^2(k) >> c_s^2$ usually

S. Chandrasekhar, 1910 - 1995

C.F. von Weiszäcker, 1912 - 2007

problems of early dynamical theory

- molecular clouds are *highly Jeans-unstable*, yet, they do *NOT* form stars at high rate and with high efficiency (Zuckerman & Evans 1974 conundrum) (the observed global SFE in molecular clouds is ~5%)
 - \rightarrow something prevents large-scale collapse.
- all throughout the early 1990's, molecular clouds had been thought to be long-lived quasi-equilibrium entities.
- molecular clouds are *magnetized*

magnetic star formation

- Mestel & Spitzer (1956): Magnetic fields can prevent collapse!!!
 - Critical mass for gravitational collapse in presence of B-field

$$M_{cr} = \frac{5^{3/2}}{48\pi^2} \frac{B^3}{G^{3/2}\rho^2}$$

Lyman Spitzer, Jr., 1914 - 1997

 Critical mass-to-flux ratio (Mouschovias & Spitzer 1976)
[M] & [5]^{1/2}

$$\left\lfloor \frac{M}{\Phi} \right\rfloor_{cr} = \frac{\zeta}{3\pi} \left\lfloor \frac{5}{G} \right\rfloor$$

- Ambipolar diffusion can initiate collapse

"standard theory" of star formation

- BASIC ASSUMPTION: Stars form from magnetically highly subcritical cores
- Ambipolar diffusion slowly increases (M/ Φ): $\tau_{AD} \approx 10\tau_{ff}$
- Once (M/Φ) > (M/Φ)_{crit} : dynamical collapse of SIS
 - Shu (1977) collapse solution
 - $dM/dt = 0.975 c_s^3/G = const.$
- Was (in principle) only intended for isolated, low-mass stars

Frank Shu, 1943 -

magnetic field

problems of "standard theory"

- Observed B-fields are weak, at most marginally critical (Crutcher 1999, Bourke et al. 2001)
- Magnetic fields cannot prevent decay of turbulence (Mac Low et al. 1998, Stone et al. 1998, Padoan & Nordlund 1999)
- Structure of prestellar cores (e.g. Bacman et al. 2000, Alves et al. 2001)
- Strongly time varying dM/dt (e.g. Hendriksen et al. 1997, André et al. 2000)
- More extended infall motions than predicted by the standard model (Williams & Myers 2000, Myers et al. 2000)
- Most stars form as binaries (e.g. Lada 2006)

- As many prestellar cores as protostellar cores in SF regions (e.g. André et al 2002)
- Molecular cloud clumps are chemically young (Bergin & Langer 1997, Pratap et al 1997, Aikawa et al 2001)
- Stellar age distribution small (τ_{ff} << τ_{AD}) (Ballesteros-Paredes et al. 1999, Elmegreen 2000, Hartmann 2001)
- Strong theoretical criticism of the SIS as starting condition for gravitational collapse (e.g. Whitworth et al 1996, Nakano 1998, as summarized in Klessen & Mac Low 2004)
- Standard AD-dominated theory is incompatible with observations (Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

gravoturbulent star formation

• BASIC ASSUMPTION:

star formation is controlled by interplay between supersonic turbulence and self-gravity

- turbulence plays a *dual role*:
 - on large scales it provides support
 - on small scales it can trigger collapse
- some predictions:
 - dynamical star formation timescale $\tau_{\rm ff}$
 - high binary fraction
 - complex spatial structure of embedded star clusters
 - and many more . . .

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 McKee & Ostriker, 2007, ARAA, 45, 565 Klessen & Glover, 2016, Saas Fee Lecture, 43, 85

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

• Navier-Stokes equation (transport of momentum)

viscous stress tensor

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

 vortex streching --> turbulence is intrinsically anisotropic (only on large scales you may get homogeneity & isotropy in a statistical sense; see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause additional inhomogeneity)

turbulent cascade in the ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?)

 $\sigma_{\rm rms} \ll 1$ km/s M_{rms} ≤ 1 L ≈ 0.1 pc dissipation scale not known (ambipolar diffusion, molecular diffusion?)

turbulence creates a hierarchy of clumps

as turbulence decays locally, contraction sets in

as turbulence decays locally, contraction sets in

while region contracts, individual clumps collapse to form stars

while region contracts, individual clumps collapse to form stars

individual clumps collapse to form stars

individual clumps collapse to form stars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, competitive mass growth becomes important

in *dense clusters*, competitive mass growth becomes important

in dense clusters, N-body effects influence mass growth

become ejected --> accretion stops

feedback terminates star formation

result: star cluster, possibly with HII region

relation between ISM dynamics and star formation

relation between ISM dynamics and star formation

Considering the molecular gas SF law alone does not change matters...

Considering the molecular gas SF law alone does not change matters...

