Red Arrows in Orbit

Phil Palmer
Satellites in Orbit

<table>
<thead>
<tr>
<th>Mission</th>
<th>Year</th>
<th>Launch</th>
<th>Mass</th>
<th>Mission</th>
<th>Year</th>
<th>Launch</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giove-A</td>
<td>2006</td>
<td>Cosmos</td>
<td>400</td>
<td>CERISE</td>
<td>1995</td>
<td>Ariane</td>
<td>70</td>
</tr>
<tr>
<td>TopSat</td>
<td>2005</td>
<td>Cosmos</td>
<td>150</td>
<td>FASat-A</td>
<td>1995</td>
<td>Tsyklon</td>
<td>70</td>
</tr>
<tr>
<td>Beijing-1</td>
<td>2005</td>
<td>Cosmos</td>
<td>100</td>
<td>HealthSat-2</td>
<td>1993</td>
<td>Ariane</td>
<td>70</td>
</tr>
<tr>
<td>DMC</td>
<td>2003</td>
<td>Cosmos</td>
<td>4x100</td>
<td>PoSat-1</td>
<td>1993</td>
<td>Ariane</td>
<td>70</td>
</tr>
<tr>
<td>PICOSat</td>
<td>2001</td>
<td>Athena</td>
<td>70</td>
<td>KITSAT-1</td>
<td>1992</td>
<td>Ariane</td>
<td>70</td>
</tr>
<tr>
<td>Tsinghua-1</td>
<td>2000</td>
<td>Cosmos</td>
<td>70</td>
<td>S80/T</td>
<td>1992</td>
<td>Ariane</td>
<td>70</td>
</tr>
<tr>
<td>SNAP-1</td>
<td>2000</td>
<td>Cosmos</td>
<td>8</td>
<td>UoSat-5</td>
<td>1991</td>
<td>Ariane</td>
<td>50</td>
</tr>
<tr>
<td>UoSat-12</td>
<td>1999</td>
<td>Dnepr</td>
<td>400</td>
<td>UoSat-4</td>
<td>1990</td>
<td>Ariane</td>
<td>50</td>
</tr>
<tr>
<td>Clementine</td>
<td>1999</td>
<td>Ariane</td>
<td>70</td>
<td>UoSat-3</td>
<td>1990</td>
<td>Ariane</td>
<td>50</td>
</tr>
<tr>
<td>FASat-B</td>
<td>1998</td>
<td>Zenit</td>
<td>70</td>
<td>UoSat-2</td>
<td>1984</td>
<td>Delta</td>
<td>50</td>
</tr>
<tr>
<td>Thai-Phatt</td>
<td>1998</td>
<td>Zenit</td>
<td>70</td>
<td>UoSat-1</td>
<td>1981</td>
<td>Delta</td>
<td>50</td>
</tr>
</tbody>
</table>
Future of Satellites

<table>
<thead>
<tr>
<th>OLD MODEL</th>
<th>FUTURE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes</td>
<td><10 - 100’s kg</td>
</tr>
<tr>
<td>Multi-sensor</td>
<td>Single or Multi sensor</td>
</tr>
<tr>
<td>Expensive (£10^5)</td>
<td>Cheap (£10^4)</td>
</tr>
<tr>
<td>Lead time (10-15 yrs)</td>
<td>6-18 months</td>
</tr>
<tr>
<td>Few sats</td>
<td>Many sats</td>
</tr>
<tr>
<td>Competition for data</td>
<td>High data rates</td>
</tr>
<tr>
<td>High risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>State of art +10 years</td>
<td>COTS +1 year</td>
</tr>
</tbody>
</table>

Bernard’s Cosmic Stories
DMC Images

- DMC Images 600 km swath
- Whole UK in 4 images
- Resolution 32 metres
- Landsat requires 5 years
- SPOT = 30 x DMC Sats
Asian Tsunami

Bernard’s Cosmic Stories
Formation Flying: Pros & Cons

- ✔ Redundancy - robust to single point failure
- ✔ Flexibility - adaptable to changes in mission
- ✔ Synthesise more complex satellites
- ✗ Collision and Contamination risk
- ✗ Complexity of command and control
- ✗ Distributed knowledge - inter-satellite communication
Relative Motion Models

- Hills Equations (Hill, Clohessy & Wiltshire)
 - valid only over short timescales

