R pr—

This is the manuscript of a paper given at the International Workshop
on Data Analysis in Astronomy, held at Erice (Italy) from 28 May to

4 June 1984.
The proceedings of this workshop have been edited by V. di Gesu and L. Scarsi

and have been published by Plenum Press (New York, London) in 1985, pp 271-302.

THE GRONINGEN IMAGE PROCESSING SYSTEM

R.J. Allen, R.D. Ekers*, J.P. Terlouw

Kapteyn Astronomical Imstitute
University of Groningen
Postbus 800, 9700 AV GRONINGEN, The Netherlands

“The obsolescence of an implementation must be measured against
other existing implementations, not against unrealized concepts”.

Brooks, 1975; p.9.

SUMMARY

An interactive, integrated software and hardware computer
system for the reduction and analysis of astronomical images is
described. After a short historical introduction, some examples of
the astronomical data currently handled by the system are shown,
followed by a description of the present hardware and software
structure. The system is then further illustrated by describing its
appearance to the user, to the applications programmer, and to the
system manager. Finally, some quantitative information on the size
and cost of the system is given, and its good and bad features are

discussed.

*Present address: National Radio Astronomy Observatory, P.0. Box O,
SOCORRO, N.M. 87801, U.S.A.

I. INTRODUCTION

In this paper we describe the current state of an image pro-
cessing system which has been under continuous development since
1971. This system was originally installed as a single interactive
program in a PDP-9 computer with a single-user operating system and
modest hardware resources, as described previously by Ekers, Allen,
and Luyten (1973). The next version ran as a single program in a
time-sharing CDC 6600 computer during the period 1976-78. The pre-—
sent version, commonly known by the acronym GIPSY, is an organized
set of independent, interactive programs which runs in a PDP 11/70
computer with advanced image display facilities and a multi-user,
multi-tasking operating system.

The design and development of GIPSY has been strongly driven
by the needs of its users, and it is the users themselves who con-
tinue to add most of the new software to the system. Details of the
investment in manpower and of the current size of the system are
given later in this paper; a summary can also be found in the paper
by Allen and Ekers elsewhere in this volume.

Many aspects of GIPSY software architecture have influenced
the designers of newer systems. The original STARLINK project mana-
gers decided to include a number of GIPSY features into the defini-
tion of their first-generation "software environment” in 1980 (SGP
/7). The major new element in their design was to take specific
advantage of the facilities offered by the VMS operating system in
the VAX computers used on STARLINK. Although this plan was largely
abandoned in 1981 in favour of a new scheme (sGP/18.1), several
other groups had already begun the design of systems based on the
first-generation STARLINK software environment. In this indirect
way, GIPSY has had an effect on MIDAS and FIPS (both described in
this volume). Also, the development of PANDORA (Simkin, Bosma,
Pickles, Quinn, and Warne 1983) at Mount Stromlo in Australia grew
out of an early version of GIPSY installed there in 1979.

At the start in 1971, application programs written by the
users for GIPSY concentrated on the analysis of two-dimensional
radio astronomy map data obtained from the Westerbork Synthesis
Radio Telescope (WSRT). With the advent of spectroscopy at the
WSRT, the architecture and application programs were expanded be-
ginning around 1976 in order to allow processing three—dimensional
data. Presently, the users of GIPSY analyse observations made with
a variety of radio, infrared, and optical detection systems. Some
examples of the kinds of data currently being processed are given
in section II.

Our description of GIPSY will follow the general scheme sug—
gested by Allen elsewhere in this volume. Section III describes the
current hardware and software structure of the system. Section IV

discusses the appearance of GIPSY to the user, to the programmer,
and to the system manager. Fimally, in section V we present some
statistics about the system and comment on its good and bad fea-
tures.

II. SOME EXAMPLES OF ASTRONOMICAL DATA

In our paper describing the first generation system (Ekers et
al. 1973), we showed a number of examples of the radio continuum
aperture sythesis data which was being analysed at that time. Six
years later, multiple-image radio astronomy data sets were being
accomodated in GIPSY, and methods of displaying such enormous quan-—
tities of data were being explored (Allen, 1979b). Presently, mul-
tiple-image optical data cubes and infrared observations are also
routinely analysed.

We have chosen a few recent examples from current research
programs; for the most part these results have not yet been shown
elsewhere. Figure 1 illustrates a multiple-image optical data cube,
and Figure 2 shows the results of some analysis on that data. Fig-
ures 3 and 4 have been obtained by a similar analysis of a radio
data cube. Finally, Figures 5 and 6 show exaples of radio and in-
frared continuum maps.

IIT. IMPLEMENTATIONS

13 Hardware Configuration

The configuration of computer hardware in which the present
version of GIPSY is implemented in Groningen is shown in Figure 7.
The host computer and its standard peripherals are provided by the
Groningen University Computer Center as a general facility to the
university research community. Astronomical image processing is the
major activity, but the computer is also used by several other
groups. For image processing and display, three additional devices
are also connected as peripherals to the host computer. The func-
tion of these devices is described below.

Image Computer and Display. This consists of a commercially-
available device® to which a few minor local modifications have
been made. It is used for the manipulation and display of digital
images in a variety of sizes and data formats. The internal orga-
nization consists of six image memories of 512 x 512 B-bit bytes,
but these memories can be re-configured for multiple-byte words and
for larger or smaller images. Besides the standard display (e.g.

a. Model 70E, International Imaging Systems, 1500 Buckeye Drive,
Milpitas, CA 95035.

Fig. 1 Portions of a seeing-limited data cube of optical HB line
emission from a central 5.5 arc minute field on the south-
ern spiral galaxy M83 = NGC 5236, as observed with the
TAURUS imaging Fabry~Perot spectrometer and the Image Pho-
ton Counting System detector on the Anglo—Australian Teles-
cope. The full data cube is 256 x 256 pixels x 98 channels.
The channels selected for this mosaic have a velocity width
of about 27 km s~! and are separated by 20.7 km s~), be-
ginning at 670 km s~! in the upper left corner, and de-
creasing to 360 km s7l at the lower right. The continuum
emission has been estimated from channels outside the range
of the HB line and subtracted from each remaining channel;
however, owing partly to intrumental effects, the bright
nucleus of the galaxy remains visible just to the north of
the center on each channel map. From unpublished work by
R.P.J. Tilanus; see also Allen, Atherton, and Tilanus (1985).

Fig. 2 1Image of the total HBP emission of M83, obtained from the
data cube illustrated in Figure 1 by computing the zero
moment along the velocity axis at each pixel position. The
gray scale along the bottom of the figure indicates the
total number of photons detected per 1.3 x 1.3 arcsecond
pixel. From unpublished work by R.P.J. Tilanus.

Fig. 3

Velocity field of the radio HI line emission from M83, as
derived by computing the first moment along the velocity
axis at each pixel position in a data cube obtained with
the Very Large Array in the United States. The original
data cube size was 512 X 512 pixels X 31 channels; it has
been smoothed for this analysis to a resolution of 15 x 15
arcseconds X 20 km s~'. A threshold technique has been used
to exclude regions of insufficient signal from the velocity
calculation. The field size of 12.8 arcminutes encompasses
more of the galaxy than the HB image of Figure 2, but it
still largely excludes a faint outer HI ring which is part-
ly visible in the corners of the picture. The grey scale
along the bottom is calibrated in km s™l. From unpublished
work by R.P.J. Tilanus.

Distribution of the radio total HI line emission in the
northern spiral galaxy M10l1 = NGC 5457 (lower panel) com-
pared to 1its optical image (upper panel) on the same
scale. North is to the left. The original data cube was
512 x 512 pixels X 16 channels, observed with the Wester-
bork Synthesis Radio Telescope at a resolution of 24 x 30
arcseconds X 27 km s~}. The HI picture shown here was ob-
tained by computing the zero moment of the data cube along
the velocity axis at each pixel position, using a thres-
holding algorithm in order to reject channels with insuffi-
cient signal. From Allen and Goss (1979).

Fig. 5

Distribution of the radio continuum emission from M10l, as
observed with the Westerbork Synthesis Radio Telescope in
the Netherlands at a wavelength near 21 cm. North is to the
left. The resolution is 13 X 16 arcseconds. The arc—shaped
features crossing the image and the small concentric rings
surrounding discrete sources are instrumental effects which
can be removed by further processing. This image can be
compared with the optical picture in Figure 4, and with the
0ld, much less sensitive result shown in Fig. 5 of Ekers et
al. (1973). From unpublished work by Viallefond and Goss.

11%.5"% 02 11 4m40%
I |

11® 4720° 11" 40 Q¢

“65°10/ 0 —

'55012: 0" —_—

6514/ 0/ —

~65°16/ 0 —

‘ESEI 8! 01! —

R

—B55°107 0

—=65°127 0

L=650147 07

_‘55!161 OH

—E5018/ o.r.r

I I
11" 5" 0° 11" 4%40°

| 1
11" 4720° 11" 4" Q°

Fig. 6 Distribution of the infrared continuum emission at a wave-
length of 50 microns from the galactic ring nebula RCW58,
as observed with the Chopped Photometric Channel on board
the Infrared Astronomical Satellite. The resolution is 1.5
x 1.5 arcminutes. The contours show emission by dust, which
has a colour temperature of about 30 to 40K. There is a
good correspondence with Ha features of the emission line
images published in Chu (1982). The radius of the nebula is
about 2.4 pc. From unpublished work by van der Hucht, Jur-
riens, Wesselius, and Williams.

