VO2012

Virtual Observations 2012

WERKCOLLEGE 8: GRID MIDDLEWARE

Document identifier: VO2012-W8-01
Date: October 22, 2012
Activity:

Document status:

Document link:

Abstract: This tutorial is provided for people to learn how to use the gLite middleware components to
submit jobs to the Grid, manage data files and get information about their jobs and the testbed. It is
intended for people who have a basic knowledge of the Linux/UNIX operating system and know basic text
editor and shell commands. It is based on a standard Grid tutorial by EGEE with modifications made for
use by astronomers.

PUBLIC 1/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

1. INTRODUCTION

This document leads you through a number of increasingly sophisticated exercises covering aspects of
job submission and data management. It is assumed that you are familiar with the basic Linux/UNIX
user environment. This document is designed to be accompanied by a series of presentations providing
a general overview of Grids and the gLite tools.

This document is based on previous tutorial documents to which the following people have contributed:
Kors Bos, Simone Campana, Flavia Donno, Leanne Guy, Patricia Méndez Lorenzo, Antonio Delgado
Peris, Mario Reale, Ricardo Rocha, Elisabetta Ronchieri, Roberto Santinelli, Andrea Sciaba, Massimo
Sgaravatto, Heinz Stockinger, Kurt Stockinger, Antony Wilson.

1.1. WORKING ENVIRONMENT

In order to make use of the Grid you will need access to a so called User Interface machine (UI). For
example, you could request a login account on a Ul at one of your local Grid facilities. You can then
login to the UI with your username and password via ssh, like in the screendump below:

$ssh f103221@millipede.service.rug.nl
£f103221@millipede.service.rug.nl’s password:

[£f103221@1login0l ~]$

As you may have seen we are using the login node of the Millipede compute cluster of the University
of Groningen. The Grid middleware has been made available on this system. In order to use the Grid
middleware you have to load a module for this:

[£103221@1ogin0l ~1$ module load grid
[£103221@1login0l1 ~]$

Once the module is loaded you have access to the relevant Grid toolkits and you may start working on
the Grid.

The specific account to use will be given to you by your tutorial instructor.

1.2. GETTING ACCESS TO THE GRID

Before you can make use of the many Grid resources out there (computing, storage) you need a Grid
certificate. A certificate will allow you to uniquely identify yourself anywhere in the world, much like a
passport.

Obtaining a new certificate requires filling out paperwork, jumping through virtual hoops and waiting for
approval; this could take anywhere between a couple of hours and a couple of days. So for the sake of
this tutorial we’ve already prepared some certificates that you can use right away, but they give limited
access to resources. In fact, they can only be used for the duration of the tutorial.

If you already have a real Grid certificate, you can of course use that one. If not, you should request
one as soon as possible, following the procedure given in Appendix A. For the tutorial, use one of the
pre-made certificates.

Make sure your certificate files are in the . globus subdirectory on your home directory on the UL There
are two files:

usercert.pem the public certificate and

userkey.pem the private key, which should be kept read-only by yourself.

PUBLIC 2/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

The file modes should be as follows:

—“rw-r—-——-r—-— usercert.pem

Sposcossoo userkey.pem

If necessary, repair permissions with the commands

$ chmod 644 “/.globus/usercert.pem
$ chmod 400 ~/.globus/userkey.pem

1.2.1. CREATING A PROXY

Working on the Grid means letting systems do work on your behalf. This brings a complication, because
the work done ‘on your behalf’ must have your trusted identity attached to it. Yet it is unsafe to pass
along your entire certificate. As a solution you should create a delegation of your certificate called a
proxy. This is just like your certificate, only much shorter-lived: typically only twelve hours.

In order to obtain a proxy and use it, the following commands can be used:

voms—-proxy-init you need to type the passphrase
voms—-proxy—-info gives information about the current proxy
voms—-proxy—-destroy destroys the proxy for this session
voms—proxy—-xxx —help shows the usage of the command voms-proxy-xxx

Examples:

$ voms—-proxy-init --voms tutor
Your identity: /O=dutchgrid/O=users/O=sara/CN=Fokke Dijkstra
Enter GRID pass phrase:

Creating LemMPOTaATrY PIrOXY o« v v vttt on et oneeeenneeenntenneneeseneesns Done
Contacting voms.grid.sara.nl:30014 [/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl] "tutor" Done
Creating PrOXY v v v ittt ittt et e et ettt et ettt et Done

Your proxy is valid until Sat Jun 24 00:47:02 2006
$ voms-proxy-info

subject : /O=dutchgrid/O=users/O=sara/CN=Fokke Dijkstra/CN=proxy
issuer : /O=dutchgrid/O=users/O=sara/CN=Fokke Dijkstra
identity : /O=dutchgrid/O=users/O=sara/CN=Fokke Dijkstra

type . Proxy

strength : 512 bits

path ¢ /tmp/x509up_u503

timeleft @ 11:59:21

\%¢) ¢ tutor

subject : /O=dutchgrid/O=users/O=sara/CN=Fokke Dijkstra

issuer : /O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl
attribute : /tutor/Role=NULL/Capability=NULL

timeleft : 11:59:21

$voms—-proxy—-destroy
Would remove /tmp/x509%up_u503

1.3. GETTING THE EXERCISES

Some material for the exercises has been prepared in advance and you can copy it (e.g. with wget) to
your home directory on the UI machine. You can find the exercises at the following URL:

http://www.astro.rug.nl/~belikov/VO2012/Werkcolleges/W8/W8.tgz

The files can be downloaded and extracted with:

$ wget http://www.astro.rug.nl/"belikov/V02012/Werkcolleges/W8/W8.tgz
$ tar xzf W8.tgz
$ cd exercises

The target directory will be exercises.