- Nonlinear Models (Karlgaard & Lutz)
 - incorporates curvature of circular orbit
 - ignores other perturbations

- Inclusion of J_2 (Schweighart & Sedgwick, Alfriend & Schaub)
 - considers both secular evolution and periodic variations
 - much greater complexity and valid for few orbital periods

- Eccentric Orbits (Melton et al)
 - employs variable rotating frame
 - not time explicit and provides little insight
\[\ddot{x} - 2\Omega \dot{y} - 3\Omega^2 x = T_x \]
\[\ddot{y} + 2\Omega \dot{x} = T_y \]
\[\ddot{z} + \Omega^2 z = T_z \]

\[T_x(t) = \frac{2}{3} T_1 + \frac{\Lambda}{2} \sin(\Omega t - \Phi) \]
\[T_y(t) = T_0 - T_1(\Omega t) + \Lambda \cos(\Omega t - \Phi) \]
\[T_z(t) = \Gamma \cos(\Omega t - \zeta) \]

where \((T_0, T_1, \Lambda, \Gamma, \zeta, \Phi)\) are all functions of the boundary conditions and \(t_F\).
\[r = a(1 + \rho) - ae \cos(\alpha - \alpha_P) + a\chi \sin \alpha + \Delta r_2^1 \cos 2\alpha \]
\[\lambda = \alpha(1 + \kappa) + 2e \left[\sin(\alpha - \alpha_P) + \sin \alpha_P \right] - 2\chi \left[1 - \cos \alpha \right] + \Delta \lambda_2^1 \sin 2\alpha \]
\[I = I_0 + \Delta I_2^1 (1 - \cos 2\alpha) \]
\[\Omega = \Omega_0 + \theta \alpha + \Delta \Omega_2^1 \sin 2\alpha \]
\[\alpha = \eta(t - t_e) \]
Model Accuracy

ALONG-TRACK ERROR

error (m)

orbital phase

- 32.8 km motion
- 23.8 km motion
Relative Keplerian Motion

The difference of the Hamiltonians for two satellites at coordinates \((r \pm \frac{1}{2} \delta r, v \pm \frac{1}{2} \delta v)\) expanded around \((r, v)\):

\[
H_R = H_1 - H_2 = v.\delta v + \frac{\mu}{|r|^3} (r.\delta r)
\]

Equations of motion from Hamilton’s extended equations:

\[
\dot{r} = \frac{\partial H_R}{\partial \delta v} \quad \dot{v} = -\frac{\partial H_R}{\partial \delta r} \quad (1)
\]

\[
\delta \dot{r} = \frac{\partial H_R}{\partial v} \quad \delta \dot{v} = -\frac{\partial H_R}{\partial r} \quad (2)
\]

The secular drift due to energy differences can be separated:

\[
\delta r = \delta r_p - \frac{H_R}{H} (r - \frac{3}{2} vt)
\]
Solving the Relative Motion

<table>
<thead>
<tr>
<th>a(km)</th>
<th>e</th>
<th>l</th>
<th>(\Omega)</th>
<th>(\omega)</th>
<th>(\theta)</th>
<th>H</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat1</td>
<td>15945.8</td>
<td>0.45</td>
<td>60</td>
<td>40.03</td>
<td>20</td>
<td>73</td>
<td>-0.199994</td>
</tr>
<tr>
<td>Sat2</td>
<td>-1.15</td>
<td>0.0001</td>
<td>0.03</td>
<td>0.03</td>
<td>-0.05</td>
<td>0.05</td>
<td>-1.881e-6</td>
</tr>
</tbody>
</table>

![Graph showing relative position error and time separation](image)

Bernard’s Cosmic Stories
Positional Accuracy

\[a = 7065.3 \text{ km}, \delta a = 1200 \text{ m}, e = 0.055 \text{ include } 36 \times 36 \text{ model.} \]
Conclusions

✔ Formation Acquisition

✔ optimal Hill’s Solutions for continuous thrust

✔ Describe relative motion for near circular formations

✔ exploits analytic solutions to equations of motion
✔ separates secular, rigid formation motion and inter-satellite motions
✔ accurate to approx 1 metre.

✔ Formation Design

✔ Invert from required relative motion into orbital elements
✔ design multiple baslines

✔ Symplectic Formation Propagation

✔ long term evolution accurate to < 2% over 1 month
✔ conserves relative energy and angular momentum exactly