=10-

TeuTWAAL
1apioday 1ea3840 Mﬂﬂﬂﬂw 1013u0) '
19A1209Y b= adey oaprp A5 3 g weadoad
anofo)
0apIA 103Tuoy 103 TUOK 103 TUO);
— 19pod yd ——n J VINAH STBUTIIBL
bl anoten m/d sotydean
Aista sauy
- B o T ZeZsd
S ——— - aaxa1d1IIny [erIag
SaUT] ZgTsd 193 nduoy oap1a
N B12WED
_ 12xa1d1I[NK [ETaDS _ 08pTA €DY s mNH b ne AL
snqrug 1
1911013u0)
13131014 1319 TeutmIag uoTIEDTUNIAIDY
Dajesiap dajutad 3aTosuo) aaandwoy
aut1q Ndd
QK ¢z W <z 04711 dad 108832014
ASI0 28p1a3ae) jutrog-3utieord
SNQSsey
ayae) 1]
1231 I
113D 1110
jys1q Addotg Azowmay
o z1s

0091 '\ U 88 qn 88
oog |

SHoe
S Woed NSTQ

Fig. 7 GIPSY hardware (1983). Arrowheads denote analog signals.

-11-

colour, zoom, etc.) and cursor interactive functions, the device is
capable of performing arithmetic operations on 512 x 512 8-bit and
16-bit signed and unsigned pixels at video rates (100 nanoseconds
per pixel), and of feeding the results back into its own memories.
The performance of the machine for such calculations has been eval-
uated previously (Allen, 1979), and an implementation of the CLEAN
algorithm commonly used in radio astronomy has also been described
(Allen, 1983). Storage of graphic images is provided in six memo-
ries of 512 x 512 1-bit pixels. Graphics can be overlaid on colour
or grey pictures, or displayed on a separate screen.

Video Disk Recorder. This is an analog device® used for
storage and cinematographic playback of processed images. It has a
capacity of 100 colour or 300 grey pictures. Controls are provided
for displaying sequences of pictures at various speeds up to the
full rate of 25 frames per second. The video disk is used for:

- reconnaissance of large 3-dimensional data bases, by coding
one of the principle axes as a time sequence;

- temporary storage of intermediate results for visual inspec—
tion during a lengthy data-processing session;

- blinking between two stored images in order to discover dif-
ferences; and

- storage of processed images for later recording on film or on
video cassette.

Electrostatic Plotter. This device® provides high-quality hard
copy for graphics images such as contour plots and profiles, and
working copies of half-tone images. Colour hard copy is obtained by
photographing the display screen.

2 Software Architecture

The general structure of GIPSY software is analogous to (but
simpler than) the combination of operating system, utility
programs, and compilers found in any general-purpose computer. The
ma jor elements are:

- a master control program to handle user terminal commands and
to initiate and monitor the application programs;

— a three-dimensional data base;

- a set of input-output interface subroutines to allow appli-
cation programs to communicate with the user terminal and the
data base;

- a structured high-level programming language;

b. Model RP3332B, Image Processing Systems, 70 Glenn Way, Belmont,
CA 94002.
c. Versatec V-80.

_12...

- a standardized method for adding new program modules to the
system library; and
- a structured documentation scheme.

Application programs. These are isolated from the user, data
base, and master control program by a set of layered interfaces.
This structure is intended to reduce the level of connectivity of
the whole sytem, according to the precepts of the programming
“principles” discussed by Allen and Ekers elsewhere in this volume.
The general structure of a GIPSY application program is shown in
Figure 8. The code writtem by an astronomer for his particular
problem is symbolised by the inner dashed box (number 3) in this
Figure; a structured Fortran-like language called Sheltran (Croes
and Deckers, 1975) is used for most of our programming. Sheltran
forces the programmer to write his code as a set of closed control
structures, and provides additional facilities for improving the
readability of the program listings. The application program commu-—
nicates with the rest of the system through a small number of stan-—
dard interface subroutines (dashed box numbered 2 in Figure 8).
Finally, the program along with all of the interface and utility
gsubroutines is built into an independent unit of executable code
which requires only the master control program and the host compu-—
ter operating system in order to rum. In this way, faults in one
application program are prevented from having a major impact on the
system as a whole.

Master Control Program. This control program was introduced
into GIPSY in 1979. The motivation was to improve and simplify the
interface between the user and the applications program which he
wishes to run. The design specifications have been discussed in
more detail by Allen en Terlouw (1981). The main activity of this
program turns out to be transferring messages between application
programs and the user, between application programs and the opera-
ting system utilities, and among application programs themselves;
hence its name "HERMES". Its services to the user are:

- to relieve users who are not computer programmers from the
necessity of learning how .to handle the computer manufac-
turer's operating system;

- to provide a simple overview on the terminal screen of the
status of all application programs which are running;

- to standardize the appearance of all application program dia-
logue; and,

- to keep a "log file"” of all activities and to allow the user
to present any page of this file at random on his terminal.

The user services provided by HERMES will be further described
later in the section on the user interface to GIPSY. We mention
here several other features which were not originally basic design
elements but which have turned out to be significant:

-13-

F—__“T_:__:__:___:;“‘__'l
: i 1
l 1 Applications |
= Program v @
g | -————— I |2 ¢
i e et | Structure . T i
- = o =
T "te % | and Syntax | | B 3
- | Se
468 el 0 b -+ i
[| k |
User ’ L
vou . I SR h'—-“_--_l()
Terminal l Control
Interfaces
HERMES (Master Control FProgram) l

Operating
System

Fig. 8 GIPSY applications program structure.

- HERMES is in a position to keep and update command strings for
each application program which it has run. These text strings
contain the most recent values for parameters in the form of
all KEYWORD = VALUE pairs typed by the user for a particular
application program. A macro facility can now be provided by
giving this string an abbreviated name. Application programs
can then be easily re-run with parameters from the last execu-
tion plus any desired current wmodificationms.

- Viewing the message traffic in the other direction, HERMES is
also in a position to analyse requests coming from an appli-
cation program and decide whether to present the query to the
user on his terminal screen or to provide a reply from some
other source. This opens the way for a rather elaborate scheme
of defaults for parameters, which may be conditioned on the
data and on parameters obtained previously. These defaults are
controlled from within the application program, as will be
described in the section on the user interface subroutine to
follow.

— Since HERMES interprets user terminal input on a character-by-
character basis, it can respond to special single-keystroke
commands (which are not echoed on the screen). For example,
the "TAB" key causes the display of the previous page in the
log file on the terminal screen, while “control F" starts a
program to produce a grey representation of the display screen

s il

on the electrostatic plotter. A complete list of these com-
mands is given in Appendix A.

— HERMES provides also a central format conversion facility
between the formats of parameters required by the application
program and the formats available in the command text string.
This facility includes the expansion of parameter lists given
in an "implied DO-loop” format, as will be described in a
subsequent section on the appearance of GIPSY to the user.
Also, user typing errors can be detected immediately and cor-
rections requested before the information is passed to “the
application program.

Data Base Structure. The three—dimensional data base is shown
schematically in Figure 9 as a "data cube”. The actual implemen-
tation of this structure on disk is shown in Figure 10. The entire
data cube including all astronomical header information is stored
as one standard disk file using file definition and maintenance
utilities provided by the host computer operating system. Data sets
are referred to by a "set number”, and the map plane slices (z
axis) of the data cube by a "subset number”. The implementation is
a compromise between conceptual generality, speed of access, and
simplicity.

Interface Subroutines. GIPSY interface subroutines are divided
functionally into three categories: user, data base, and control.
We discuss here as an example onme major subroutine from each
category; a complete list is given in Appendix D.

USRINP: This subroutine is used for obtaining parameters from
the user. It provides the programmer with the following functions:

- 1interrogates the user terminal for a (1list of) parameter(s) if
that parameter (as designated by its keyword) is not otherwise
available;

- provides the parameter in a format chosen by the programmer,
independent of what the user actually typed;

- handles all possibilities for default values of parameters;

- gives immediate syntax error messages to the user, so that the
returned parameters are at least correct in that respect;

- saves "keyword = parameter” pairs for subsequent use in the
application program; and,

- adds text strings recording these transactions in the log
file.

The subroutine is called by the application program as:

CALL USRINP (ARRAY, NELS, TYPE, LENGTH, DEFAULT, KEYWORD, MESSAGE)
The arguments are described in Appendix E, where the documentation
for this subroutine is presented as an example. KEYWORD is a text
string used as a prompt, as a label for the parameter string given
by the user, and as a label to store parameters in a "macro” to be

X

= E 5

@ Unexpected
P\$ Signal

Subset Number

7 8
1 1 }Z

!
l
!
I

PROFILE PLANE

Fig. 9 The three-dimensional data structure or “data cube” of

intensity or number of photons.

used as defaults in a future execution of the program. DEFAULT is
an integer defining what kind of defaults the applications program-
mer will accept:

DEFAULT = O means no default is possible. The user is prompted
and must reply with a parameter. An example is when requesting
the set and subset numbers of an image.