PUBLIC 3/35

http://www.astro.rug.nl/~belikov/VO2012/Werkcolleges/W8/W8.tgz
http://www.astro.rug.nl/~belikov/VO2012/Werkcolleges/W8/W8.tgz

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

2. JOB SUBMISSION

2.1. INTRODUCTION

Suppose you have a problem which takes weeks, maybe months of computing time. If there is a way to
divide the problem into smaller chunks, then all these could run on a different machine simultaneously. A
Grid allows you to do just that. Each chunk of your bigger problem is called a job and will be described
in a so called job description language.

When you submit a job to the Grid it will be sent to the Workload Management System (WMS). This
system will then schedule your job and send it to a Compute Element (CE) somewhere on the Grid. This
CE manages a number of Worker Nodes (WN’s) on which jobs will actually run. The job will run on a
WN on your behalf, therefore you should delegate your credentials to the WMS. You only have to do this
once per session. As your proxy certificate expires and you create a new one, you should also delegate it
again to the WMS. Typically you do this once a day.

We assume that you have used the voms-proxy-init command and have a valid proxy credential. If not,
please refer back to the previous chapter.

When you have created a valid proxy certificate, you can delegate it to the WMS. This is done by using
the following command.

glite-wms-job-delegate-proxy -d $USER

The argument to the -d option should be a string, in this case it’s $SUSER. This string is needed in later
commands to identify your session and is called the delegation ID. You can use any string you like after
the -d option. We use $USER in our examples.

Let’s create a delegation ID using the WMS by creating a delegation identifier using your username. To
get the username we take the SUSER environment variable. Remember that you can use any string you
like as a delegation identifier.

$ echo S$USER
demol7

$ glite-wms-job-delegate-proxy -d $USER

Connecting to the service https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server

================== glite-wns-job-delegate-proxy Success ==================

Your proxy has been successfully delegated to the WMProxy (s):
https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server
with the delegation identifier: demol?7

Now the credentials of the user demo17 are delegated to the WMS and jobs can be submitted on behalf
of this user.

Instead of creating a delegation ID with -d, the -a option can be used. This causes a delegated proxy to
be established automatically. In this case you do not need to remember a delegation identifier. However,
repeated use of this option is not recommended, since it delegates a new proxy each time the commands
are issued. Delegation is a time-consuming operation, so it’s better to use glite-wms-job-delegate-proxy
and reuse the delegation ID when submitting your jobs. The -a option is useful in situations where proxy
certificates are prolonged beyond their expiration time. We will not cover such cases in this tutorial.

PUBLIC 4/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

2.2. A SivpLE JDL JoOB

To submit a job to the Workload Management System (WMS), a text file is needed in which the job
is described. For this purpose a special language, Job Description Language (JDL) is used. The JDL
describes the job and its requirements in simple attribute value pairs.

Here is an example of the contents of a JDL file:

Type = "Job";

JobType = "Normal";

Executable = "/bin/hostname";

Arguments = "-f";

StdOutput = "hostname.out";

StdError = "hostname.err";

OutputSandbox = {"hostname.err","hostname.out"};

ShallowRetryCount = 3;

When this file is submitted to the WMS, a job will be created and sent to a Worker Node in the Grid by
the WMS. There it will execute the command /bin/hostname -f. It will write its standard output in
the file hostname.out and its standard error in the file hostname.err, as specified in the JDL file. This will
all take place on the remote Worker Node. In order to get results back an OutputSandbox is used.

The Executable attribute specifies the command to be run on the Worker Node. The OutputSandbox
attribute indicates the files to be copied back after job execution; normally these are files where output and
error streams are redirected to; their names are determined by the StdOutput and StdError attributes
respectively. Also the number of retries is specified. It is the number of times the WMS will try to run
the job.

2.3. JOB SUBMISSION

A simple job can be submitted by the command:

glite-wms-job-submit -d <delegationId> -o <jobidfile> <jdlname>
The -d option uses the delegationID. This is the string which corresponds to your previous credential
delegation. In our case it will be SUSER.

As we submit a job, an identifier will be returned. It is needed to get more information about the job and
to retrieve output when it is ready. Once you lose this identifier your job is pretty much lost.

