A MULTI-TASKING OPERATING SYSTEM
FOR INTERACTIVE DATA REDUCTION

R.J. Allen and J.P. Terlouw

Kapteyn Astronomical Institute
University of Groningen
9700 AV Gromingen, The Netherlands

Summary:

The development of facilities for user-system communication in
interactive data-processing environments has not kept pace with the
enormous advances which have led to the modern versatile multiuser/
multitasking operating systems. We present here an approach to the
problem of improving the efficiency of this communication, and describe

a program which has been developed for this purpose.

This paper was presented at the "Workshop on IUE Data Reduction”, held
in Vienna on November 17-19, 1980.



1. Introduction:

Over the past ten or more years there have been enormous
advancements made in the versatility and complexity of the operating
systems offered by computer manufacturers for use in their machines.
The evolution has gone from single-user/single-task systems (e.g. PDP-9
Keyboard Monitor) via foreground/background systems (e.g. RTLl) to the
multi-user/multi-tasking systems currently used in modern mini and
midicomputers (e.g. RSX-11M, VAX/VMS), and now even in microcomputers.
The problem is that the development of the interface with the user has
not Lkept pace with the increasing sophistication in the operating
system facilities which are offered to him. When working with a multi-
user/multi-tasking operating system, it is not unusual to find an
experienced user running several terminals at the same time. He starts
up different (perhaps even related) processes from different terminals
because there is no better way available to keep track of the several
things he wishes to do without becoming hopelessly confused. The
operating system may allow him to initiate dozens of interrelated tasks
from terminals and even from within his own running programs, but the
nature of the communication between him and the operating system has
not improved since the days of mechanical teletypes. The situation with
the large batch-processing computers is much better: Timesharing/multi-
tasking process control is the province of a special resident executive
program under the direction of thé computer operator who sits in front
of a special terminal screen on which the executive program continuous-—
ly presents the current status of all machine activity in a visually
meaningful way. Directives to the resident executive program which may
alter the flow of the job stream are simply not made available to the
average user at a standard terminal or to any application program he
may write. On the other hand, the modern multiuser/multitasking mini-
computer operating systems allow essentially every user to assume the
role of the computer operator, but they do not provide him with the
operators console visual display and interactive keyboard which are
required in order to monitor the progress of the various processes
which are relevant even just to his own problem.

We describe here one approach to improving the efficiency of the



-2 -

communication between the user and the computer standard operating
system by inserting a program interface between them. This program com=-
municates on the one hand with the user by formatting the character
terminal screen in a way which is meaningful to him, and on the other
hand with the computer operating system via calls to standard executive

subroutines supplied by the computer manufacturer.

2. Requirements for the User Interface:

A program of the sort outlined above is in a good position to do
a number both general and application-specific jobs for the user during
his session. For example if he is using a library of tasks for inter-
active data reduction in a small research~group enviromment of the type
described by Allen and Ekers elsewhere in this volume, this "Master
Control Task™ or "User Operating System" should do at least the fol-
lowing:

= respond essentially immediately to every command entered by the user
on the terminal keyboard with some reply which is meaningful to him;

- present the messages from running tasks and from itself in a
standard and visually meaningful way to the user terminal screen;

- keep a record of transactions between the user, the computer
operating system, and the applications programs which can help the
user to retrace his actions if required;

= allow frequently-used tasks to be initiated with highly abbreviated
commands

- allow for the provision of default values to application tasks
requiring parameters.

In addition to these user-oriented jobs, the program could also provide
task execution statistics which may be pertinent to the allocation of

the programming efforts of the group.

3. HERMES:

The requirements listed above have been met with a program (the
"Master Task") which essentially plays the role of a messenger between
the user, his applications programs (“servant tasks”) and the computer

operating system (RSX-11M). This messenger function has earned the



- &

program its name, "HERMES". The particular implementation {is, of
course, specific to the host computer operating system, but a summary
of the facilities which HERMES offers to the user may be of more

general interest.

3.1 User communication with HERMES:

The interface to the user is via a standard cursor—-addressable
video display terminal. The display is an output device through which
information can reach the user; the keyboard is an input device via
which the user can enter information in order to “steer” his data
reduction process. HERMES allows for the following kinds of user-
supplied information:

— commands to run a servant task. More than one servant task can be
active at one time; the maximum is determined by a parameter
established when HERMES is built (currently 4):

=~ commands to obtain information from the system or from a servant
task (e.g. ask for the current input parameters of a servant task
to be displayed);

= commands that change the state of the system or the state of a
servant task (e.g. abort a servant; stop the system);

= input parameters to a servant task.

Some examples of these commands will be given later. The facility also
exists to permit a servant task initiated by HERMES to request
("spawn™) the initiation of another servant task (also via HERMES). In
this way a servant task can assume the role of the human user, passing

keyword parameters to the spawned task, examining its status, etc.

3.2 Display organization:

The terminal display screen is divided into three sections, each with

its own purpose, as shown in the sketch below:



Common Qutput Area

Task Status Area

User Type-in Area

1. Common Output Area (length: 18 lines)
This section is used to display information that is sent from
servant tasks and meant to reach the user via the terminal display.