DEFAULT = 1; the user is prompted, and if he replies with a
carriage return the current value of the parameter (preset by
the programmer before calling USRINP) will be returned as a
default. An advantage of this construct is that defaults can
be computed from within a running program, based on previous-

-16-

Data Set Header

Header Subset |

Data
Subset |

(Map 1)

Header Subset 2

Data

Subset 2

Header Subset 3

Data

Subset 3

Fig. 10 Implementation

(o]

of the data base as

> Contiguous

= Contiguous

r Contiguous

one file.

] g

ly-entered parameters and on the data itself. An example is to
default to the full size of the image (determined by the pro-
gram from reading the image header) for some numerical opera-
tion which may in general be done on a restricted area.

- DEFAULT = 2 is intended for all parameters which the average
user does not normally need to know about or to change. If it
really is necessary to change them, this can be done by pre-
specifying the keyword and parameter list any time before the
program arrives at the particular call to USRINP; otherwise
the application-program-selected defaults are automatically
taken. Keywords with this level of default are often referred
to as "hidden keywords”, since under normal circumstances no
prompts appear on the user's terminal. They are also very
useful for testing programs.

‘Note that the user may give a parameter string at any time. The
master control program saves the information as an ASCII string
until the applications program requests it.

The default facilities described above, coupled with the capa-
city of the master control program to save command strings, provide
a high degree of flexibility for both novice and experienced users
of GIPSY. Novice users usually wish to use only the standard fea-
tures of an application program; they appreciate being extensively
prompted for relevant parameters, and are happy to have the program
choose sensible defaults by itself. Also, they do not want to be
asked for parameters which are not necessary. More experienced
users quickly find such prompting to be a nuisance, and prefer to
prespecify parameters or use a private set of defaults defined in a
text string when starting a program. In this way they can also use
special features of the program accessible via hidden keywords.

Flexibility in the interpretation of defaults is also avail-
able to the GIPSY programmer. For instance the “carriage return”
default = 1 can be taken to mean different things in different
parts of a program even if the keyword is the same. As an example,
the program DISK begins by asking the user to provide the keyword
SET=; carriage return is interpreted to mean that the user wants an
abbreviated list of all data sets available to him. After providing
this list, the program then prompts for SET= again, but now a car-
riage return stops the program. In both cases, if the user replies
with a specific set number the program gives him a description of
all subsets contained in that data set.

READXY: This subroutine is used to read a piece of the data
cube from disk storage in the map plane (see Figure 9). The data
set is specified by a SET number, and the location on the z—axis by
the SUBSET number. The call is:

CALL READXY (SET, SUBSET, XBEG, YBEG, ARRAY, NX, NY, IER)

e [e

The frame to be extracted from the given subset is defined by its
beginning coordinates XBEG, YBEG, and size NX, NY. The data is
returned in ARRAY and an error code in IER. NY may be 1 if only one
line of data is required. The coordinate system used for subsets is
the normal, right-handed system which one learns in primary school,
with the point (0,0) at the center of the image; XBEG, YBEG there-
fore refer to the lower left corner of the frame to be extracted.
GIPSY application programs normally do not concern themselves with
opening and closing files of image data. The interface and control
routines handle this automatically; if not already open, a data
file is opened at the first access request and closed when .the
program terminates. Finally, we note that pixel values are stored
on disk and manipulated in programs as floating-point numbers. This
entirely avoids requiring programmers to pay attention to integer
overflow problems (which were a headache in our first-generation
system), or to write both fixed- and floating-point versions of
their code.

DEPUTY: This subroutine allows one application program to run
a second application program, using the parameter list of the first
program. The first program may add to its parameter list any key-
words which it wishes to pass using the subroutine WKEY before
calling DEPUTY. It may be convenient (or even necessary) to rename
keywords using the subroutine SUBST before calling DEPUTY. For
instance the output data set identified by the keyword SETOUT= can,
by this means, be associated with the input SET= of a subsequent
program started with DEPUTY. The call is:

CALL DEPUTY (TASK),
where the one input argument is a text string giving the name of
the application program to be started. Execution of the first pro-
gram is normally suspended until the second program has finished.
The second program may transmit parameters back to the first by
using WKEY, provided the keywords are then requested (by calls to
USRINP) after the first program has resumed.

Notes on keywords and control subroutines. The parameter
string for a given application program is private to that program;
GIPSY keywords are local. This is done in order to minimize the
connectivity of the system. Programs which are started by other
programs do share keywords; however, the system treats such "spawn-
ed” programs as a single entity with the name taken from the first
program. The user is therefore confronted only with that name, and
is unaware that the work may be carried out by several different
application programs in succession. A program failure at the end of
the chain causes HERMES to abort all other programs in that chain.

Updating the software library. Programs which are ready to be
made available for general use are inserted into the system library
by means of a standard procedure. This procedure, which may be
operated by the programmer himself, is automatically started by

=] G~

logging on the host computer operating system with a special pass-
word. The procedure is set up in an interactive program which re-
quests the names of the input files, processes these through compi-
lers, builds the task (executable program) if necessary, and writes
the results to the program library on disk and to backup media. It
also makes entries in a history file where all permutations on the
system library are recorded. After this procedure has been run
successfully, the programmer deletes all files pertinent to that
program which he may have in his own disk space. This saves on
space, but also guarantees that when someone else may wish to modi-
fy that program he may be confident that the system library con-
tains the most recent, operable version of the source code. The
update procedure also provides for deleting programs and documents
which are no longer required.

Documentation scheme. This scheme 1is divided into three
levels, designated 1, 2, and 3:

— Level 1 documents provide general information and descriptions
of how to operate the various application programs. Users need
only be familiar with documentation at level 1;

— Level 2 documents provide descriptions of all interface sub—
routines to the user terminal, data base, and for control. At
this level we also find various utility subroutines and slave
tasks, and descriptions of how to write level 1 programs;

— Level 3 documents describe software which is specific to the
particular configuration of computer hardware and host oper-
ating system currently in use. Programs at this level are
usually not explicitly called by an astroncmer who is writing
an application program; they are, of course, called by the
level 2 subroutines which he uses.

Documentation examples are given in Appendices C and E.

IV. HUMAN INTERFACES TO GIPSY

As discussed by Allen elsewhere in this volume, a data pro-
cessing system presents a different appearance to different people
depending on whether the system is viewed by a user, a programmer,
or a system manager.

1 The User's View

An astronomer who plans to use GIPSY for his data analysis may
begin by reading a set of documents collected in the "New User's
Documentation Package”. Time on the system for production process-
ing is normally allocated to users in blocks of several hours long.
Each major user (or guest) of GIPSY receives a private disk pack
which he may use for his own data processing; these packs can heold
up to about 80 maps of 512 X 512 pixels. After installing his disk
pack on the drive, he sits at the control console facing a standard

-20-

video display terminal and keyboard (VDU) and flanked by a number
of television screens. The user station is shown in Figure 11. Log-
ging on the host computer with a special password initiates an
automatic start-up sequence which, besides performing a number of
housekeeping functions, presents the user with the latest page of
the Daily News. This is a computerized text file containing commen-—
tary on software bugs and on the latest modifications to the sys-
tem. The master control program HERMES then takes over, re-orga-
nizing the VDU screen from the conventional line-by-line format to
the format sketched in Figure 12. The subdivisions are:

- the "User Command Area”, consisting of two lines at the bottom
of the screen. All printable characters typed by the user are
echoed here;

- the "Task Status Area"” consisting of 4 lines showing the
status of currently active tasks (i.e. application programs);

- the "Common Output Area™ consisting of the top 18 lines of the
screen. This section is used to display pages of the log file,
showing information sent from application programs.

The Common Output Area (COA). The COA shows one page of 18
lines from the log file. These pages are numbered, and on the right
edge of the screen in the Task Status Area are shown the page num-
ber currently being displayed on the COA, followed by the current
page number on which HERMES is writing messages. There are two
modes of displaying the log file information: “page mode”, and
"non-page mode”. In non-page mode (the default on startup) the
current— and display-page are always the same, i.e. if a new page
is initiated, the old one disappears from the screen. In page mode
the information on the screen will stay there until the user in-
structs the system to change the page. There are two classes of
commands to manipulate the COA: control characters; and commands
terminated with <CR> (carriage return). The control characters
always have an immediate effect, regardless of the state of any
line currently being typed, and are not echoed in the User Command
Area. These page control characters and commands refer only to the
display, and do not inhibit tasks from continuing to write in the
log file in the normal way. Commands of both types are listed in
Appendix A. '

The Task Status Area (TSA). This is the middle section of the
terminal screen consisting of four lines which may contain status
information of "active servant tasks”; they are the application
programs requested by the user, or utility programs initiated by
HERMES. To the extreme right of the TSA a time-of-day clock and the
current- and display-page numbers are given. Some examples of the
status information are (asterisks shown blink on the screen):

- When a task has been activated, but is not running yet;
taskname WAITING TO BE RUN

- When a task is running;
taskname RUNNING

o

Fig. 11 GIPSY user station.