- recall *scale-free physics* gives rise to *power-law* behavior!
 many 'simple models' of star
- formation rely on that (often without realizing....):
 - gravity

4

З

2

¹ kpc⁻²]

- turbulence
- maybe we have different regimes, in which different processes dominate star formation ...

data from STING survey (Rahman et al. 2011, 2012)

• is there really a universal Σ_{H2} - Σ_{SFR} relation?

data from STING survey (Rahman et al. 2011, 2012)

- is there really a universal Σ_{H2} Σ_{SFR} relation?
- there seem to be large galaxy-to-galaxy variations - relation is often sublinear

- analysis of THINGS/ HERACLES data
- many galaxies show sublinear KS-type relation

Image from R. Shetty / thanks to THINGS/HERACLES collaboration for providing the data.

data from STING survey (Rahman et al. 2011, 2012)

all galaxies

Shetty et al. (2014, MNRAS, 437, L61, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)

Hierarchical Bayesian model for STING galaxies indicate varying depleting times. Depletion time increases with increasing density. Why ??

- COLD GASS survey
- large number of different galaxies
- depletion times vary widely across different types of galaxies.

• EMPIRE survey

- IR-to-HCN ratio varies systematically as function of local disk structure (here stellar surface density)
- dense gas is less good in forming stars in overall dense regions (longer depletion time)

Longmore et al. (2013, MNRAS 429, 987)

all galaxies

physical origin of this behavior?

- maybe strong shear in dense arms (example M51, Meidt et al. 2013)...
- maybe non-star forming H₂ gas becomes traced by CO at high column densities (recall H₂ needs A_v~I, CO needs A_v~2,)...

observational approach

Exeter-Five College Radio Astronomy Observatory (EXFC) Galactic Ring Survey (GRS)

INNER GALAXY: Galactic Ring Survey (GRS)

Roman-Duval et al. (2016, ApJ, 818, 144)

observational approach:

 comparison of ¹³CO (tracing mostly dense clouds) and ¹²CO tracing all the gas (including the more diffuse component)

dense gas fraction as function of radius

Figure 13. Average Galactic H₂ surface densities of the diffuse (red, detected in ¹²CO, undetected in ¹³CO) and dense (green, detected in ¹²CO and ¹³CO) components as a function of Galactocentric radius (in bins of width 0.1 kpc), in logarithmic scale, combining all data sets. In the inner Galaxy, the pink line indicates the surface density of H₂ in molecular clouds identified in Roman-Duval et al. (2010).

dense gas fraction as function of radius

Roman-Duval et al. (2016, ApJ, 818, 144)

modeling the galactic ecosystem

modeling the multi-phase ISM

Simulation of a spiral galaxy with time-dependent chemistry, star formation, SN feedback.

Molecular gas indicated in grey, stellar ages color codes.

- Arepo moving mesh code (Springel 2010)
- more realistic potential (better disk scale height)
- with self-gravity and supernovae feedback!
- star formation
- full-chemistry
- possibility to define zoom-in regions

total column density

HI column density

relation between CO and H₂

(Smith et al., 2014, MNRAS, 441, 1628)

relation between CO and H₂

further evidence form detailed colliding flow calculations

Figure 3. Evolution with time of the maximum density (blue, solid line) and minimum temperature (red, dashed line) in the slow flow (top panel) and the fast flow (bottom panel). Note that at any given instant, the coldest SPH particle is not necessarily the densest, and so the lines plotted are strictly independent of one another.

Clark et al. (2012, MNRAS, 424, 2599)

see also Pringle, Allen, Lubov (2001), Hosokawa & Inutsuka (2007)

further evidence form detailed colliding flow calculations

Figure 6. Chemical evolution of the gas in the flow. In the left-hand column, we show the time evolution of the fraction of the total mass of hydrogen that is in the form of H₂ (red solid line) for the 6.8 km s⁻¹ flow (upper panel) and the 13.6 km s⁻¹ flow (lower panel). We also show the time evolution of the fraction of the total mass of carbon that is in the form of C⁺ (green dashed line), C (orange dot–dashed line) and CO (blue double-dot–dashed line). In the right-hand column, we show the peak values of the fractional abundances of H₂ and CO. These are computed relative to the total number of hydrogen nuclei, and so the maximum fractional abundances of H₂ and CO are 0.5 and 1.4×10^{-4} , respectively. Again, we show results for the 6.8 km s⁻¹ flow in the upper panel and the 13.6 km s⁻¹ flow in the lower panel. Note that the scale of the horizontal axis differs between the upper and lower panels.

Clark et al. (2012, MNRAS, 424, 2599)

see also Pringle, Allen, Lubov (2001), Hosokawa & Inutsuka (2007)

H₂ column CO emission

1.0 10.0 W_{co} [K km s⁻¹]

some tools

Polaris RT tool

- MC dust heating: Combined heating algorithm of continuous absorption and immediate temperature correction
- Grid: Octree-grid with adaptive refinement
- Polarization mechanism: Dichroic extinction, thermal reemission, and scattering
- Dust grain alignment mechanisms:
 - Imperfect Davis-Greenstein (IDG)
 - Radiative torques (RAT)
 - Mechanical alignment (GOLD)
 - Imperfect internal alignement
 - Independent dust grain composition
- Optimization: Enforced scattering, wavelength range selection, and modified random walk