The -0 option is used to save the identifier of the job.
When you created the hostname.jdl file on the server, you can submit this job as follows:

$ glite-wms-job-submit -d S$USER -o myjob hostname.jdl

Connecting to the service https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server

====================== glite-wns-job-submit Success ======================

The job has been successfully submitted to the WMProxy
Your job identifier is:

https://wmslb2.grid.sara.nl:9000/FdkxeQAZ9iKfUJZrbf5GRw

The job identifier has been saved in the following file:
/home/demol7/myjob

The file myjobs contains the jobID(s) returned by the submission process, as a result of the -0 option.
Here the string

https:/fwmslb2.grid.sara.nl:9000/F dkxe QAZ9iKfUJZrbf5GRw

PUBLIC 5/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

is the Job Identifier. This URL can also be used in a web browser. A prerequisite is that your Grid

certificate is loaded in your web browser'.

If another job is submitted using the same -0 value, its jobID is appended to the same joblD file. Try it
yourself.

NOTE: Omitting the -0 option means that the jobID is not saved in a file. It is returned in the output
exactly as in the above example. Note that you need the jobID to get your status and retrieve your output.
When you do not save this identifier you will effectively lose the output of your job!

In order to know the status of your submitted jobs use

glite-wms-job-status <JobID>

This command queries the Logging and Bookkeeping service (LB) for the status of the job whose jobID
is used as an argument.

If you have saved your joblds into a file you can use the -i option and use the filename as an argument.
This is exemplified below with a file called myjobs. This file contains two job identifiers. A menu will
pop up asking for the user’s input. Here you can choose of which jobs you want to see the status. In the
example below, the status of all listed jobs is chosen by typing a.

$ glite-wms-job-status -i myjobs

1 https://wms.grid.sara.nl:9000/8Ey04s3x9xIEE_6hCwb8hw
2 : https://wms.grid.sara.nl:9000/L4kprovgd9QwdSTg2chbGCw
a : all

q : quit

Choose one or more jobId(s) in the list - [1-2]all:a

E R I I SR I e S

BOOKKEEPING INFORMATION:

Status info for the Job : https://wms.grid.sara.nl:9000/8Ey04s3x9xIEE_6hCwb8hw
Current Status: Scheduled

Status Reason: Job successfully submitted to Globus
Destination: ce.gina.sara.nl:2119/jobmanager -pbs-short
Submitted: Wed Mar 12 13:23:43 2008 CET

ok kK Kk ok kK ok k ok K Kk ok ok Kk ok k kK Kk ok kK Kk ok ok k Kk ok ok ok ok k ok k kK k ok kK ok ok kK Kk ok k Kk ok kK Kk ok k
Xk ok kxkkkkkkkkxkkkk kkhk kX kk kX kkk kX kk kX kkk kK ok kk Xk kk x Kok k% % %k k% % % *
BOOKKEEPING INFORMATION:

Status info for the Job : https://wms.grid.sara.nl:9000/L4kprOvgd9QwdSTg2cbGCw
Current Status: Scheduled

Status Reason: Job successfully submitted to Globus
Destination: ce.gina.sara.nl:2119/jobmanager -pbs-short
Submitted: Wed Mar 12 13:23:49 2008 CET

R Rk S IR I I I S b Sk Sk S I I 2 R S kI Sk S S R I 2R S Sk S Sk Sk R I

Note that this command doesn’t require a delegation identifier. The status of the two jobs shown above
is Scheduled.

Note:In order to know the status of your jobs you have to use this polling mechanism of actively querying
for the status. Please do NOT do this every second, but wait at least several minutes before trying again.

When your job has been successfully completed, the result can be retrieved by the command:

glite-wms-job-output <JobID>

IFor more information on loading your certificate in a browser see Appendix A.

PUBLIC 6/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

example: glite-wms-job-output https://wms.grid.sara.nl:9000/1 QubWarBs8gX86X_QkL

Again, you don’t need to specify a delegation identifier.

$ glite-wms-job-output -i myjobs

1 https://wms.grid.sara.nl:9000/DMx2JLLbkV6DofzRLG_sow

2 : https://wms.grid.sara.nl:9000/TuubaTab7s6eh0l90TcOlg

a : all

q : quit

Choose one or more jobId(s) in the list - [1-2]all (use , as separator or - for a range): 1

Connecting to the service https://wms.grid.sara.nl:7443/glite_wms_wmproxy_server

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:
https://wms.grid.sara.nl:9000/DMx2JLLbkV6D0ofzRLG_sow

have been successfully retrieved and stored in the directory:
/tmp/glite/glite-ui/demol7_DMx2JLLbkV6DofzRLG_sow

In order to inspect the job output, list the files in the indicated directory and show the content of the
output file(s).

demol7$ cd /tmp/glite/glite-ui/demol7_DMx2JLLbkV6DofzRLG_sow
demol7$ 1ls -1

total 4
-IW-r--r-- 1 demol7 users 0 Sep 27 21:25 hostname.err
-rW-r--r-- 1 demol7 users 19 Sep 27 21:25 hostname.out

demol7$ cat hostname.out
wnl-ams.grid.sara.nl
The output directory can be chosen by the user by the —dir option:

demol7$ glite-wms-job-output --dir ./op2 -i myjobs

1 https://wms.grid.sara.nl:9000/DMx2JLLbkV6D0fzRLG_sow

2 : https://wms.grid.sara.nl:9000/TuubaTab7s6ehol90TcOlg

a : all

q : quit

Choose one or more jobId(s) in the list - [1-2]all (use , as separator or - for a range): 2