—29-

<USER >TRANS ,SETOUT=
Output set and subset(s): 0,1
<USER >TRANS,SET=6 1,SETOUT=
Input set and subset(s): 61
Output set and subset(s): 0,1
- {USER >TRANS /HAIT
<USER >TRANS/6D
<USER >ROTATE
<USER >ROTATE,SET=6 |
ZUSER >ROTATE,SETOUT=
<USER >ROTATE,SETOUT=0 1|
<USER >ROTATE,POS=
Set 6, 1 from (-127-127) to (128 128)
<USER >ROTATE,AREA=
COTRAS: instrument unknown. HSRT assumed. #2UARNING #:
=-127 T0 128 M=-127 T0 128
{USER >ROTATE,ANGLE=10

- ROTATE Set @, 13 8 percent of map ready

- PRINT % default is 30 # 50 if only the center is given
- CPLOT #+ Type set and subsets (0,1)

- LOOK USER ABORT

PRINT ,AREAR=

12:18
549 551

Fig. 12 User VDU terminal screen format.

or

taskname status message (supplied by servant task)

= When a task is pausing;
taskname *PAUSING (optional message)
- When a task requires input;

taskname *input request message from that task

-~ When a task encountered a fatal error;
taskname error message —FATAL

-~ When a task has crashed (i.e. stopped without notifying HERMES);

taskname *CRASHED

- When a task has finished processing normally;
taskname +HFINISHED+H

- When a task has been aborted by the user;
taskname USER ABORT

The last four messages will disappear as soon as the user initiates
another servant task or when the user types *R. The command 4R can
also be used to recover the TSA if it is accidentally destroyed.

23—

The User Command Area (UCA). The User Command Area (UCA) con-
gists of two lines located at the bottom of the display screen. It
is logically one long line, with 148 typing positions available for
user input. Some examples of the commands that can be typed will be
described later. HERMES itself can also "type” in this area. It
does this for instance in the following cases:

- when it is likely that a "taskname,keyword=" combination will
have to be typed, HERMES types it for the user;

- when the user types +Y or 4T, a cursor processor is activated.
When the cursor position has been read out, the coordinate
values are typed in the UCA and can therefore appear as key-
word parameters for input to another (active or still to be
activated) task.

Text present in the UCA which is either erroneous or otherwise
unwanted is simply deleted with the DELETE key (or U to erase the
whole line). For instance in this way a task waiting on input via a
"taskname ,keyword=" request in the UCA need not be satisfied before
initiating some other task. 4U erases the text, and a new command
can be given by the user. If the UCA is empty, striking the space
bar causes HERMES to cycle through presenting the currently un-
gatisfied keywords of active tasks.

At the end of the UCA, HERMES displays error messages which
are related to the line typed by the user (e.g. BAD SYNTAX, ALREADY
ACTIVE, NOT PRESENT, etc.). When a line is accepted by HERMES, it
will disappear from the UCA; if it is rejected (as can be seen from
the error message) it stays on the display, but will disappear as
soon as the user starts typing a new line. Rejected lines are not
displayed in the COA and do not appear in the log file.

Finding the documentation. Copies of all user documentation
are kept in loose-leaf binders at the control comnsole. This docu-
mentation includes general information as well as descriptions of
all Level 1 application programs. Copies of these documents can be
produced on the VDU screen and printed in the log file by entering
the command:

HELP TASK= program name.

A one-line description of the application programs currently avail-
able in GIPSY is given in Appendix B. Several frequently-used tasks
can be initiated using the (programmable) function keys located
across the top of the VDU keyboard.

Giving Parameters to Tasks. If the user does not pre-specify
any parameters when initiating a task, the task will prompt him for
the necessary information as it proceeds or else take default va-
lues as indicated in its documentation. As the user becomes more
experienced the screen dialogue and delays involved in answering
these prompts can be circumvented by pre-specifying parameters, for
example as follows:

-24—

PRINT SET= 12,4 AREA= FC DG 20 20
This command will initiate a task to print the pixel values from an
area of 20 x 20 grid points centered on the field center of the map
in set 12, subset 4. The KEYWORD-PARAMETER pairs may be given in
any order, separated by commas or blanks. HERMES will save the
keywords, giving the associated parameters to the application task
when it requests them. Several frequently-used keywords such as
SET= and AREA= are available as single-key commands by means of
the row of function keys across the top of the terminal keyboard. A
task which has been previously run can be repeated with the same
parameters by typing @TASKNAME. Any selected parameters the user
wishes to change can simply be appended; for instance if the user
wishes to repeat the execution of PRINT described above but on a
different map he need only type
@PRINT SET= 6,3

which will print the pixel values from the map in set 6, subset 3,
over the area given in the immediately previous initiation of the
task PRINT. Note that the KEYWORD=PARAMETER pairs for a given task
apply only to that task and not to any another task, even though
the keywords for different tasks often have the same names.

Formats for Input Parameters. The format for input values is
completely free; HERMES takes care of converting the numbers into
the formats actually required by the application task. Any of the
legal Fortran formats are accepted; otherwise list elements are
assumed to be character strings. If a character string has been
requested by a task, no conversion is made. For real and integer
values the user may give a repetitive list in the form s:e:i where
s = starting value, e = ending value, and i = increment. For in-
stance the keyword for contour levels

CNT= -3:10:2
means the list of contour levels =3, -1, +1, +3, +5, +7, +9.
Coordinates which have been requested as parameters can be given to
any task in a variety of forms, as specified by a prefix followed
by a blank. For instance

POS= * 13 27 6.4 23 34 10 g
designates a position at right ascension (RA) = 131277634, decli-
nation (Dec) = +23° 34' 10". The prefixes currently available are:

G grid units in RA and Dec with respect to the map center,

e.g. G 10 -12. This is also the default if no prefix is
given;

* celestial coordinates RA and Dec in hours, mins, secs and

degrees, mins, secs;

D RA and Dec in degrees;

0 RA and Dec in degrees offset from the map center;

RP polar coordinates from map center in degrees;

FC celestial coordinates of the map center; and

LB galactic coordinates in degrees.

=25=

A rectangular framed area of a map may be specified either as the
lower left and upper right corner or as a center and size; HERMES
knows which of the two you mean. For instance:

AREA= -10 -12 +4 +6.

or

AREA= =3 =3 DG 15 19
both refer to the frame with lower left cormer X,Y = =10, -12 and
upper right corner +4, +6. Two further prefixes are available for
areas:

DD size in degrees of RA and Dec; and

DG size in grid units.
For instance the command

AREA= FC DG 11 11
is equivalent to

AREA= =5, =5, 5, 5
and refers to an area of 11 x 11 grid points located at the map
center.

Using the Cursor. A very convenient way of obtaining position
and amplitude information from an image is to use the cursor, mo-
ving it by means of the trackball and selecting the desired para-
meters with the function keys on the cursor box. The cursor task
can be started with 4Y or %T. The first cursor is a small cross
which comes equipped with the grid coordinate values of the pixel
in the image under the cursor; the second is a "full screen” cursor
to be used with vector plots such as contour diagrams. Information
about the coordinates and amplitude of the pixel under the cursor
is continually updated in the task status area. Depressing function
keys on the cursor box causes parameters to be "typed” in the user
command area, as follows:

- button A gives the current grid coordinates of the cursor in

the order X, Y;

= button B gives the coordinates in right ascension and decli-
nation;

= button C gives the pixel amplitude; and

= buttons A and B together terminate the cursor task.

Note that the parameters entered into the UCA in this way are the
same as 1if the user had typed them himself; characters may be
erased (with the DELETE key) and new characters inserted until the
desired values are obtained.

Finishing the session. Since the results of his data analysis
are kept on his own private disk, the user may easily interrupt his
computer work and return to it in the future. The session is closed
by initiating the task BYE, which also will take care of saving, or
printing and deleting, the log file accumulated during the analysis
session. If kept, the log file remains on the user's private disk;
at the following startup, the system will continue at the same
place it left off.

-26—

Feedback from the users. It is virtually impossible to test
each application task for reliable operation under all combinations
of input parameters and data. Failure of specific tasks, or sug-
gestions for improvements of their operation or documentation must
be brought to the attention of the person currently responsible for
that task (see the documentation of the task) by using a Software
Failure Report. A stack of blank forms is available at the GIPSY
user console. The original, along with all supporting documentation
(e.g. relevant pages from the log file), is to be given directly to
the person concerned; the carbon copy is to be added to the stack
kept in the accompanying folder at the user console in order to
indicate to the System Manager and to subsequent users that the
problem has been reported. All active users of GIPSY are strongly
encouraged to attend the weekly Software Lunch Meetings, where
suggestions for improvements and current problems are discussed.

2. The Application Programmer's View

Although there are currently about 180 application functions
available in GIPSY (concentrated in 155 programs, cf. Appendix B),
the methods of data analysis become more complex with the experi-
ence gained and there is continual pressure to modify and improve
existing programs. In addition, GIPSY is now being used for the
analysis of optical and infrared astronomical data as well as the
radio astronomical observations for which the first set of applica-
tion programs were designed, and new software is required for this.
Many users therefore become programmers; in this section we des-
cribe GIPSY from that point of view. The first step for a new pro-
grammer is to read over the contents of "The New Programmer's Docu-
mentation Package”.

Presenting the Problem. It's important that a proposal to
write a new program be discussed with other astronomers using and
programming GIPSY. The reasons for this are:

= the required function may already be available, perhaps as a
combination of other functions;

— someone else is already working on the problem; or

- others need such a program too, and would like to offer sug-
gestions about how to write it.

The regular weekly Software Lunch Meeting is the occasion to
present a proposal for a new program. Such a proposal is best made
in the form of a draft of the user documentation for the program,
describing its function and all the keywords. This gives others a
chance to propose improvements before such changes would require
rewriting the code.

