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Figure 1: XGAUPROF Graphical User Interface
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Chapter 1

Introduction

1.1 History

An article from 1966 called Computer Analysis of Observed Distributions into Gaussian components by
Kaper et al. described a first Kapteyn Institute attempt to use a computer to decompose an observed
frequency or intensity profile into a superposition of Gaussian components. A least squares method was
applied to get a ‘best fit’ to study profiles of the spectral line at 21 cm. The program was implemented
on a Stantec ZEBRA, installed in 1956. It had a memory of 8192 words of 33 bits. This limited the
analysis to 150 data points and 6 parameters. The average access time to an address on the ZEBRA
was 0.005 sec. and one least-squares iteration cycle took about 20 minutes. Initial guesses for the
parameters were found by sketching a decomposition into Gaussians on a graph of the observed profile.

1.2 Standard Gauss

GIPSY program XGAUPROF finds best fit parameters for three functions given data from file or from
a GIPSY set. The base function is a Gauss. The parameters are fitted with a least-squares fit algorithm
which needs initial guesses. A special routine automates the procedure of getting reasonable estimates
for a Gauss and the other functions in the program. The user can modify these values by hand using a
graphical slider. A one component standard Gauss function with background is defined as:

φ(x) = Ae−
1
2 ( x−x0σ )2

+ Z (1.1)

Usually x is frequency or velocity. A is the amplitude at the center x = x0 and σ is the dispersion of the
profile, i.e. the half width at A√

e
and Z is a representation for the background.

In XGAUPROF the background consists of a constant, a linear and a quadratic term and is represented
by:

Z = Z0 + Z1 (x− x0) + Z2 (x− x0)2 (1.2)

The constant term Z0 is often referred to as ’zero level’.

1.3 Gauss-Hermite series

If your profile deviates from a Gaussian shape (e.g. asymmetric profiles) then you can use the so called
Gauss-Hermite series. The lowest order term of the series is a Gaussian. The higher order terms are
orthogonal to this Gaussian. The higher order that we use in our fits are the parameters h3 and h4
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measuring asymmetric and symmetric deviations of a Gaussian. The Gauss-Hermite function used in
XGAUPROF is (Van der Marel & Franx):

Figure 1.1: Gauss-Hermite h3 = 0.2, h4 = 0. Figure 1.2: Gauss-Hermite h3 = 0, h4 = 0.1.

φ(x) = a e−
1
2y

2
{

1 +
h3√

6
(2
√

2y3 − 3
√

2y) +
h4√
24

(4y4 − 12y2 + 3)
}

+ Z (1.3)

with y ≡ x−b
c . Note that the parameters a, b and c are equivalent to A, x0 and σ of a Gaussian, only if

h3 = h4 = 0.

1.4 Voigt profile

The line-shapes of spectroscopic transitions depend on the broadening mechanisms of the initial and
final states, and include natural broadening, collisional broadening, power broadening, and Doppler
broadening. Natural, collisional, and power broadening are homogeneous mechanisms and produce
Lorentzian line-shapes. Doppler broadening is a form of inhomogeneous broadening and has a Gaussian
line-shape. Combinations of Lorentzian and Gaussian line-shapes can be approximated by a Voigt
profile. In fact, the Voigt profile is a convolution of these two line-shapes. It has the form:

φ(ν) =
A

αD

√
ln(2)
π

K(x, y) + Z (1.4)

K(x, y) is the Voigt function and is defined as:

K(x, y) =
y

π

∫ ∞
−∞

e−t
2

y2 + (x− t)2
dt
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where

y ≡ αL
αD

√
ln(2) and x ≡ (ν − ν0)

αD

√
ln(2) (1.5)

y is the ratio of Lorentz to Doppler widths and x the frequency scale (in units of the Doppler
Line-shape half-width αD.
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Chapter 2