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Polaris website in Kiel: http://www1.astrophysik.uni-kiel.de/~polaris/

lin, polarization Pl

Polaris website in Kiel: http://www1.astrophysik.uni-kiel.de/~polaris/

1D cloud/cluster model

WARPFIELD:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- · dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- · fast, allowing for large parameter studies

1D cloud/cluster model

WARPFIELD:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- fast, allowing for large parameter studies

Figure 5. Comparison of relative forces from direct and indirect radiation pressure, winds, SNe, and gravity. If the contribution from gravity is above the 50 per cent margin (dashed horizontal line), the shell loses momentum. *Top*: $M_{cl} = 10^5 \text{ M}_{\odot}$, $\epsilon = 0.1$, $Z = Z_{\odot}$, and $n_{cl} = 1000 \text{ cm}^{-3}$ (same parameters as in Fig. 3). The contribution from indirect radiation pressure fraction is so small, it is barely visible (<1 per cent). *Bottom*: same n_{cl} and Z as in the top panel, but with a higher cloud mass and star formation efficiency $(M_{cl} = 3 \times 10^7 \text{ M}_{\odot} \text{ and } \epsilon = 0.25)$. For more information see Section 5.

1D cloud/cluster model

Polaris:

- detailed dust scattering and absorption model
- 120 frequency bin
- Monte Carlo RT

1D cloud/cluster model

Polaris:

- detailed dust scattering and absorption model
- 120 frequency bin
- Monte Carlo RT
- —> for Milky Way clouds, radiation pressure is not dominating over gravity!

red: gravity blue: radiation pressure purple: ratio

Fig. 5: Gravity (F_{gra} , red lines) in comparison to radiative forces (F_{rad} , blue lines) for models M4 (top left), M5 (top right left), M6 (bottom left), and M7 (bottom right). The ratio of forces is defined as $\zeta = F_{\text{rad}}/F_{\text{gra}}$ (purple lines). All cases have a *constant* dust temperature of $T_d = 20$ K, an outer radius of $R_{\text{out}} = 5$ pc and use dust model D2. Note that $\zeta < 1$ everywhere, implying that radiation pressure does not support the cloud against gravitational contraction. The vertical black line marks the sublimation radius.

Reissl et al. (2018, A&A in press, arXiv171002854)

1D cloud/cluster model

WARPFIELD-EMP:

- 1D model of cluster embedded in spherical cloud
- starburst99 cluster evolution
- dynamics of think shell is calculated consistently
- with all relevant forms of stellar feedback
- fast, allowing for large parameter studies
- coupled to CLOUDY and 1D RT
- many different emission woli R gby D tightel Rahner, Eric Pellegrini

synthetic BPT diagrams

WARPFIELD-EMP:

- example synthetic BPT diagrams
- plans: extend to larger/ smaller clusters
- produce large statistical samples
- employ machine learning both as diagnostic and generative tool to produce database of emission measures

Le HOUTE

work by Daniel Rahner, Eric Pellegrini

synthetic BPT diagrams

 synthetic population of cloud/cluster models in BPT diagram compared to data from SITELLE

NGC 628: data from Rousseau-Nepton et al. (2018)

Pellegrini et al. (2018, to be submitted)

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

invertible neural networks

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

invertible neural networks

- new surveys
 - SDSS-V (Kollmeier/Rix):
 - LVM (~25 million spectra in Milky Way)
 - CFHT: SIGNALS (Rousseau-Nepton) (~50.000 HI regions in different galaxies)
 - PHANGS (MUSE)

summary

- prolegomenon
- theoretical remarks
- star formation
- tools

summary

- prolegomenon
- theoretical remarks
- star formation
- tools

- need to bring theory closer to observations
- stars form in competition between gravity and a large number of competing processes
- lots of CO-traced H₂ gas is in diffuse form
- larger reservoir of CO-dark H₂

summary

- prolegomenon
- theoretical remarks
- star formation
- tools

- need to bring theory closer to observations
- stars form in competition between gravity and a large number of competing processes
- lots of CO-traced H₂ gas is in diffuse form
- larger reservoir of CO-dark H₂

many thanks

... people in the star formation group at Heidelberg University:

Bhaskar Agarwal, Carla Bernhard, Daniel Ceverino, Max Disch, Sam Geen, Simon Glover, Dimitrios Gouliermis, Sacha Hony, Ondrej Jaura, Ralf Klessen, Besma Klinger-Araifa, Mattis Magg, Kiwan Park, Eric Pellegrini, Daniel Rahner, Stefan Reißl, Anna Schauer, Mattia Sormani, Robin Treß, Katharina Wollenberg

... former group members:

Christian Baczynski, Robi Banerjee, Erik Bertram, Paul Clark, Gustavo Dopcke, Christoph Federrath, Philipp Girichidis, Thomas Greif, Lionel Haemmerle, Tilman Hartwig, Lukas Konstandin, Thomas Peters, Claes-Erik Rydberg, Dominik Schleicher, Jennifer Schober, Daniel Seifried, Rahul Shetty, Rowan Smith, László Szűcs, Hsiang-Hsu Wang, Daniel Whalen, and many more ...

... many collaborators abroad!

Deutsche Forschungsgemeinschaft

nschaft DFG

European Research Council

erc