Connecting to the service https://wms.grid.sara.nl:7443/glite_wms_wmproxy_server

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:
https://wms.grid.sara.nl:9000/TuubaTab7s6eh0l190TcOlg

have been successfully retrieved and stored in the directory:
/home/demol7/op2

PUBLIC 7135

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

2.4. EXERCISE JS-1: “HELLO WORLD”

In this example you will run a simple “Hello World” job on the Grid. The job is described in the Job
Description Language (JDL) in the HelloWorld.jdl file, which is in the JSexersisel directory 2:
[JSexercisel]$ cat HelloWorld.jdl

Executable = "/bin/echo";

Arguments = "Hello World";

Stdoutput = "message.txt";

StdError = "stderror";

OutputSandbox = {"message.txt","stderror"};

The job description consists of a number of attribute value pairs. The first line mentions the attribute
Executable and contains as value the Unix /bin/echo command. This is the command that will be run as
soon as the job lands on a worker node. If this worker node is unable to execute /bin/echo the job fails.
As arguments to this command we supply the string "Hello World”. Standard output will be written to
the message.txt as indicated by the fourth line. Standard error will be written to the file stderror.

The last line mentions the OutputSandbox attribute. This contains the list of files that will be migrated
back to the user when the execution has finished. This is only appropriate for small files.

2.4.1. EXERCISE

1. Change to the JSExercisel directory.

2. Delegate your credentials by using the command: glite-wms-job-delegate-proxy -d SUSER
3. Run the job on the Grid using the glite-wms-job-submit command.

4. Read and try to understand the output on the screen.

5. Request the status of the job using the glite-wms-job-status command.

6. Get the output from this job using the glite-wms-job-output command when the Current Status
is in the Succeeded state.

7. Check that the job has run correctly by looking into the message.txt and stderror files.

2.4.2. THE JoB DESCRIPTION LANGUAGE

As you’ve seen, in glLite job description files (.jd! files) are used to describe jobs for execution on the
Grid. These files are written using a Job Description Language (JDL). The JDL adopted within the EGEE
Grid is the Classified Advertisement (ClassAd) language defined by the Condor Project, which deals with
the management of distributed computing environments, and whose central construct is the ClassAd, a
record-like structure composed of a finite number of distinct attribute names mapped to expressions. A
ClassAd is a highly flexible and extensible data model that can be used to represent arbitrary services
and constraints on their allocation. The JDL is used in gL.ite to specify the desired job characteristics and
constraints, which are used by the match-making process to select the resources that the job can use.

The fundamentals of the JDL are given in this subsection. A detailed description of the JDL syntax is
outside the scope of this handout. The JDL syntax consists of statements like:

attribute = value;

Note: The JDL is sensitive to blank characters and tabs. NO blank characters or tabs should follow the
semicolon at the end of a line.

2To obtain the exercises and directories see 1.3.

PUBLIC 8/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

In a job description file, some attributes are mandatory, while some others are optional. Essentially, one
must at least specify the name of the executable, the files where to write the standard output, and the
standard error of the job (they can even be the same file). For example:

Executable = "test.sh";
StdOutput = "std.out";
StdError = "std.err";

Lines starting with # are not interpreted and can be used to remove certain options temporarily.

If needed, arguments can be passed to the executable:

Arguments = "hello 10";

Files to be transferred between the Ul and the WN before (Input Sandbox) and after (Output Sandbox)
the job execution can be specified:

InputSandbox = {"test.sh","std.in"};
OutputSandbox = {"std.out","std.err"};

Wildcards are allowed only in the InputSandbox attribute. The list of files in the Input Sandbox is
specified relatively to the current working directory. Absolute paths cannot be specified in the QOutput-
Sandbox attribute. Neither the Input Sandbox nor the Output Sandbox lists can contain two files with
the same name (even if in different paths) as when transferred they would overwrite each other.

Note: The executable flag is not preserved for the files included in the Input Sandbox when transferred to the
WN. Therefore, for any file needing execution permissions a chmod u+x operation should be performed by
the initial script specified as the Executable in the JDL file (the chmod u+x operation is done automatically
for this script).

The environment of the job can be modified using the Environment attribute. For example:

Environment = {"CMS_PATH=S$HOME/cms",
"CMS_DB=$CMS_PATH/cmdb"};

To express any kind of requirement on the resources where the job can run, there is the Requirements
attribute. Its value is a Boolean expression that must evaluate to true for a job to run on that specific CE.
For that purpose all the attributes in the information system can be used.