The standard Gauss function

2.1 Properties of a profile using moments of a distribution

One way to characterize a distribution is the use of its moments. The kth-moment of a distribution
φ(x) is:

µk =

∞∫
−∞

(x− x0)k φ(x)dx

With these moments one can calculate more familiar properties of a distribution like the line strength
(i.e. area under the curve) γ, the mean X0, the dispersion σ, the coefficient of skewness ξ1 ≡ µ3/µ

3/2
2

and the coefficient of kurtosis ξ2 ≡ µ4/µ
2
2. These quantities are calculated from:

γ ≡
∞∫
−∞

φ(x) dx X0 ≡
1
γ

∞∫
−∞

xφ(x) dx σ2
0 ≡

1
γ

∞∫
−∞

(x−X0)2
φ(x) dx

ξi ≡
1
γ

∞∫
−∞

((x−X0)/σ)2+i
φ(x) dx (i = 1, 2) (2.1)

Skewness is a lack of symmetry in a distribution. If a distribution is symmetric about its mean it has
zero skewness. The skewness defined above is called the Fisher Skewness.
Kurtosis is a measure of how ”fat” the tails of a distribution are, measured relative to a normal
distribution having the same standard deviation. A distribution is said to be leptokurtic if its tails are
fatter than those of a corresponding normal distribution (high peak). It is said to be platykurtic if its
tails are thinner than those of the normal distribution (flat-topped curve). The Fisher Kurtosis is
defined by

ξf = ξ2 − 3 (2.2)

From here we will use ξf if we talk about kurtosis.
Using the expressions above, one finds for our standard Gaussian:

The integrated line strength γ:

γ =

∞∫
−∞

Ae−
1
2 ( x−x0σ )2

dx = Aσ

√
π

2
erf
(

x− x0

σ
√

2

)∣∣∣∞
−∞
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erf is the ’error’-function and erf(−∞) = −1 and erf(∞) = 1.
Then:

γ = Aσ
√

2π (2.3)

The mean abscissa X0:

X0 =
1
γ

∞∫
−∞

xAe−
1
2 ( x−x0σ )2

dx

=
1
γ

[
−Ae−

1
2 ( x−x0σ )2

+A

√
π

2
x0 σ erf

(
x− x0

σ
√

2

)]∣∣∣∣∞
−∞

=
2
γ
Aσ

√
π

2
x0 = x0

X0 = x0 (2.4)

The dispersion σ0:

σ2
0 =

1
γ

∞∫
−∞

(x− x0)2Ae−
1
2 ( x−x0σ )2

dx

=
1
γ

[
− (x− x0)σ2Ae−

1
2 ( x−x0σ )2

+A

√
π

2
σ3 erf(

x− x0

σ
√

2
)
]∣∣∣∣∞
−∞

=
2
γ
Aσ

√
π

2
σ2 = σ2

σ0 = σ (2.5)

The Fisher coefficient of Skewness ξ1:

ξ1 =
1
γ

∞∫
−∞

(
x− x0

σ

)3

Ae−
1
2 ( x−x0σ )2

dx

=
1
γ
Ae−

1
2 ( x−x0σ )2 −2 (x− x0)2 − 4σ2

2 σ

∣∣∣∣∞
−∞

= 0

ξ1 = 0 (2.6)

This is what we expected for a symmetric distribution like a standard Gauss.
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The Fisher coefficient of Kurtosis ξ2:

ξ2 =
1
γ

∞∫
−∞

(
x− x0

σ

)4

Ae
−(x−x0)2

2σ2 dx

=
1
γ

[
Ae−

(x−x0)2

2 σ2
− (x− x0)3 − 3 (x− x0)σ2

σ2
+ 3A

√
π

2
σ erf

(
x− x0√

2σ

)]∣∣∣∣∣
∞

−∞
= 3

ξ2 = 3 (2.7)

ξf = 0 (2.8)

2.2 Partial derivatives of the standard Gauss function

The standard Gauss is represented by the formula:

φ(x) = Ae−
1
2 ( x−x0σ )2

+ Z

The partial derivatives used in the least squares routine to fit the parameters are:

∂φ(x)
∂A

= e−
1
2 ( x−x0σ )2

(2.9)

∂φ(x)
∂x0

= Ae−
1
2 ( x−x0σ )2 (x− x0)

σ2
(2.10)

∂φ(x)
∂σ

= Ae−
1
2 ( x−x0σ )2 (x− x0)2

σ3
(2.11)

the derivatives for the background Z = Z0 + Z1 (x− x0) + Z2 (x− x0)2 are:

∂φ(x)
∂Z0

= 1 (2.12)

∂φ(x)
∂Z1

= x− x0 (2.13)

∂φ(x)
∂Z2

= (x− x0)2 (2.14)

(2.15)

2.3 Relation between FWHM and dispersion of a Gauss

Consider a standard Gauss function without any offset and symmetric around x0 = 0:

f(x) = Ae−
1
2 ( xσ )2

To find a width at certain height given the dispersion, find a xλ with 0 < λ < 1 for which:

Ae
−x2

2σ2 = λA −→ x2
λ = 2σ2 ln

1
λ

8



xλ = σ
√

2Ln 1
λ

A frequently used measure of profile width is the the Full Width at Half Maximum fwhm. This width
can be expressed in σ by substitution of λ = 1

2 and multiplication of the solution by 2 because the
dispersion is a half width!

fwhm = 2σ

√
2 ln

1
1
2

= 2σ
√

2 ln 2 ≈ 2.355σ

fwhm = 2σ
√

2 ln 2

Note that the error in the fitted width at any height, increases or decreases with the same factor.
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Chapter 3

The Gauss-Hermite series

The Gauss-Hermite (GH) series in XGAUPROF with y ≡ x−b
c is represented by:

φ(x) = a e−
1
2y

2
{

1 +
h3√

6
(2
√

2y3 − 3
√

2y) +
h4√
24

(4y4 − 12y2 + 3)
}

+ Z

Simplify this equation further:

φ(x) = aE
{

1 + h3(c1y + c3y
3) + h4(c0 + c2y

2 + c4y
4)
}

or:
φ(x) = aE Q

with E ≡ e− 1
2y

2
, Q =

{
1 + h3(c1y + c3y

3) + h4(c0 + c2y
2 + c4y

4)
}

and further:

c0 =
1
4

√
6 c1 = −

√
3 c2 = −

√
6 c3 =

2
3

√
3 c4 =

1
3

√
6

Then the partial derivatives used in the least-squares fit routine are:

∂φ(x)
∂a

= EQ (3.1)

∂φ(x)
∂b

= aE
1
c

[
h3(−c1 − 3c3y2) + h4(−2c2y − 4c4y3) + y Q

]
(3.2)

∂φ(x)
∂c

= aE
1
c

[
h3(−c1y − 3c3y3) + h4(−2c2y2 − 4c4y4) + y2Q

]
= y

∂φ(x)
∂b

(3.3)

∂φ(x)
∂h3

= aE (c1y + c3y
3) (3.4)

∂φ(x)
∂h4

= aE (c0 + c2y
2 + c4y

4) (3.5)

Note that ∂φ(x)
∂x = −∂φ(x)

∂b . We will need this expression if we want to calculate the position of the
maximum of the GH series. This position is only equal to parameter b if h3 = h4 = 0! To find the real
maximum, solve:

∂φ(x)
∂x

= −aE 1
c

[
h3(−c1 − 3c3y2) + h4(−2c2y − 4c4y3) + y Q

]
= 0

which means solving:

h3(−c1 − 3c3y2) + h4(−2c2y − 4c4y3) + y
{

1 + h3(c1y + c3y
3) + h4(c0 + c2y

2 + c4y
4)
}

= 0
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After rearranging the equation above we get:

λ5y
5 + λ4y

4 + λ3y
3 + λ2y

2 + λ1y + λ0 = 0 (3.6)

with coefficients equal to:

λ0 = −h3 c1

λ1 = h4 (c0 − 2c2) + 1
λ2 = h3 (c1 − 3c3)
λ3 = h4 (c2 − 4c4)
λ4 = h3 c3

λ5 = h4 c4

We applied a bisection to solve the equation. For initial limits we use x1 = b− 1
2c and x2 = b+ 1

2c
which for the bisection equation is the same as y1 = − 1

2 and y2 = 1
2 .

3.1 Moments of the GH series

As stated before, in the function:

φ(x) = a e−
1
2y

2
,
{

1 + h3(c1y + c3y
3) + h4(c0 + c2y

2 + c4y
4)
}

with:
y ≡ x− b

c
the parameters a, b and c are only equal to A, x0 and σ of a standard Gaussian, if h3 = h4 = 0. If we
want to compare these parameters for h3 and/or h4 unequal to 0 then we have to calculate the profile
properties using the moments of the GH distribution:

The integrated line strength γ:

γ =

∞∫
−∞

φ(x)dx = a c
√

2π (1 + c0 h4 + c2 h4 + 3c4 h4) = a c
√

2π(1 +
1
4

√
6h4)

γ = a c
√

2π(1 + 1
4

√
6h4) (3.7)

The mean abscissa X0:

X0 =
1
γ

∞∫
−∞

xφ(x)dx

=
1
γ
a c
√

2π (b+ c c1 h3 + 3c c3 h3 + b c0 h4 + b c2 h4 + 3b c4 h4)

=
1
γ
a c
√

2π
[
b (1 +

1
4

√
6h4) + c (

√
3h3)

]
= b+ c

√
3h3

1 + 1
4

√
6h4

≈ b+ c

[√
3h3 (1− 1

4

√
6h4)

]
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The last step is an approximation. Remember that (1 + αx)β ≈ 1− αβ x for small x. If we include
only the lowest order terms in h3 and h4, then:

X0 ≈ b+
√

3h3 c (3.8)

The dispersion σ0:

σ2
0 =

1
γ

∞∫
−∞

(x−X0)2φ(x)dx

≈ 1
γ
a c
√

2π c2
(1 + 3c0 h4 + 5c2 h4 + 21c4 h4)
(1 + c0 h4 + c2 h4 + 3c4 h4)2

= c2
(1 + 3c0 h4 + 5c2 h4 + 21c4 h4)
(1 + c0 h4 + c2 h4 + 3c4 h4)3

= c2
1 + 2 3

4

√
6h4(

1 + 1
4

√
6h4

)3
≈ c2 (1 + 2

√
6h4)

σ0 ≈ c
√

1 + 2
√

6h4 ≈ c (1 +
√

6h4) (3.9)

The Fisher coefficient of Skewness ξ1:
A set of observations that is not symmetrically distributed is said to be skewed. If the distribution has
a longer tail less than the maximum, the function has negative skewness. Otherwise, it has positive
skewness.

ξ1 =
1
γ

∞∫
−∞

(
x− x0

σ

)3

φ(x)dx

≈ 1
γ

2a c
√

2π c3 3 c3h3

(1 + c0 h4 + c2 h4 + 3c4 h4)3
(
c2(1+h4 (3c0+5c2+21c4))

(1+c0 h4+c2 h4+3c4 h4)3

) 3
2

=
6 c3 h3 (1 + c0 h4 + c2 h4 + 3c4 h4)

1
2

(1 + h4 (3c0 + 5c2 + 21c4))
3
2

=
4
√

3h3 (1 + 1
4

√
6h4)

1
2(

1 + 2 3
4

√
6h4

) 3
2

ξ1 ≈ 4
√

3h3 (3.10)