Software Conventions. Programs written for GIPSY are expected
to conform to a number of conventions and standard practices which
have been adopted in order to improve the maintainability and

g

durability of the software:

— use a structured programming language. For those who are used
to programming in Fortran, the Sheltran language is an excel-
lent alternative which 1s quickly learned and strongly sup-
ported in GIPSY; and

- become familiar with the function and features of the standard
level 2 subroutines which are used to interface GIPSY appli-
cation programs to the data base, to the user, and to HERMES.

The level 2 interface subroutines are listed in Appendix D.

In addition to these general practices, there are a number of
specific syntactical conventions to be observed. Some examples of
these are:

— make frequent use of subroutines, or of Sheltran procedures if
subroutines are not convenient. They improve the modularity of
the program and make it easier to read;

- avold the use of COMMON to transfer information to private
subroutines;

— subroutines which are private to the program should be kept in
the same source code file as the main program itself;

— use PARAMETER statements to define array dimensions, buffer
sizes, FOR loop limits, etc. This facilitates modifications in
the future;

— avoid EQUIVALENCES;

— declare the TYPE of all variable and arrays explicitly; and

- do not use multiple ENTRY or RETURN points in subroutines.

An example of a GIPSY application program is given in Appendix E.

Documentation Conventions. As we have suggested earlier, the
user documentation for a new application program should be the
first thing to be written, before the program is coded. The stan-
dard format for the user documentation is given in Appendices C and
E. Descriptions of how the program works belong in the code of the
program itself; see Appendix F for an example. As a good rule of
thumb, there should be as many lines of description in the program
as there are lines of executable code.

Coding and Testing. An applications programmer receives a
private password for the computer and a modest allocation of disk
space on which to develop the software. Three source files have to
be constructed:

= the application program SHELTRAN code;
=~ a command file with the instructions for building the task;
- the final user documentation.

When the program has been compiled and the first task success-
fully built, a test is needed. This takes priority over production
data analysis during working hours. Getting HERMES to rum a test
program is easy; the program name 1s merely preceded by the pro-
grammers own identification under which the test version of the

-28-

application task resides. If full error message reporting is desi-
red in order to catch difficult bugs, this can be switched on at
start-up by choosing the appropriate answer to the start-up ques-
tion.

The Referee System. Software written for GIPSY is subject to
peer review; a referee can be selected by the program author.
Referees examine the source code and the accompanying user docu-
mentation for comprehensibility; they are not required to check the
program operation at the user console.

Updating the Software Library. This topic was described pre-
viously in section III.2 on the software architecture. After the
procedure has run successfully, the programmer is given the oppor-
tunity of adding some prose to the DAILY NEWS in order to inform
others of the changes and additions. Since all the source versions
are now safe on the backup disks and the task itself is in the
GIPSY library, the programmer can delete all files pertaining to
that program under his own identification. This will be required
anyway, since the number of blocks available to him on the system
disk 1s too small for more than a few software projects.

3. The System Manager's View

The main job of the System Manager is to promote communication
amongst the users and programmers. There are a number of mechanisms
in GIPSY for accomplishing this:

~ the list of current software projects;
= the Daily News:

- software failure reports;

- the weekly software discussions; and
= the referee system for new software.

Except for the first item, these topics have been mentioned
earlier. The 1list of current software projects is an important
working document for the system manager. It is a computer text file
which he maintains, with a brief entry describing the nature, cur-
rent status, and name of the persons responsible for new programs
under development and for improvements to existing software.

In the course of the development of GIPSY over the years we
have found it useful for the system manager to have the close as-
sistance of two colleagues with rather different specializations:

- a professional programmer familiar with the operating system
of the host computer but not concerned with analysing astrono-
mical data; and :

- a senior user intimately involved with astronomical applica-
tions but not concerned with writing software. This person
acts as the "friend of the users”.

w2

V. AN EVALUATION

As we have stated in the introduction, we view the present
version of GIPSY as the product of more than 13 years of continuous
development. We are now on the verge of moving to our fourth host
computer and operating system, and it is an appropriate moment to
sum up the current status.

1. System Size and Cost

An impression of the size of the system software can be ob-
tained from Tables 1 and 2, which provide a breakdown according to
level and type of the programs and documentation. We continue to
invest manpower at the rate of 3 to 4 man-years per year, a typical
value since the start of the project. The average maintenance and
development capacity is about 35,000 1lines of source code plus
documentation per man.

The hardware and software costs are summarized in Table 3,
integrated over the expected 8-year lifetime of one generation of
computer hardware. In this time span, the hardware and software
costs are about equal.

2. Good Features of GIPSY

From the experience of users and programmers we note the fol-
lowing positive points about GIPSY:

= there is a large number and great variety of application pro-
grams, and the system has the flexibility to allow them to be
combined in novel ways;

TABLE 1 .
Breakdown of GIPSY software on the host computer system
disk as of 10 October 1984 by 1level, including binary
tasks, (level 1 only), source code, object libraries, and

documentation:
Level Description Number of Total Size
Programs (Megabytes)
1 Application Tasks 155 13.2
2 Interface and
Utility Subroutines 116 0.8
3 Hardware and Operating
System Subroutines 96 0.3

.

TABLE 2

Breakdown of GIPSY software on the host computer system
disk as of 18 October 1984 by type. The typical packing
density for source code is 38 lines per kilobyte and for

documentation 25 lines per kilobyte.

File Type Number of lines
SHELTRAN source code 83,227
FORTRAN source code 13,001
MACRO source code 2,548

TOTAL 98,776
Level 1 16,597
Documentation [: Level 2 8,205
Level 3 3,063
TOTAL 27,865
TABLE 3

Rough Costs of GIPSY in millions of Dutch guilders
over 8 years (1977 - 1985).

Hardware items Cost
PDP 11/70 with peripherals 0.90
12s image computer and
IPS video disk 0.42
Total Investment (1977) 1.32
Contract maintenance/yr 0.1
Local engineering help/yr 0.02
(1 day per week)
Total maintenance costs (8 yrs) 0.96
Total Hardware cost over the lifetime
of the project 2.28
Image processing software development costs,
3.5 man-years/year over 8-year lifetime of
the project (3.5 x 0.08 x 8).
Total software costs 2.24

...31..

simultaneous operation 'of several application programs 1is
quite useful, and the system provides a good overview of what
is going on;

the use of private data disk packs is much appreciated by the
users (it avoids a lot of tape operations and gives them added
flexibility in carrying out lengthy data processing jobs), and
relieves the system manager from the odious task of allocating
and recuperating space on the system disk;

the software “"environment” of interface subroutines eases the
job of developing new application programs;

it is easy to test new programs;

system maintenance is simplified by the standard updating
scheme with automatic backup;

the standardization on floating point numbers simplifies the
software; and

the adoption of common programming standards has led to an
integrated system with a high level of modularity and internal
consistency.

Present Inadequacies

There are a number of areas for improvement in the future:

the implementation of the data base structure on disk is not
sufficiently flexible. For instance, the astronomical headers
are of fixed length and cannot be extended, and subsets cannot
be separately deleted from a data set;

many users are of the opinion that it would be helpful to
their bookkeeping to have a history file attached to a data
set. This file lists the processing operations carried out on
that set in chronological order;

many application program tasks are so large that they must be
built up of overlaid segments in order to fit in the 56 kilo-
bytes of address space available (after subtraction of 8 kilo-
bytes shared region required for inter-task communication).
Constructing overlays requires an unnecessarily detailed know-
ledge of the computer hardware and operating system and is
prone to errors;

the image computer is not fully integrated into the data base
structure; and

the application programs currently available are quite heavily
oriented to the analysis of radio astronomical images, both
maps and spectral line profiles. More application software is
needed for handling optical images, both surface photometry in
the map plane and spectra in the profile plane. The software
currently available is useful for radio data cubes from the
Westerbork telescope and the VLA, for optical emission—line
data cubes obtained with TAURUS, and for sky maps obtained
with IRAS. GIPSY is not yet able to conveniently handle IPCS
spectra, galaxy photographic surface photometry, or radio

-32-

single dish line profiles or interferometer visibility data.

Finally, we mention several points occasionally presented as
inadequacies of GIPSY, but which we consider debatable:

- the master control program does not allow user access to oper-
ating system utility programs;

= the programming language (Sheltran) is not widely known;

- communication between tasks is limited to "Keyword=parameter"
pairs. Large data buffers cannot be transferred, and synchro-
nous simultaneous operation of tasks is not supported;

- the system does not support “"minimum match™, so that task
names and keywords must be typed in completely; and

- the "HELP" documentation is limited, so that a new user has to
know quite a lot about the system before he can get started.
There are not enough "Documents about Documents”.

ACKNOWLEDGEMENTS

We owe a great deal to the graduate students and staff members
who have used, programmed, and criticized GIPSY over the years.
Many good aspects are due to them, and they have helped us under-
stand why many of our own ideas were not as good as we thought.
Several staff members have made major contributions to the appli-
cation program library and deserve special mention: Miller Goss,
Ulrich Schwarz, and Seth Shostak. Renzo Sancisi has offered many
excellent suggestions for improvements (many of which are unfortu-
nately still pending), and has acted very effectively for quite
some time as the "user's friend”.

The manuscript and illustrations were prepared with the assis—
tance of Ineke Rouwé, Gineke Alberts, George Comello, Wiebe Haaima,
and Geert Tamminga.

The PDP 11/70 computer is provided and maintained by the Gro-
ningen University Computer Center. We are grateful to the director
and his staff for their continued cooperation.