To run on a CE using PBS as the LRMS, whose WNs have at least two CPUs and the job can run for
more than two hours then in the job description file one could put:

Requirements = other.GlueCEInfoLRMSType == "PBS" &&
other.GlueCEInfoTotalCPUs > 1 &&
other.GlueCEPolicyMaxCPUTime > 120;

The WMS can also be asked to send a job to a particular CE with the following expression:
Requirements = other.GlueCEUniquelID ==

"lxshare0286.cern.ch:2119/ jobmanager -pbs-short";

If the job must run on a CE where a particular experiment software is installed and this information is
published by the CE, something like the following must be written:

Requirements = Member ("CMSIM-133",
other.GlueHostApplicationSoftwareRunTimeEnvironment);

Note: The Member operator is used to test if its first argument (a scalar value) is a member of its second
argument (a list). In this example, the GlueHostApplicationSoftwareRunTimeEnvironment attribute is a
list.

Note: Requirements on attributes of a CE are written prefixing other. to the attribute name in the Information
System schema.

PUBLIC 9/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

It is also possible to use regular expressions when expressing a requirement. Let us suppose for example
that the user wants all his jobs to run on CEs in the domain cern.ch. This can be achieved putting in the
JDL file the following expression:

Requirements = RegExp ("cern.ch", other.GlueCEUniquelId);

The opposite can be required by using:

Requirements = (!RegExp("cern.ch", other.GlueCEUniqueId));

The choice of the CE where to execute the job, among all the ones satisfying the requirements, is based
on the rank of the CE; namely, a quantity expressed as a floating-point number. The CE with the highest
rank is the one selected.

The user can define the rank with the Rank attribute as a function of the CE attributes, like in the
following (which is also the default definition):

Rank = other.GlueCEStateFreeCPUs;

2.4.3. PoOOL ACCOUNTS

Every user is mapped onto a local user account on the various Computing Elements all over the Grid.
This mapping depends on the VO the user is a member of. The VO is determined from the voms proxy
generated by the user, and verified using the voms server certificate.

For each VO a set of numbered accounts is available on the Grid resources. When a user gets to this
machine one of these accounts is leased to the user. This lease is temporary and you may get a different
account the next time you use the resource.

2.4.4. MORE ON EXERCISE JS-1: "HELLO WORLD” AT A DIFFERENT SOURCE

In this exercise you will run the same HelloWorld job but now on a pre-selected site. There exists
a command that returns the result from the match making job the WMS does on the basis of the job
description in the JDL file. From the list of Computing Elements that could run your job you can select
one and use one of the options in the JDL syntax to send your job to that site.

The relevant command for this exercise is:

glite—-wms—job-list-match -d $USER <job. jdl>

This command provides information about the CE’s on which the job could run.

2.4.5. EXERCISE

1. Find out which option in the JDL syntax you can use to choose your favorite CE to run your job.
2. Find out were your job could possibly run by using the glite-wms-job-list-match command.

3. Choose your favorite CE and submit the “HelloWorld.jd]” job to this site using an extra line in
the “HelloWorld.jdl” file.

4. Check the status of your job and verify your job was indeed run at the site of your choice.

5. When the data is ready, get your output back and check that the job was executed correctly.

It is possible to see which CEs are eligible to run a job specified by a given JDL file using the command
glite-wms-job-list-match:

PUBLIC 10/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

$ glite-wms—-job-list-match -d $USER HelloWorld.jdl

Selected Virtual Organisation name (from proxy certificate extension): alice
Connecting to host boswachter.nikhef.nl, port 7772

IR R RS S EEE SRR RS EEEEEEEEEEEEEEEREEREEEEEEIEIEEEEEEEREEEEEIEIEIEIIIEEEEEEEEEEREEEEEE

COMPUTING ELEMENT IDs LIST
The following CE(s) matching your job requirements have been found:

CEId
farm012.hep.phy.cam.ac.uk:2119/ jobmanager-1lcgpbs-Lg
farm012.hep.phy.cam.ac.uk:2119/ jobmanager-1lcgpbs-Mq
farm012.hep.phy.cam.ac.uk:2119/jobmanager -lcgpbs-Sq

zeus02.cyf-kr.edu.pl:2119/ jobmanager-lcgpbs-long
zeus02.cyf-kr.edu.pl:2119/jobmanager -lcgpbs-short
tbnl8.nikhef.nl:2119/ jobmanager-pbs-glong

KX XXX x A Ak ko hkhkhkhkhkk kA kA A xxk ko hkkkhkhkhkhkhkk kA A Ak xxkhkhkhkhkhkhkhkhkkhk kA Ak xxxkhkhkkkkkkkkkk**xx

When specifying something like:

Requirements = RegExp ("nikhef.nl", other.GlueCEUniquelId);

in the JDL file a selection of sites can be made.

In addition, you may also want to know which CE’s are available to your VO and if they are busy
running jobs at the moment. This can be done by using the 1cg-infosites command. You can type the
following to know more about its use:

lcg-infosites --help

As an example consider the following use of 1cg-infosites. It queries for all the CE’s for the VO
1sgrid. The output shows all CE’s and their submission queues, together with current use statistics.