2. Task Status Area (length: 4 lines)
For every active servant task this section contains one line con-
sisting of the taskname, and additional status information which is
updated dynamically. When a servant task requires user intervention
in order to continue, the status information is preceded by a
blinking asterisk. In addition to this, the terminal will "beep”
when a task enters such a state.

3. User Type-in Area (length: 2 lines)

This section is used to "echo" whatever the user types.



— G

3.2.1 The Common Qutput Area and the Log File:
The Common Output Area (COA) on the terminal screen is in fact
one page in a "book"”. Pages in this book are mumbered. On the right-

hand edge of the Task Status Area are shown the number of the page
which is being displayed on the COA, and the page number on which mes—
Bages are currently being written. There are two modes of displaying
information: page mode and non-page mode.

In non-page mode (the default) the current- and display—-page are always
the same, i.e. if a new page 1s initiated, the old one disappears from
the screen. In page mode the information on the screen will stay there
until the user instructs the system to change the page.

There are two classes of commands to manipulate the Common Out-
put Area: control characters; and commands termined with <CR> (carriage
return). The control characters always have an immediate effect,
regardless of the state of any line currently being typed. These page
control characters and commands do not inhibit tasks from continuing to

write in the log file in the normal way.

2n) Page control characters (4 = control key)

+P enter or leave page mode

TAB display previous page and enter page mode

LF display next page or leave page mode if highest page already dis-
played

*L display highest page number ever displayed before

*H make a hard-copy of the page being displayed plus the preceding two
pages
(this command requires one free servant task entry).

b) Page commands

JHC 1:m
make a hard-copy of pages 1 through m.



*n display page number n

*+n display page number being displayed + n

*-n display page number being displayed - n

=string or +=string
search forward for “string" and, if found, display the page con-
taining it

-=gtring

search backwards for "string"

As search commands may require more time than the user is wil-

ling to wait, they are aborted when any character is typed.

3.2.2 Tagk Status Area:
The Task Status Area (TSA) is the middle section of the terminal

screen. It consists of four lines which can contain status information
of active servant tasks. To the extreme right of the TSA a time—-of-day
clock and the current- and display~page numbers are given. Some
examples of the status information are (asterisks shown blink on the

screen):

— When a task has been activated, but is not running yet;
taskname WAITING TO BE RUN
— When a task is running;
taskname RUNNING
or
taskname status message supplied by servant task
- When a task is pausing;
taskname *PAUSING (optional message)
=~ When a task has itself initiated another task, and is waiting for the
gpawned task to finish;
' taskname WAITING FOR other taskname
= When a task requires input;
taskname *input request message from that task
= When a task encountered an error fatal to its own execution;

taskname errormessage ~FATAL



-7 -

- When a task has crashed (1.e. stopped without properly notifying
HERMES) ;
taskname *CRASHED
= When a task has finished processing normally;
taskname +H+FINISHED+H
~ When a task has been aborted by the user;
taskname USER ABORT

The last four messages will disappear as soon as the user initiates an
other servant task or when the user types 4R.

tR can also be used to recover the TSA if it is accidentally destroyed.

3.2.3 User Type-in Area:
The User Type-in Area (UTA) consists of two lines located at the

bottom of the display screen. 148 typing positions are available for
user input. Some examples of the commands that can be typed will be
described later. HERMES itself can also "type" in this area. It does so

in the following cases:

l. When it is likely that a “taskname, keyword=" combination will have
to be typed, HERMES types it for the user.

2. When the user types tC, a punched card is read and the information
contained by it is typed in the UTA.

3. When the user types tY or 4T, a cursor processor is activated. When
the cursor position has been read out, the coordinate values are
typed in the UTA and can therefore appear as keyword parameters for

input to another (active or still to be activated) task.

Text present in the UTA which is either erroneous or otherwise
unwanted 1is simply deleted with the DELETE key (or +U to erase the
whole line). For instance in this way a task waiting on input via a
"taskname,keyword=" request in the UTA need not be satisfied before
initiating some other task. +U erases the text, and a new command can
be given by the user. If the UTA is empty, striking the space bar
causes HERMES to cycle through presenting the currently unsatisfied



keywords of active tasks.

At the end of the UTA, HERMES displays error messages which are related
to the line typed by the user (e.g. BAD SYNTAX, ALREADY ACTIVE, NOT
PRESENT, etc.). When a line is accepted by HERMES, it will disappear
from the UTA; if it is rejected (as can be seen from the error message)
it stays on the display, but will disappear as soon as the user starts
typing a new line. Rejected lines are not displayed in the COA and do
not appear in the Log File.

4. Additional Facilities:
HERMES offers a number of other facilities which we can only

summarize here:

- free format of input numbers from the user, and conversion to the
particular type (integer, real, logical) required by the servant
task;

— user-initiated control of task execution, such as taskname/WAIT or
taskname /ABORT;

- definition of lengthy command character strings as "macros” which can
be referred to later in a shorthand notation. HERMES itself makes use
of this facility to store the values of keywords from the most recent
execution of each task, facilitating repetitive operations;

= provision for supplying default values to tasks requesting parameter
input if the user answers with carriage return instead of typing a
number.

A user's manual which includes more extensive descriptions of

the facilities sketched above is available from the authors.

Acknowledgements

We thank the director and staff of the Groningen University
Computer Center for providing facilities and support for the work
described in this paper, and our colleagues for their critical

evaluation of the performance of the software.



