

Resolved dust-to-gas mass ratios in nearby galaxies

Basilio Solís-Castillo PhD Student AlfA, University of Bonn Max Planck Institute for Radio Astronomy

Collaborators: F. Bertoldi, M. Albrecht and B. Magnelli

Introduction

- Gas (atomic and molecular): Star formation, dynamics and structure of the ISM and matter distribution.
- Dust: agent of star formation, gas thermal balance and chemistry of the ISM.
- Dust and gas are well mixed, so the dust-togas mass ratio (DGR) is constant on small scales.
- **DGR-metallicity relation:** study the evolutionary stage of a galaxy.

Schinnerer et al. (2013)

Motivation

Sample

SINGS + LVL : 3.6, 4.5, 5.8, 8.0 and 24 μm KINGFISH : 70, 100, 160, 250, 350 and 500 μm HERACLES : CO(2-1) THINGS+VIVA : H I

Data processing

- Convolution to common resolution
- Masking process
- Hierarchical Bayesian SED fitting
- Derivation of ISM parameters

Exdm (M. Albrecht)

S/N and r_{25} constrains

Dust mass

M*, LTIR, Metallicity

Data processing

• Metallicity gradient from Moustakas et al. (2010)

16 Galaxies

- Molecular gas (CO-to-H₂ conversion factor)
 - $\alpha_{co} = 4.4 \text{ M}_{\odot} \text{ pc}^{-2} (\text{K km s}^{-1})^{-1}$ (Bolatto et al. 2013)
 - α_{co} : f (metallicity)

 $\log(\alpha_{co}) = A + B \times (12 + \log(O/H))$

• Pixel size = 36" (0.81 - 2.53 kpc)

How is the dust mass determined?

Why we used Hierarchical Bayes?

Radial profiles (binned) 10.0 $\Sigma_{\rm mol}~[{\rm M}_\odot~{\rm kpc}^{-2}\,]$ • **NGC 628** $\Sigma_{\rm HI}$ [M $_{\odot}~{\rm kpc}^{-2}$] ☆ $\Sigma_{*}\,[{\rm M}_{\odot}~{\rm kpc}^{-2}\,]$ 9.0 $\Sigma_{ m dust}$ [M $_{\odot}$ kpc $^{-2}$] -1.76 Δ DGR $\Sigma_{ m TIR}$ [L $_{\odot}~ m kpc^{-2}$] -1.84 8.0 -1.92 log (Value) -2.00 7.0 -2.08 ★★^{★★} -2.16 ☆ 6.0 -2.24 [▲]▲▲[▲]▲▲_▲▲[▲]▲_▲▲[▲]▲[▲]▲[▲]▲[▲]▲[▲]▲[▲]▲[▲] -2.32 -2.40 5.0 4.0 -0.0 0.2 0.4 0.8 0.6 1.0 r_{25} r₂₅: Galactocentric radius

Gas and dust surface densities correlation

DGR - metallicity relation

Impact of α_{CO} in DGR-metallicity relation

$$\log(\alpha_{\rm co}) = \mathsf{A} + \mathsf{B} \times (12 + \log(\mathrm{O}/\mathrm{H}))$$

Galametz et al. (2011): f_1 Schruba et al. (2012) : f_2

NGC 628

DGR-metallicity relation (all sample)

Red dashed line: Sandstrom et al. (2013)

Black dashed line: Rémy-Ruyer et al. (2014). **Blue** dashed line: Rémy-Ruyer et al. (2014) **Green** triangle: Milky way. **Black** stars: Galaxies of the sample with no metallicity gradient

Take away message...

- Resolved studies helps us to better understand the internal physical processes.
- The Hierarchical bayesian SED fitting allows us to improve our dust mass estimates.
- The DGR metallicity relation depends strongly on the conversion factor (α_{CO}).

Influence of α_{CO} on fractions

NGC 628

DGR-metallicity relation (binned)

Red dashed line: Sandstrom et al. (2013)

DGR and other galaxy parameters

NGC 628