REFERENCES

Allen, R.J. 1979a, in Image Processing in Astronomy, ed. G. Sedmak,
M. Capaccioli, and R.J. Allen (Osservatorio Astronomico di
Trieste), 233. :

Allen, R.J. 1979b, in Image Formation from Coherence Functions in
Astronomy, ed. C. van Schooneveld (Reidel, Dordrecht), 143.

Allen, R.J. 1983, in Three-Day In-Depth Review of the Impact of
Specialized Processors in Elementary Particle Physics, ed.
Istituto Nazionale de Fisica Nucleare Sezione de Padova
(Padova, Italy), 323. -

Allen, R.J., Atherton, P.D., Tilanus, R.P.J. 1985, in The Milky Way
Galaxy, ed. H. van Woerden et al. (Reidel, Dordrecht), 275.

Allen, R.J., Goss, W.M. 1979, Astron. Astrophys. Supp. 36, 135.

Allen, R.J., Terlouw, J.P. 1981, in Proceedings of the Workshop on
IUE Data Reduction, ed. W. Weiss (Observatory of Vienna), 193.

Brooks, F.P. Jr. 1975, The Mythical Man-Month (Addison-Wesley).

Chu, Y.-H. 1982, Astrophys. J. 254, 578.

Croes, G.A., Deckers, F. 1975, Informatie 17 (Netherlands Society
for Computer Science, Paulus Potterstraat 40, Amsterdam), 109.

Ekers, R.D., Allen, R.J., Luyten, J.R. 1973, Astron. Astrophys.
27, 11.

Simkin, S.M., Bosma, A., Pickles, A.J., Quinn, G., Warne, D. 1983,
Wisconsin Astrophysics Series (Univ. Wisconsin).

SGP/7, Starlink General Paper 7, 1 July 1980 (Rutherford and
Appleton Laboratories Computing Division).

SGP/18.1, Starlink General Paper 18.1, 11 September 1981.

=34-

Appendix A. Special HERMES commands.

Control character commands are produced when the user types a
letter key while pressing CTRL (control):

~A if only one program is active: abort 1t;

~D 1ist data sets in use;

~E step forward in table of active display programs;

~F make hard-copy of grey-scale image currently displayed on TV:
~G make hard-copy of graphics plot currently displayed on TV:
“~H {backspace) same action as DEL;

~1 {TAB) display previous page and enter page mode;

~J {1ine feed) display next page;

~K activate servant display program KI1JK;

L display highest page number ever displayed before;

~M {carriage return) terminate fnput line:

“N make hard-copy of terminal screen contents;

“~P enter or leave page mode;

“R rewr ite Task Status Area;

e activate cursor processor program for plots;

“~U delete text currently present in User Command Area;

W step backwards in table of active display programs;

2 activate cursor processor for images:

~Z when typed three times: stop HERMES immediately;

DEL delete last character in User Command Area;

SPA {space bar) if User Command Area is empty or only contains

a keyword prompt: step forwards in table of programs
requesting keyword input;

ESC step forwards in table of currently active servant programs
and display the program name in the User Command Area.

-35-

Appendix A. (continued)

Other commands:

name /ABO abort servant program;

/END stop MERMES;

/ERRLEV n set error level to n;

name /GO ~ resume a suspended servant program;

FHC 1:n. make hafdcopy of log file pages 1 through m;

/MESLEV n set message level to n;

/MODE n set output mode to n {F = experienced, 1 = normal,
2 = test mode);

/OFF dev switch device logically off;

/ON dev switch device logically on:

/STAT n set status message level to n;

name /WAIT suspend a servant program;

*n display log file page number n;

®an display page number being displayed + n;

®—n display page number being displayed - n;

sstring or search forward for “string® and, if found, display

+=string the page containing it;

-=string search backwards for "string".

=36-

Appendix B. GIPSY applications programs listed by
function.

ww* g, GENERAL INFORMATION ®=%w

{these are documents which can be displayed with HELP)

HERMES user's manual

PROGRAMS l1ist of programs

INDEX ” ki alfabetical

USERS 1ist of users, telephone numbers

PDP11 user 's guide to PDP11/789

M70E M78E image computer

GIPSY - i GIPSY system

VIDEO " - VIDEO DISK

DISKPAKS list of allocation of diskpacks to users

JANUS how to start and end a session

REDLINE guideline for HI line data processing

INPUT specifies input format rules for parameters

COMP overview of programs for handling component files
TVCAM describes use of TV camera

TRICKS » a few tricks

PHOTOS " how to make photos from display screen
EDNI11 a poor man's guide to the Edinburgh editor EDN

==*]. UTILITY TASKS e

NEWS gives daily news

HELP displays documentation

EDN edits text files

FILE lists all files {(except maps) on your disk
REPEAT defines sequence of tasks for repetitive execution
DLY allows delay before input

COORD coordinate transformatfions

CURSOR (~Y) gets coord!nates from displayed image at cursor position
TXCUR {~T) = plots displayed on screen
REWIND rewinds mag tape

END stop HERMES

BYE stop HERMES and log off

=== 2. DATA TRANSFER L

RDFITS reads FITS tapes onto disk

LFITS lists by

WFITS writes " y

RDMAPS transfer Leiden maps from mag tape to disk
MOSAIC loads display system with maps from disk

LOADRM transfers map from display system to disk
RECORD records TV-camera image into display

MTRANS transfer images within display system

GTRANS graphics plane images

TRANS transfers maps from set to set on disk

THEAD map headers "

MOVIMG transfers images between storage devices

MSAVE save & restore the complete M78 status

-37=

Appendix B. (continued)

R 3- DISK [3 3]

DISK {~D) 1ists disk sets

HEADER displays a specified map header

FILE lists all files except maps

MACRD lists macro files

DELETE deletes sets and other files from disk

ANTPAT specifies set and subset for AP, and computes HPBW
FIXHED changes map headers

MNMX finds min and max in a map and updates map header
COM to add or recall comments

KR IMP extract subfield from map

INSERT insert detail map into bigger map

DECIM reduce mapsize by grid decimation

REGRID interpolate map to new grid

TRANS transfers maps from set to set on disk

=w= 4, VISUAL DISPLAY = general ®¥®

LOOK display of map full-screen

LOOK REC=Y 5 ® ' and records on VIDEO
L rapid display of single map {(enhance only)

KIJK {~K) enhance + zoom + pseudocolor

MOSAIC loads display with maps from disk in a mosaic
COLOR colour display-continuous spectrum

CLEAR clears display and de-zooms

MHED header information for images in display

MSAVE save and restore the complete M70 status

#x%* 5. VISUAL DISPLAY = gpecfial] ==

CAL wr ites annotated calibration wedge

PLUS plots positions {(crosses) on TV-screen

TITLE writes titles on displayed maps

TEXT wr ites text on screen for FOTO and photos
ENHANS enhances contrast & brightness of display
ZO0OM zooms fimage on Screen

ROAM panning and zooming over entire display system
PSEUDO pseudo-colouring of images

KLEUR false colouring on 3 images

STEPS quantitative discrete level display

COLBAL change M7@ colour balance

COLINT fnteractive combination of colour & intensity
VELCOL colour display of velocity fleld

FFTCOL b = * amp.& phase

GAUCOL o = * output GAUSS or WINDOW

REK stretches displayed map in Y-direction

ENTER pushes images up M79 stack

ROLL rolls £ down *

BLINK blink between images in display

SEQ forms sequence of images resident on VIDEO disk
HIST for turning graphics planes on & off

ZWFOTO set up display for making black & white photo

PHOTOS how to make photos from display screen (doc)

-38-

Appendix B. (continued)

waxx £ PLOTTING,PRINTING and HARD COPIES il

HC (~N) copy of terminal screen pages

CPLOT contour p1ot on VERSATEC or TV

FPLOT ” with halftone

PPLOT plot profile on TV {use ~G for VERSATEC copy!}
PLVIEW sends ploti{s) to a specific device

RULSRF ruled surface map on VERSATEC

GRCOP {(™G) VERSATEC copy of CP plot from TV screen

VECTOR vector plot (for polarization and gauss components)
FOTO (~F) grey scale copy of image on VERSATEC

TEXT writes text on screen for FOTO documentation
PRINT numbers on the line printer or terminal screen
RADPRT intensity map on the line printer

PROF plots profiles (constant M) on l1ine printer

=ww 7_ MAP MANIPULATION bl

SMOOTH smooth maps to lower resolution

PRESM determines parameters of smooth

MCONV smooth 8-bit display image

HANZ 2-dimensional hanning smoothing

HANVL hanning smoothing XV,LV or VL-maps

VELSMOD smooth a set of channe]l maps in velocity

STRIP strip integration in Y-direction

SCALE {new mapl)=A*{old map}+B

MNMX finds min and max in a map and updates map header
EDIMAP changes numbers in maps

BLOT blotches maps{e.g.zeroes outside blotched area)
ZERO zeroes map or part of map

CONDIT conditional transfer of maps from set to set

CLIP transfer maps with values > &{ cutoff

RING corrects for error rings{e.q.DC offsets)

INSERT insert small intoc larger map{also corrects for DC-offsets)
LEWIS 184 degree rotation and symmetrize {removes phase informatfon)
MIRROR mirrors a map left-right or up-down

ELLINT integrates maps in ellipses

PBCORR corrects for primary beam attenuation

ROTATE rotates maps {useful also for interpolation !)
ROT98 . 99,189,278 degrees

DECIM reduce mapsize by specifying decimation factor
REGRID interpolate; define new grid

*** B. MAP COMBINATION hiale

MEAN mean of channe1 maps

ADD adds

SUB subtracts a map from a set of maps (eg. line-continuum)
CONREM subtracts interpolated continuum

CMBMEM combines display images

VEL makes total H]l maps, velocity fields, etc.