$ lcg-infosites --vo lsgrid ce

#CPU Free Total Jobs Running Waiting ComputingElement

1152 1141 6 6 0 trekker.nikhef.nl:2119/ jobmanager-pbs-glong

1152 1141 2 2 0 trekker.nikhef.nl:2119/ jobmanager -pbs-gshort
124 124 0 0 0 ce.grid.rug.nl:2119/jobmanager -pbs-short
808 790 17 17 0 ce.gina.sara.nl:2119/jobmanager -pbs-medium
808 790 1 1 0 ce.gina.sara.nl:2119/jobmanager-pbs-short

3 3 0 0 0 gb-ce-ams.els.sara.nl:2119/jobmanager -pbs-medium

17 17 0 0 0 gb-ce-lumc.lumc.nl:2119/ jobmanager -pbs-medium
13 1 133 12 121 gb-ce-wur.els.sara.nl:2119/ jobmanager -pbs-medium
17 1 145 16 129 gb-ce-kun.els.sara.nl:2119/ jobmanager -pbs-medium
17 1 121 16 105 gb-ce-uu.science.uu.nl:2119/ jobmanager -pbs-medium
124 124 0 0 0 ce.grid.rug.nl:2119/ jobmanager -pbs-1long

1152 1142 2 2 0 gazon.nikhef.nl:2119/jobmanager -pbs-gshort

1152 1142 6 6 0 gazon.nikhef.nl:2119/jobmanager -pbs-qglong
124 124 0 0 0 ce.grid.rug.nl:2119/ jobmanager -pbs-medium
17 1 112 16 96 gb-ce-nki.els.sara.nl:2119/ jobmanager -pbs-medium
17 1 105 16 89 gb-ce-amc.amc.nl:2119/ jobmanager -pbs-medium

A similar use of the same command will come up in the chapter about data management.

2.5. EXERCISE JS-2: PING A HOST FROM A NODE; THE SUBMISSION OF SHELL SCRIPTS TO
THE GRID

Now we will ping a host from a Worker Node to exercise again the execution of simple operating system
commands on the nodes. In this particular case we will execute the ping command in two ways: directly
calling the /bin/ping executable on the node and by executing a simple shell script (pinger.sh) which
does the same thing. This will teach us how to use shell scripts on the Grid.

PUBLIC 11/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

2.5.1. EXERCISE

1. Go to the directory JSexercise2.

2. Execute the ping command on host www.sara.nl from a shell on the User Interface machine to
see what it does. Depending on the installation ping ends by itself or has to be stopped with
Ctrl-c (If you want to find out more about the ping command type man ping).

3. Have a look at the pingerl.jdl file and try to understand what it does.

4. Submit the “pinger1” job on the Grid and retrieve the output when the job has finished and see
if the output is what you expected.

5. Now have a look at the pinger2.jdl file and notice the differences.

6. Submit the “pinger2” job on the Grid and retrieve the output when the job has finished and verify
if the output is the same.

As you may have noticed, the executable in the second job was the bash shell itself. The parameters for
this executable are then the ping command and the hostname. In this case one uses a Unix fork and
executes the command in the new shell. This may be useful in case you know your script only works
within a specific shell. Without a fork this should also work but then you have to be sure your script can
run in the default shell of the worker node. In that case the executable becomes the pinger.sh script and
the argument to be passed to the executable is just the hostname.

In the first case we directly call the ping executable (the JDL file is pingerl.jdl):

Executable = "/bin/ping";

Arguments = "-c 5 www.sara.nl";

RetryCount = 7;

Stdoutput = "pingmessagel.txt";

StdError = "stderror";

OutputSandbox = {"pingmessagel.txt","stderror"};

Whereas in the second case we call the bash executable to run a shell script, giving as input argument
both the name of the shell script and the name of the host to be pinged, as required by the shell script
itself (the JDL file is pinger2.jdl):

Executable
Arguments

"/bin/bash™";
"pinger.sh www.sara.nl";

RetryCount = 7;

Stdoutput = "pingmessage2.txt";

StdError = "stderror";

InputSandbox = "pinger.sh";

OutputSandbox = {"pingmessage2.txt","stderror"};

Requirements = other.GlueHostOperatingSystemName == "CentOS";

where the pinger.sh shell script, to be executed in bash, is the following one:

#!/bin/sh
/bin/ping -c 5 $1

Note the use of a requirement on an operating system on the nodes. We also make use of the RetryCount
mechanism, which will cause the job to be resubmitted when it for some reason fails on a certain site.
Note that this will not resubmit your job when there is a bug in your job script.

PUBLIC 12/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

2.5.2. EXERCISE

1. Make your own pinger3.jdl file where you make pinger.sh the executable.
2. Run this new job on the Grid and verify the output

3. Make you own student.sh script in which you don’t ping a host but executes some other com-
mands like for example /bin/pwd or /usr/bin/who.

4. Submit this script to the Grid make sure that the output you get back is what you expected.

2.6. EXERCISE JS-4: CHECKSUM ON A LARGE INPUTSANDBOX TRANSFERRED FILE

In this exercise you will transfer via the InputSandbox a file whose checksum is known to a worker
node. On the worker node you will check that the file was transferred correctly by performing a check-
sum again. You will use the shell script ChecksumShort.sh, which exports in an environment variable
($CSTRUE) the value of the checksum of the file before the transfer. In the script the checksum is per-
formed again on the worker node by issuing the cksum command on the file and the result is stored in
the SCSTEST variable. When $CSTEST is equal to $CSTRUE the file was not corrupted during the transfer.

