

Netherlands Institute for Radio Astronomy

The ALFALFA Group HI Mass Function

Kelley M. Hess ASTRON/Kapteyn Astronomical Institute September 2018

Michael Jones, Betsey Adams, Manolis Papastergis

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

HCG 44 © Stephen Leshin

Netherlands Institute for Radio Astronomy

#HIStoryNU #AperThijs

@jmvdhulst

Tweets

Following

Followers

Thijs van der Hulst

@jmvdhulst Follows you

Astronomer

ASTRON is

Somewhere

Joined July 2012

7	68	10	13	Follow
Tweets	Tweet	s & replie	S	
Thijs van der Hulst Retweeted Dagblad v/h Noorden @dvhn_nl · Apr 21 'We krijgen allemaal te maken met Big Data' Translate Tweet			~	

Likes

What is the HI Mass Function?

Number density of galaxies in the Universe as a function of their HI mass.

What is the HI Mass Function?

Number density of galaxies in the Universe as a function of their HI mass.

Well fit by a Schechter Function:

$$\phi(M_{\rm H\,{\scriptscriptstyle I}}) = \ln(10) \phi_* \left(\frac{M_{\rm H\,{\scriptscriptstyle I}}}{M_*}\right)^{\alpha+1} e^{-\left(\frac{M_{\rm H\,{\scriptscriptstyle I}}}{M_*}\right)}$$

Slope
Knee

ALFALFA (Jones et al 2018)

Why is the HI Mass Function important?

Number density of galaxies in the Universe as a function of their HI mass.

Well fit by a Schechter Function:

Redshift

ALFALFA (Jones et al 2018)

Environmental dependence on the HIMF?

- Depends on your sample, definition of environment, and the scales which these probe. (e.g. Rosenberg & Schneider 2002; Zwaan et al 2005; Springob et al 2005; Moorman et al 2014; Jones et al 2016)
- Virgo Cluster HIMF apparently flattened compared to surroundings: gas processing?

Galaxy groups: the primary site of galaxy evolution

 50-60% of galaxies live in group environment (Huchra & Geller, 1982; Crook et al 2004; Berlind et al 2006, 2009; Yang et al 2007, 2012; Tempel et al 2014; etc)

 Low velocity dispersion, high galaxy density —> opportunity for strong interactions and gas processing

Freeland et al (2009)

Group HI Mass Function

- Ursa Major; 32 HI detected galaxies (Verheijen et al 2001)
- Canes Venatici; 69 HI detected galaxies (Kovac et al 2005)
- 5 groups; 33 HI detected galaxies (Freeland et al 2009)
- 6 groups; 61 HI detected galaxies (Pisano et al 2011)

HIStoryNU - Groningen, The Netherlands - September 2018

SDSS Optical Group Catalogs (n≥3 members)

Friends-of-Friends	Iterative Halo Finders
 Berlind et al (2006, 2009) SDSS DR7 All M_r<-18 Volume limited 0.02<z<0.42< li=""> 1462 opt grps; 2346 HI gals </z<0.42<>	 Yang et al (2007, 2012) SDSS DR12 Centrals M_r<-19.5 Complete to z<0.08 2317 opt grps; 2753 HI gals
 Tempel et al (2014) SDSS DR10 All M_r<-18 Volume limited z<0.45 4023 opt grps; 1900 HI gals 	Lim et al (2017) • SDSS DR13 • No mag limit • Complete z<0.05; M _{grp} ~10 ^{11.5} • 3770 opt grps; 2043 HI gals

Group HIMF Vmax Method

Details and corrections to the Group HIMF

 Sensitivity to HI sources depend on both their flux and velocity width; broad sources are harder to detect.

 Vmax & Veff methods correct for this if your sample extends to d=0 Mpc because it samples the full distribution of velocity widths at a given HI mass.

 Group catalog is a collection of galaxy subsamples: must correct for

Large scale structure along the line of sight produces a bias

Vmax for Group Galaxies

• Vmax - correct by the ratio of the volume in which a galaxy can be detected over the volume of the survey

Vmax for Group Galaxies

• Vmax - correct by the ratio of the volume in which a galaxy can be detected over the volume of the survey

Max detection distance

Vmax, velocity width correction for group galaxies

- Vmax correct by the ratio of the volume in which a galaxy can be detected over the volume of the survey
- Velocity width correct for not fully sampling mass-width distribution

Vmax, velocity width, LSS correction for group galaxies

- Vmax correct by the ratio of the volume in which a galaxy can be detected over the volume of the survey
- Velocity width correct for not fully sampling mass-width distribution
- Large Scale Structure correction (a relative correction from the groups themselves):
 - Correct for overdensity of groups in shells dr=4 Mpc
 - "Group volume" weighted average number of groups per bin

Max detection distance

n_{grps}∝r²dr

Group HIMF Vmax Method

Large Scale Structure Correction

university of

groningen

Group HIMF Vmax Method

Lim Group HI Mass Function

Group HIMF is the sum of groups of range of halo masses:

- High mass end is dominated by galaxies in more massive halos
- Low mass end is dominated by nearby low mass groups

Preliminary Results of the Group HI Mass Function

Investigating the HIMF in 4 different SDSS group catalogs.

- Highlights differences between the group catalogs & their shortcomings.
- Number of groups and galaxies increased by ~2-3 orders of magnitude over previous studies.
 - 2000-3500 galaxy groups, with ~2000 HI galaxies.
- Group HIMF M* is dominated by galaxies that live in high mass groups.
- Low mass slope appears flatter than global HIMF.
 - Dominated by galaxies in low mass groups