DIV divides a series of maps by a map

MUL multiplies a series of maps by a map

PAIR combines pairs of maps (add, subtract, multiply. divide)
TAU computes optical depth

SPECT computes spectral index

POL calculates linear polarization intensities and position angles

=30-

Appendix B. (continued)

*** 9. MAP ANALYSIS and SOURCES #==

STAT
FLUX
HIST
RANDOM
FIND
FINDGA
GAUSAD
SUBTRA
CLEAN
SCL
MCLEAN
FILE
DELETE
RESTOR
ESUB

www jg

LV
STRIP
XV
PPLOT
WINDOW
VEL
GAUSS
GAUCOL

LB B J 11.

FFT
SLOFT
FFTCOL
SUBFT
EDIUV
UVDISP
CURSUV

PROFILE

computes noise statistics and fluxes
calculates fluxes

histogram

puts random numbers into map
measures parameters of discrete sources
Gauss find for point sources

adds 2-D Gaussians to maps

subtracts response of a point source
cleans sources

fast in-core CLEAN for small area
image computer clean

lists components file

deletes 5 "

restores sources on residual map
subtracts components extended source

ANALYSIS nEN

L=V maps

generates strip integrated L-V maps
position-velocity maps (arbitrary direction}

plot preofile

generates profile parameters for set of channel maps
makes total HI maps, velocity fields, etc.

fits gaussians to line profile

velocity coded colours of ocutput GAUSS or WINDOW

UVDATA and FOURIER ANALYSIS #=~«

fast Fourier transform (1 and 2-D)
slow = x

color display of amplitude and phase
subtraction of sources using the FFT
edits UV data

displays WSRT (u,v) data from mag tape
cursor for UV data

wx® 12. GAUSSIAN ANALYSIS #**

GAUSS

GAUEST
GAUCOL
GAUSEL
GAUEDI
WOLKCR
WOLKST
GAUSUM
GAURUL
VECTOR
GAUSAD
FINDGA

fits Gaussians to line profile
initial estimates for gaussian fitting
color display of output GAUSS or WINDOW
selects gaussian components
edits " e
cross reference of cloud numbars
calculates parameters of clouds

5 sum of gaussians for HI global profile
plots components in ruled surface map
plots components
adds 2-D gaussian to map
Gauss find for point sources

®*%* 13. MODEL FITTING and ANALYSIS il

MAPFIT
VELFI

RCURVE
ELLINT
RANDOM

generates model channel maps etc.
calculates model velocity field

der ives rotation curve from velocity fileld
integrates maps in ellipses

puts random numbers into maps

Appendix C. Example of a level 1 (user) document.

Title:

Purpose:

Author:
Keywords:

(** = hidden)

HISTOG

Program to make a histogram of intensities
fn a map or a part of a map.

Th. Jurriens

SET=

{([] = defaults)

Notes:

Updates:

AREA=
NLEVS=
DEV=

CLIP=
** CUM=

*® PRINT=
w® LEVEL=

w» CSTEP=
w» TYPE=

input set and subset.

I1f more than one subset s gfiven,
the program will repeat for each
subset using the same parameters.
[whole map]l

the number of levels [188]

output device for plots Gould, TV
and/or plot file [TV, file {s saved]

lowest and highest i{ntensities fin
the histogram (2 values)
[minimum, maximum in AREA]

plot cumulative values [NOI]

print histogram values [NOJ]

counts the number of pixels above this
level [minimum in areal

constant bin size? [NO1]

type of histogram plot BAR or NBAR [BAR]

1. the program uses ARTIST to make a plot

2. the program calculates the mean flux in AREA
and reports the total number of pixels used
in AREA excluding UNDEFINED values.

3. if CSTEP=NO the bin width is calculated from CLIP
and NLEVS; otherwise STEP= {s requested and NLEVS
is fgnored.

4. the program gives the mean mode and entropy of the
histogram.

2B8-nov-83 document proposal created.
7-nov-84 update

41

Appendix D. GIPSY inferface routines listed by function.

+ Documents only
USER INTERFACE:

ANYCOO/DANYCO
ANYOUT
ASSERT

BOX

EASYOU

KRUIS

REGION *
SETINP

USRINP

ZBLCH

DATA BASE INTERFACE:

CHMAP

CHSET

CMPOSE

COMB

CPHEAD

GETPOS
HEADERSE +
MAPHED

MOVIMG =

NPOS

PRTHED

PUTPOS
READXY/WRITXY
RHEAD/DRHEAD
RDBHED/WDBHED
WHEAD/DWHEAD

DISPLAY INTERFACE:

DSPFILE +
DSPHED
FCBERR
MEMASK
MHEAD
MSCOFF
PLMASK
PLOT +
PLOTSP =
PLTINP
RECSSF
SETDSP
UNIFRM

ERROR HANDLING AND STATUS MESSAGES:

ERROR
STATUS

MASTER CONTROL PROGRAM (HERMES):

CANCEL
CONBOX
DEPUTY
DISCON
FINIS
INIT
PASFIN
PASINI
REQLUN
RESOLVE
SUBST
WKEY
XEQ
XEQXIT

* Slave task

ask for position parameters:
general message output:

verify logical condition;

define rectangular area of map:
print contents of unit 1;
regenerate cursor;

define irregular blotch region;
ask for set, subset;

general parameter input routine;
define frregular blotch region.

check iIf subset is present:

check if set is present;

transfer images in mass storage:
perform arithmetic operations on maps;
copy map headers:

get positions in celestial coordinates:
how to handle headers:

print header information:

general image transfer task;

number of positions created by PUTPODS;
print astronomical header array:

store component positions;

read an arez of a map;

read map header arrays;

direct access to set or subset header;
write map header arrays.

interface routines for display device;
print map title on TV display;

group error messages for display system;
return memory channel address for display:
read/write display image headers;

access parameters in display header;
returns memory bit plane address;
description of plot software;

background task for plotting;

read plot header;

record displayed image on video disk;
access to sets in display system;

draw frame around a plot. :

error handling and regortiné:
print message in Task Status Area.

remove keyword from active table;

connect to TV display curser box;

start a slave task from another task;
disconnect from HERMES;

finish running this task;

inform HERMES about this task;

as FINIS for use in PASCAL servant tasks;
as INIT for use in PASCAL servant tasks;
centralize the use of logical unit numbers;
defines, calls and deletes macros;
keyword substitution;

write keywords to tasks own list;

send a task start command to HERMES;

as XEQ, and exit.

Appendix E. Example of a level 2 (Programmer) document.

Name: USRINP

Purpose: User input interface subroutine

Files: USRINP.DCZ2, USRINP.SHL

Author: R.D. Ekers

Call: CALL USRINP(A,N,TYPE,LENGTH,DEFAULT,KEYWORD,MESSAGE)

Parameters: A (I-0) Array of dimension N. Usually this {s the output
{I=input } but it is also used to supply default information
{0O=output} to the calling program.

N (I Dimension of A (INTEGER*2);

can be 1 if A is a simple variable.

KEYWORD (I) Keyword used to supply parameter in advance.
Used as a prompt in the present implementation.
A keyword 1s a character string containing no
more than 1# characters. The last character
must be an equals sign {(=). The other
characters must be letters or digits.

MESSAGE (I) Message to user {f keyword i{s not present.
A message is any character string not longer
than 55 characters.

DEFAULT (1) Default level set by calling program (INTEGER*2).
Possibilities are:
= No default is possible, user must answer;
1 = Default is input values of A {f user replies
with "carriage return”;
2 = Default is input values of A unless user has
pre-specified the keyword.

TYPE {1) Data type of A desired in calling program

(CHARACTER*1). Possiblities are:

'F’ = real numbers returned unless input contains
alphanumeric information;

'1" = Integers are returned;

*A’ = Character information,

No conversions are made;

'L = Logical. A is true if reply is yes or ja
or true. A is false if reply is no or nee
or false. First letter s sufficient. Note
that logfcal varfables must be declared as
LOGICAL™]1 in the calling program.

LENGTH (I) Data type length of A fn bytes.
See note on on length of logical variables above.

Array A is filled up with "ENDLIN" double words, "ENDLIN®" words,
or binary zeros depending on TYPE. The number of elements returned in A
can be discovered with the functions NEL, NEL2Z or NCHAR.

Example: o
CUTOFF = 7.8
CALL USRINP{CUTOFF,1,'F’,4,1,'CUT=",'Give cutoff [£.8]1"')

Related documents: INPUT.DC1, CANCEL.DC2, NEL2.DC2, NCHAR.DC2

Update history: ? Document recreated, W. Zwitser
1#8-Jul-79 HERMES verstion, J.P. Terlouw
19-Dct-81 Small improvements in documentation
27-Aug-B4d add call CLREF for SNCOM, W. Zwitser

15-0Oct-B4 Improved documentation

43

Appendix F. Sample GIPSY applications program Sheltran
source code.