2.6.1. EXERCISE

1. Go to the directory JSexercise4 and perform the checksum locally on the file short.dat, which
is present in that directory. Make sure you understand the cksum command. More information
about this command you get by typing cksum --help.

2. Look at the ChecksumShort.jdl file and note that no arguments need to be passed with this job
and that only the shell script ChecksumShort.sh will be executed.

3. Look at the ChecksumShort.sh file and note that indeed all parameters needed to run the job are
specified in here. Try to understand what this script does and try to predict what you will see in
the output file after the job has finished.

4. Submit the job to the Grid, check its status and retrieve the output and verify that the answer is
what you expected.

5. Manually change the value for the checksum. Submit the job again and verify you understand
the result.

The JDL file (ChecksumShort.jdl) is the following one:

Executable = "ChecksumShort.sh";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {"ChecksumShort.sh", "short.dat"};
OutputSandbox = {"std.out", "std.err"};

If everything worked fine, and the GridFTP InputSandbox transfer was OK, the std.out should read:

True checksum:’2933094182 1048576 short.dat’
Test checksum:’2933094182 1048576 short.dat’
Done checking.
Goodbye. [OK]

2.7. EXERCISE JS-5: A SMALL CASCADE OF “HELLO WORLD” JOBS

Very often you do not want to submit just one job but a whole series of jobs with the same executable but
with different input files (e.g. when you want to run a reconstruction file on all data files from the month

PUBLIC 13/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

January). In this exercise you will submit a small cascade of “Hello World” jobs by a special type of job,
called a parametric job.

A parametric job causes a set of jobs to be generated from one JDL file. This is invaluable in cases
where many similar (but not identical) jobs must be run. This is achieved by the parametric job having
one or more parametric attributes described in the JDL. These attributes are identified by use of the key
word _PARAM. in its value; that value will be replaced by the actual value of Parameters during the jdl
expansion. The JobType in the JDL is Parametric.

In this exercise a set of values of the parameters is defined by the three attributes Parameters, Parame-
terStep and ParameterStart. ParameterStart defines the starting value for the variation; Parameter-
Step the step for each variation and Parameters defines the value where the submission of jobs will stop
(that value itself is not used). The number of jobs that will be submitted (Parameters - ParameterStart)
/ ParameterStep. An example will clarify this.

[demol7/exercises]$ cat parametric.jdl

[

JobType = "Parametric";
Executable = "/bin/echo";
Arguments = "Hello World";

Parameters= 6;
ParameterStep =2;
ParameterStart = 0;
StdOutput = "myoutput_PARAM_.txt";
StdError = "myerror_PARAM_.txt";
OutputSandbox = {"myoutput_PARAM_.txt", "myerror_PARAM_.txt"};
ShallowRetryCount = 1;
]

Here _PARAM._ acts very much like a variable. It will be expanded starting with 0. Then the value is
increased until it is equal or smaller than 6. Note that 6 itself is not reached. In this case, three jobs
will be generated. The standard output of these files will be written to the file myoutputO.txt, myout-
put2.txt and myoutput4.txt. Likewise the matching standard error will be written to the files myerror0.txt,
myerror2.txt, myerrord.xt.

2.7.1. EXERCISE

1. Go to the directory JSexercise5 and submit the parametric.jdl file. Use the -0 option to save the
job identifiers to a file of your choice.

2. When all jobs are finished retrieve the results using the -i option of the glite-wms-job-output
command.

3. Check the different output files.

You can experiment with other values for the attributes Parameters, ParameterStep and ParameterStart.
You can also use the PARAM_ keyword in the names of file that go in the InputSandbox, like in the
following example:

[

JobType = "Parametric";

Executable = "/bin/sh";

Arguments = "message_PARAM_.sh";
InputSandbox = "message_PARAM_.sh";

Parameters= 6;

ParameterStep =2;

ParameterStart = 0;

StdOutput = "myoutput_PARAM_.txt";

StdError = "myerror_PARAM_.txt";

OutputSandbox = {"myoutput_PARAM_.txt", "myerror_PARAM_.txt"};
ShallowRetryCount = 1;

PUBLIC 14/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

In this case you have to provide three input files to be submitted with the job: message0.sh, message2.sh
and message4.sh. In this way you can easily perform computation of the same procedure with different
input parameters.

2.8. EXERCISE JS-7: DATA PROCESSING

The task for this exercise is to substract sources from the reduced astronomical image. You should write
a JDL definition which will send a program (SeXtractor) to a CE with an image and sextract sources on
this remote CE.

To run this task select an image (RegriddedFrame) you have reduced during the Lecture 5 on Astro-
WISE. Go to hitp://dbview.astro-wise.org to get the image from project STUDENTWISE, go to “reduced
science” and RegriddedFrame. In the exercise directory you will find already compiled SeXtractor (sex)
and necessary configuration files (default.conv, default.param and default.sex).