This is what we could have expected because h3 is the parameter that measures asymmetric deviations.
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The Fisher coefficient of Kurtosis ξ2:

ξ2 =
1
γ

∞∫
−∞

(
x−X0

σ

)4

φ(x)dx

≈ 1
γ

−3ac
√

2π (1 + c0h4 + c2h4 + 3c4h4)2 (−1− 5c0h4 − 9c2h4 − 47c4h4)
(1 + 3c0h4 + 5c2h4 + 21c4h4)2

=
3 (1 + h4 (c0 + c2 + 3c4)(1 + h4 (5c0 + 9c2 + 47c4)

(1 + h4 (3c0 + 5c2 + 21c4))2

=
3(1 + 1

4

√
6h4)(1 + 95

12

√
6h4)(

1 + 2 3
4

√
6h4

)2
ξ2 ≈ 3 + 8

√
6h4 (3.11)

ξf ≈ 8
√

6h4 (3.12)

The initial guesses for the h3 and h4 parameters in the least-squares fit, are set to zero because we
expect that the profile will still resemble the standard Gaussian. If a fit is successful, the profile
parameters γ, X0 and σ, skewness and kurtosis are calculated from a,b, c, h3 and h4 using the formulas
above. For the errors in these parameters we derived:

∆γ =
1
γ

√√√√(∆a
a

)2

+
(

∆c
c

)2

+

(
1

2
3

√
6 + h4

)2(
∆h4

h4

)2

(3.13)

∆X0 =
√

(∆b)2 + 3h2
3(∆c)2 + 3c2(∆h3)2 (3.14)

∆σ0 =
√

(1 +
√

6h4)
2

(∆c)2 + 6c2(∆h4)2 (3.15)

∆ξ1 = 4
√

3 ∆h3 (3.16)

∆ξ2 = 8
√

6 ∆h4 (3.17)
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Chapter 4

The Voigt profile

The Voigt profile is a line-shape which results form a convolution of Lorentzian and Doppler line
broadening mechanisms:

φLorentz(ν) =
1
π

αL
(ν − ν0)2 + α2

L

(4.1)

φDoppler(ν) =
1
αD

√
ln 2
π
e
− ln 2

(ν−ν0)2

α2
D (4.2)

Both functions are normalized. αD and αL are half widths at half maximum. Convolution is given
by the relation

f(ν) ? g(ν) =

∞∫
−∞

f(ν − t)g(t)dt

Define the ratio of Lorentz to Doppler widths as

y ≡ αL
αD

√
ln 2 (4.3)

and the frequency scale (in units of the Doppler Line-shape half-width αD )

x ≡ ν − ν0

αD

√
ln 2 (4.4)

then:

φL(ν) =
1
π

√
ln 2
αD

y

x2 + y2

and

φD(ν) =
1
αD

√
ln 2
π
e−x

2

The convolution:

φL(ν) ? φD(ν) =

∞∫
−∞

1
π

√
ln 2
αD

y

(x− t′)2 + y2

1
αD

√
ln 2√
π
e−t

′2
dt

If you replace ν by ν − t in the expression for x, then

x− t′ =
ν − t
αD

√
ln 2− ν0

αD

√
ln 2 =

ν − ν0

αD

√
ln 2− t

√
ln 2
αD

= x−
√

ln 2
αD

t

14



and we conclude that t′ =
√

ln 2
αD

t and dt′ =
√

ln 2
αD

dt⇔ dt = αD√
ln 2

dt′

φL(ν) ? φD(ν) =
1
αD

√
ln 2
αD

√
ln 2√
π

αD√
ln 2

y

π

∞∫
−∞

e−t
′2

(x− t′)2 + y2
dt′

Replace t′ by t to obtain:

φν(ν) = φL(ν) ? φD(ν) =
1
αD

√
ln 2
π

y

π

∞∫
−∞

e−t
2

(x− t)2 + y2
dt → (4.5)