VERSION 5.3 (APR. B4) SHELTRAN-77
TARGET
STM.NO

1 PROGRAM EXAMPL

COPYRIGHT (c) 1984
Kapteyn Astronomical Institute
University of Groningen - 978¢ AV Groningen, The Netherlands

This software i3 furnished under a license for use only on a
single computer system and may be copled only with the
inclusion of the above copyright notice.

This software, or any other coples thereof, may not be provided
or otherwise made available to any other person except for use
on such system and to the one who agrees to these license
terms.

Title to and ownership of the software shall at all times
remain the property of the University of Groningen.

The information in this document is subject to change without
notice and should not be construed as a commitment by the
Kapteyn Astronomical Institute,

The Kapteyn Astronomical Institute assumes no responsibility
for the use or relfability of this software.

LR N A BN BN R O RN R RN R ORE RN RE R NN

L T T N e e s e e e e et E ettt et d

This program is given as an example of how an applications program
should be written in order to be suitable for incorporation into
the Groningen Image Processing System.

The example is the program POL, which calculates maps of the pos-
ition angle and percent polarization from the constituent maps of
the Stokes parameters O and U. The percent polarization fIs:

P = SART(Q*Q+U*U)
and the position angle is:

PA = §.5*ATAN(U/Q)
at each point in the field.

Originally designed by R. D. Ekers, 27-Mar-B#

Update history: minor changes 22-May-88 R. J. Allen
fdem 23-Jun-88 RDE
regenerated 6-Feb-81 RJA
Changed to conform to SOFTRULES, 17-Feb-81, RJA
Changes made to program and task build file, 7-Apr-81, RJA
Changes to conform to Sheltran-77, 28-Sep-84, JPT

LR NN BN BN BN BN B NN B DU R NN R NS RN NN N R

—44

2

19W JOU S| UOLJIPUOCD J| BENRY

sbu) 438 J830WJRYD 404 FU|INOJ INdINO pUEpURIS

43 s@ajb J8sn)} eN|EA | NEJIP 186

UD|}RWJOJU| JBPRIY PJEPURIE JWOS 3Indino
$§395 BIRP JO 3}5}| S3Senbad sujjnod |e)deds

@4% BA OYM JBEN | |93
SIWYIAH ©3 Ju| L EpLINg

4d@4ingq I6EEERW 4O 926 WhW|XeRW
Japeey dew JO SI|E WhW|XEw
$32S4NE JO JEQUNU wWNu)Xew
Yibue| suj| wnwjxew

39vd

pespeau s} @|6ue sod 3} Jjo3nd> 4 3sanbaa

Y504 41

{(.09/ PU® 338440) *$3@5qns 4o Jaqunu |enbaup,
‘H'VdEN DI dANT ONY dEN"DI"NUN ONY dEN 03 0UNILUISSY 4~k:3

*3ANYL" =¥S0d

(.P38| N3 BD 30U #Je §3(6uE WC}3}E04, *FILNOANY 11vD
dAN=VdaN
*3$I¥4°=vSad

N3HL

pepaau jou @|(Bur uojsod

1-'03 " VdN 41
ﬁ.nﬂanﬂ_:ufuu vd ouj vnnn:m ‘388 3ndino @ buw uoc|3so0y,
+=¥dLl3S, "VdIN' LSSXVH VASN VINIdNIL13S 1TVD
I=(1)VdSN
[-=VdN
(JET1'@) 3@sgns 39S 3INnd3Ino uo Wi} JRiOd,
*emdl3S, " dIN" LSSXVH' SN dN}dNELIS 11VD
(1°0'C1IOSN'ONIOIHLYd IV
(JL1'8] 39sqns '386 0, ", sDL3S,. 'OUN'LSSHVH'OSN'ONIANILIS 11V
(1@ ' CLINSN'NNIOIHLYd TV
(. L1'@) 3I96qQns "85 N, ', =NL3S. "NUN' LSSXYH' NSN NN}JNLLIS Jqdw 5
PRELEL]

£§39E Induj || ® 3saInbag

{.,78-d9S "[*'2 UO|SJBp ‘ESJ@J2WEeJRd UO|IWZ|[JE|Od,'F) LAOANY 11VD
LINI T7%)

(AG3HT)A3IH BeTV3IY

(XAAVHIZAVA " (XIXVHITLVO ¥e1V3Y

(LSSXVWIVASH ‘{LSSXVYWIDSN *(LSSXVH)IdSN ‘(LSSXVWINSN 2s»H3IDJIALNI
SYUVHI (UVHIN) »HILIVHVHI

Ly¥3SsSY ‘¥sSo0d 1vI1901

IE3UBUSIELE UO|JRIE|DBQ

{GS=YVHIN) YILIWVYUVd

(#9=03H7} ¥ILIWVAVd
(G9=LSSHVH} HILIWVUV
(Z1S=XIXVYH} YILIWVYVL

22

gz

Ll SRR - - o
o

-y

——

W oo

M =D

ON'HWLS
139wl

LL-NYHULTIIHS {v8 "¥dV} £°'S NOISY3IA

—-45-

s§juUdwe | @ uo dooj

S|P WOJj EJEP PRIJ 0} @U|IN0I PURPURLS

{AJEUEE@39U 4| 9|4 Suado) Jepeay ebuw| 23| .am

Jepuay sb6ew) pesJ 03 SU)IN0OJL pPURPURIS
BaJy &n3e3S ysel u| abessaw 3Ind
$4830R4EYD jOo pus Be|j} 03 ousrz

d@j4ngq Xe} ® sdudadd

(jLBIR4mp) PUINOL JOJID PJRPURLS

weJde ue 3sanbaJ 03 IJuUj3IN0J Induj |®}IS

£3@)dW4Q {'] UPIMIRQ PRIED|PU| | hEEP
|BUjW4a3 wody Indu| 3senbaJ 03 BULINOJ PIRPURILSE
W) seaib 488N | F=LNd I|NEjep sojew

£ 39vd

#AdSN

{
{

¥SO0d'ONV' 103 39°d 4l
(0x0+M14N)1UOS=d
(11)21v0=0
(111 14va=n
1+011-1=11
1H1'011=1_¥0J
W3[0 XA ZLVO W' 011! HOSN ' ONIAXAVIY 11V
¥IT' 1 X3 LLVA W 01T ANSN NN AXOVIY 11V
THW' 0W=W 404

S3U|| uC doo|

412
(1'89'Q3H"AVASH ' YdN)AVIHA T1TVD
1$99463p,=(2)03H
JVdo=(E}QIH
N3IHL
vS0d 41
(1'89 °A3H " NdSN" dNIAVIHAT 1TV
vd.=(E}Q3IH
{1°89'GIH ANSN"NNIAVYIHYA T1IV¥D
(SYVYHI) SNLVLS 1Tv2

{.{1¥*'9]*,. 3I9sqns uo Bujindwo) .}, SUYHIIILIYA

(AIVASN=AYdSH
(A dSN=AdSH
{AINSN=XASN
{A)OSN=)DSN
d8N‘I=3 HO4

£198QNE Uo doOo| 4

413
3513
(i @w 10y 619 003 dey, 'y} ¥OUYI 11V
NIHL
XAXVKW LD X3 41

1passad0oad 2q 03 225 drRw YI3Y)

1+011-1HI=X37
(1= =VIUV. CTINSH AN THW THT'0IN' 011 X08 1T¥D

dew Jo azs 396 ,

412
(.[8]1 Vd 40 UO3IR(NI|EI 404 g U] }3403Nn],
CLmANDL It 4 TR LNDYdNT SN 11VD
a=1nd

N3HL

9g
st

rE

£E
2E
ZE

ON"WLS
L30uvl

LL-NYULI3HS {¥8 "Ydvi E°S NOISHUIA

wlili=

SINIWILYLS L1394%1 A6 {5)¥0¥¥3 B
ONIU3BWAN NVHELUO4 “334n0s ‘TEI=HLAIM3NIT “#5=LNNOJANIT - 123443 NI SHOILdO

AN3IWO3S 10 aN3

an3

{*238 ‘69| |) #80|D> - dOlS

‘SUOp S48 #M SIWHIH LILP3) SEPW Syl dn uee|d SINI4A 11v2
E32 | A8Pp INdINO PI}IS|8E 03 [IHUN JejEuUEL] (@INOASYI 11vD
412

(EICdEND ", 39EqQns |

‘E1'4I96 U} ®) ,'2'94°,¢ Z|04 404 @|Buw uo}}|sog ,) LIVWYHOA 1881

CAEN U= (AIVASN) VAN LND (18BT° 1)13LIYN
N3HL
¥S0d 41
{EI<dEN> -
‘.396QNE L 'E£]°,396 U} A3)SuUap xN|j paz|Je|Od ,)LVHYOI
INAINO PaIIRWIO4 404 82| AIP | U (AN T=X"(AYJSN) ' dN (BOBT° T11IL1UN

¥04D
¥042
413
(3T T X3 TLVO K 0V AVASN VAN I AXLI HA JJ(Um

N3HL

vS50d 41

ASIP OF BIWP 83| J4M 03 BUINOJ PJIEPURIS (UIL 1 XI1'2LVO W 011" AdSH dNIAXLIYA 1TVD

v ¥042
Yd={11}11va
d={17124va

(0'NIZNVLIVBIS62" LS55 0=Vd
M3HL

ON°HWLS
139uvL

r 39vd LL=-NVHLIIHS . trg "Hdv} £'9 NOISY3IA