φν(ν) =
1
αD

√
ln 2
π

1
π

αL
αD

√
ln 2

∞∫
−∞

e−t
2(

ν−ν0
αD

√
ln 2− t

)2

+
(
αL
αD

√
ln 2
)2 dt → (4.6)

φν(ν) =
αL
α2
D

ln 2
π

3
2

∞∫
−∞

e−t
2(

ν−ν0
αD

√
ln 2− t

)2

+
(
αL
αD

√
ln 2
)2 dt (4.7)

Note that αL and αD are both half-width and not FWHM’s. As we will see in the next section:
∞∫
−∞

φν(ν)dν = 1 so the Voigt profile (eq.4.5 or eq.4.7) is also normalized.

4.1 The Voigt function K(x, y)

Part of the expression for the Voigt line-shape is the Voigt function. The formula for this function is:

K(x, y) =
y

π

∞∫
−∞

e−t
2

y2 + (x− t)2 dt

Rewrite the Voigt function using the integral:

∞∫
0

e−yv cos ((x− t)v)dv =
y

(x− t)2 + y2

Then:

K(x, y) =
1
π

+∞∫
−∞

ye−t
2

(x− t)2 + y2
dt

=
1
π

+∞∫
−∞

e−t
2

∞∫
0

e−yv cos ((x− t)v) dv dt

=
1
π

∞∫
0

e−yv
+∞∫
−∞

e−t
2

cos ((x− t)v) dt dv
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=
1
π

∞∫
0

e−yv cosxv

+∞∫
−∞

e−t
2

cos tv dt dv

where we used the relation:

cos(a− b) = cos a cos b+ sin a sin b

and the fact that the sine part of the intergral evaluate to zero.
To continue, we use another well known integral:

+∞∫
−∞

e−t
2

cos (tv)dt =
√
πe−

v2
4 →

K(x, y) =
1√
π

∞∫
0

e−
v2
4 e−yv cos(xv) dv

=
1

2
√
π

∞∫
0

e−
v2
4 −yv(eixv + e−ixv)dv

=
1

2
√
π

∞∫
0

(e−
v2
4 −(y−ix)v + e−

v2
4 −(y+ix)v)dv

Let z = x+ iy, then iz = −(y − ix), iz = (y + ix) then the Voigt function is:

K(x, y) =
1

2
√
π

∞∫
0

(e−( v2−iz)
2−z2 + e−( v2 +iz)2−z2)dv

with:

z = x+ iy

and x and y from equations 4.4 and 4.3.
Let u1 = v/2− iz and u2 = v/2 + iz:

K(x, y) =
1√
π
e−z

2

∞∫
−iz

e−u1
2
du1 +

1√
π
e−z̄

2

∞∫
iz̄

e−u2
2
du2

According to Abramowitz & Stegun (AS): erfc(z) ≡ 2√
π

∞∫
z

e−t2dt so that:

K(x, y) =
1
2

(
e−z

2
erfc(−iz) + e−z̄2

erfc(iz̄)
)

(4.8)

In AS we find the function ω(z) defined as:

ω(z) = e−z
2
erfc(−iz) (4.9)
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With the relations above one recognizes the relation ω(z̄) = ω(−z). If we write the Voigt function in
terms of function w then:

K(x, y) =
1
2
{ω(z) + ω(−z̄)} =

1
2
{ω(z) + ω(z)} = <{ω(z)}

K(x, y) = <{ω(z)} (4.10)
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4.2 Area under the Voigt Line-shape

Remember the Voigt line-shape was given by:

φ(ν) =
A

αD

√
ln 2
π

y

π

t=∞∫
t=−∞

e−t
2

y2 + (x− t)2
dt (4.11)

We want to evaluate
∞∫
−∞

φ(ν)dν. By changing the integration order, one can write:

ν=∞∫
ν=−∞

φ(ν)dν =
A

αD

√
ln 2
π

t=∞∫
t=−∞

y

π


ν=∞∫

ν=−∞

e−t
2

y2 + (x− t)2
dν

 dt

Because x ≡ ν−ν0
αD

√
ln 2, we derive dν = αD√

ln 2
dx

∞∫
−∞

φ(ν)dν =
A

αD

√
ln 2
π

αD√
ln 2

∞∫
−∞

y

π


∞∫
−∞

e−t
2

y2 + (x− t)2
dx

 dt

The inner integral
∞∫
−∞

1
y2+(x−t)2 dx = 1

y arctan
(
x−t
y

)∣∣∣∞
−∞

= π
y so that:

∞∫
−∞

φ(ν)dν =
A√
π

∞∫
−∞

e−t
2
dt =

A√
π
·
√
π = A

This proves what we already expected. Besides the area scaling factor A (which is a fit parameter in the
least-squares fit) the area of the convolution of the two functions (Lorentzian and Doppler line-shapes)
is normalized. The amplitude is found at ν = ν0. Then according to its definition x = 0 and the relation
between the amplitude and area is amp = φ(ν0):

amp = A
αD

√
ln 2
π K(0, y) (4.12)

The error in the amplitude is then:

∆amp =

√
ln 2
π

K(0, y)
√( ∂

∂αD

A

αD
∆αD

)2

+
( ∂

∂A

A

αD
∆A
)2

=

√
ln 2
π

K(0, y)

√(
A

α2
D

∆α2
D

)2

+
(

1
α2
D

∆A
)2

∆amp = amp

√(
∆αD
αD

)2

+
(

∆A
A

)2
(4.13)
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4.3 Partial derivatives of the Voigt Function

Consider the relations z = x+ iy and −z̄ = −x+ iy. Then:

∂ω

∂x
=
∂z

∂x

∂ω

∂z
=
∂(x+ iy)

∂x

∂ω

∂z
=
∂ω

∂z

∂ω

∂x
=
∂(−z̄)
∂x

∂ω

∂(−z̄)
=
∂(−x+ iy)

∂x

∂ω

∂(−z̄)
=
−∂ω
∂(−z̄)

∂ω

∂y
=
∂z

∂y

∂ω

∂z
=
∂(x+ iy)

∂y

∂ω

∂z
= i

∂ω

∂z

∂ω

∂y
=
∂(−z̄)
∂y

∂ω

∂(−z̄)
=
∂(−x+ iy)

∂y

∂ω

∂(−z̄)
= i
−∂ω
∂(−z̄)

Now it is necessary to find ∂ω(z)
∂z . In Abramowitz & Stegun we find the relation ∂ω(z)

∂z = −2zω(z) + 2i√
π

.
Then:

∂K(x, y)
∂x

=
∂

∂x

{
1
2

(ω(z) + ω(−z̄))
}

=
1
2

{
∂ω(z)
∂x

+
∂ω(−z̄)
∂x

}
=

1
2

{
∂

∂z
ω(z)− ∂

∂(−z̄)
ω(−z̄)

}
=

1
2

{
−2zω(z) +

2i√
π
−
(
−2(−z̄)ω(−z̄) +

2i√
π

)}
= − (zω(z) + z̄ω(−z̄))

with ω(−z̄) = ω(z):

= −
(
zω(z) + zω(z)

)
= −2<{zω(z)}

In the same way we write:

∂K(x, y)
∂y

=
∂

∂y

{
1
2

(ω(z) + ω(−z̄))
}

=
1
2

{
∂ω(z)
∂y

+
∂ω(−z̄)
∂y

}
=

i

2

{
∂ω(z)
∂z

+ i
∂ω(−z)
∂(−z)

}
=

i

2

{
−2zω(z) +

2i√
π

+−z(−z)ω(−z) +
2i√
π

}
= − 2√

π
− i {zω(z)− zω(−z)}

= − 2√
π
− i{zω(z)− zω(z)} (because ω(−z) = ω(z))

= − 2√
π

+ 2={zω(z)}
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To summarize:
∂K(x,y)
∂y = −2<{zω(z)} (4.14)

∂k(x,y)
∂y = − 2√

π
+ 2={zω(z)} (4.15)

4.4 Partial derivatives of the Voigt Line-shape

Lets start to recall some definitions:

φ (v) =
A

αD

√
ln 2
π
K (x, y) K (x, y) = <{ω (z)}

with:
x =

v − v0

αD

√
ln 2 y =

αL
αD

√
ln 2

∂

∂x
K (x, y) = −2<{zω (z)} , ∂

∂y
K (x, y) = − 2√

π
+ 2={zω (z)}

Then:

∂φ

∂A
=

1
αD

√
ln 2
π
K (x, y) =

1
αD

√
ln 2
π
<{ω (z)} (4.16)

∂φ

∂v0
=

A

αD

√
ln 2
π

∂

∂x
K (x, y)

∂x

∂v
=

A

αD

√
ln 2
π

{
−2<{zω (z)}

}
−1
αD

√
ln 2 (4.17)

∂φ

∂αL
=

A

αD

√
ln 2
π

∂

∂y
K (x, y)

∂y

∂v
=

A

αD

√
ln 2
π

{
− 2√

π
+ 2={zω (z)}

}
1
αD

√
ln 2 (4.18)

∂φ

∂αD
= K (x, y)

∂

∂αD

{
A

αD

√
ln 2
π

}
+

A

αD

√
ln 2
π

∂

∂αD
K (x, y)

= A

√
ln 2
π

(
−K (x, y)

α2
D

+
1
αD

{
∂

∂x
K (x, y)

∂

∂αD

[
v − v0

αD

√
ln 2
]

+
∂

∂y
K (x, y)

∂

∂αD

[
αL
αD

√
ln 2
]})

= A

√
ln 2
π

(
−K (x, y)

α2
D

+
1
αD

{
−v − v0

α2
D

√
ln 2

∂

∂x
K (x, y)− αL

α2
D

√
ln 2

∂

∂y
K (x, y)

})
=

A

αD

√
ln 2
π

1
αD

(
−K (x, y) +

{
−x ∂

∂x
K (x, y)− y ∂

∂y
K (x, y)

})
= − A

αD

√
ln 2
π

1
αD

(
K (x, y) + x

∂

∂x
K (x, y) + y

∂

∂y
K (x, y)

)
(4.19)
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Chapter 5

Initial estimates

We automated calculating initial estimates using a method described by Schwarz (1968) called the
gauest method. A second-order polynomial is fitted at each pixel position xk using 2Q+ 1 points
distributed symmetrically around xk. The value at xk is not the profile value at that point, but the
median of that value and the two neighbours. Outliers that are not filtered with this median filter can
be masked in the plot with the left mouse button. In XGAUPROF the factor Q is called the
smoothing factor. The coefficient of the second-order term of the polynomial is an approximation of the
second derivative of the observed profile. Assuming that the observed profile can be approximated by
the sum of a few (standard) Gaussian functions, the parameters x0 and σ0 are calculated from the main
minima of the second derivative. The amplitude is derived from the observed profile. Tests using
different threshold values make it possible to discriminate against spurious components; the threshold
values depend on Q and the r.m.s. noise of the observed profile. The Gaussian components are then
subtracted from the observed profile, and the residual profile, mainly the sum of a few remaining
broader components, is handled in the same way as the original. Profiles with a maximum amplitude
smaller than a user given value and profiles with a dispersion smaller than a user given value are
discarded. The initial values for these filters are set to zero. Blanks in the profile and points that are
masked by the user are set to the value of the zero level. If you did not fix a certain zero level, then the
median of the profile is used as an estimate. If you did not fix the r.m.s. noise of the observed profile,
the distance between the quartiles of the profile is used as an estimate.
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