You have to copy an image in the directory with exercise (better rename it to have a short name for an
image), your JDL file should do following:

1. Upload an image to the CE of EGEE
2. Upload program and configuration files to the CE

3. Execute Sextractor on your image (results will be saved in the file fest.cat, the name of this file is
set by default in the configuration file default.sex)

4. Download results (default.sex) to your directory from CE

Write a JDL file with all parameters and commands. Submit it and retrieve after the job finished the
catalog with sextracted sources.

PUBLIC 15/35

http://dbview.astro-wise.org
http://dbview.astro-wise.org

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

3. DATA MANAGEMENT

3.1. INTRODUCTION

In a Grid environment, data files can be replicated, possibly on a temporary basis, to many different sites
depending on where the data is needed. The users or applications do not need to know where the data is
physically located: they use logical names for the files. Data Management services are responsible for
locating and accessing the data. Data on the Grid is stored on so called Storage Elements (SEs). The data
on a Storage Element is stored per VO, and only users of the same VO have access to the data. In order
to optimise data access and to introduce fault-tolerance and redundancy, data files can also be replicated
to multiple SEs. To be able to easily find the stored data the LCG File Catalog (LFC) is used to keep
track of all the data. Access to the LFC is controlled by your certificate, and therefore you need to be
registered with a VO.

The files in the Grid are referenced by different names:

e Grid Unique IDentifier (GUID); a file can always be identified by its GUID, which is assigned at
data registration time and is based on the Universal Unique IDentifier (UUID) standard to guaran-
tee unique IDs. A GUID is of the form:
guid: <unique_string>
and all the replicas of a file will share the same GUID. An example GUID is:
guid:3cb13190-ab23-11d8-bc9c-d39c21caf9ab

e Logical File Name (LFN); in order to locate a Grid accessible file, the human user will normally
use a LFN. LFNs are usually more intuitive, human-readable strings, since they are chosen by the
user as GUID aliases. LFNs are organised in a directory structure within the LFC. Special Ifc
commands are available to see the LFNs. Their form is:

Ifn: <any_alias>
An example LFN is:
1fn:importantResults/Test1240.dat

e Storage URL (SURL); the SURL is used by the LFC to find where a replica is physically stored,
and by the SE to locate it. The SURL is of the form:
srm:// <SE_hostname><SE_Accesspoint><VO_path> <filename >
An example SURL is:
srm://tbed0101.cern.ch/flatfiles/SE00/dteam/generated/2004-02-26/
file3596e86£f-c402-11d7-a6b0-£53eeba37eld

While the GUID or LEN refer to files and not replicas, and say nothing about locations, the SURLSs give
information about where a physical replica is located. Figure 1 shows the relation between the different
file names.

As a tool to access the LFC and to store and retrieve data form the Grid the LCG Replica Management
tools have been written. These tools assist in storing and retrieving data, and also in creating and deleting
replicas. There is also the possibility to store some metadata in the LFC, although special databases for
metadata exist as well.

3.1.1. GLITE DATA MANAGEMENT TOOLS

In this chapter, exercises will be presented to make you familiar with the gLite Data Management tools.
These are high level tools used to upload files to the Grid, replicate data and locate the best replica
available.

PUBLIC 16/35

VIRTUAL OBSERVATIONS 2012
Werkcollege 8: Grid Middleware

Doc. Identifier:
V02012-W8-01

Date: October 22, 2012

System Metadata

User Metadata

User Defined Metadata

“size” => 10234
“cksum_type” => “MD5”
“eksum” => “yy-yy-yy”

LFEN

GUID

/grid/dteam/dir1/dir2/filel.root

XXXXXX-XXXX-XXX XXX~

LD HEY !

L0s g fiand !

i) i !

Symlink

/grid/dteam/mydir/mylink

o pall

Replica

srm://host.example.com/foo/bar
host.example.com

Figure 1: The mapping between GUID, LFNs and physical file names is maintained in the LCG

File Catalog.

3.2. EXERCISE DM-1: DisCOVER GRID STORAGE

In general, all Storage Elements registered with the Grid publish information about themselves through
the Grid information system. This information contains the VOs they support, the location of the VO
storage directory, the amount of space available, etc. In order to get information about Storage Elements
the lcg-infosites command can be used. This command can query the information system about several

things.
To retrieve information about SEs we can issue:

$ lcg-infosites —--vo tutor se

The output presents information about all Storage Elements available to the VO.

To get more detailed review of available storage elements you have to use command lcg-info

[demol7@ui "]$ lcg-info --vo tutor -list-se --attrs=
- SE: egee-se.csc.fi
- Path /storage/tutor

- SE: gb-se-amc.amc.nl
- Path /dpm/amc.nl/home/tutor

- SE: gb-se-ams.els.sara.nl
- Path /dpm/els.sara.nl/home/tutor

- SE: gb-se-emc.erasmusmc.nl
- Path /dpm/erasmusmc.nl/home/tutor

- SE: gb-se-kg.keygene.com
- Path /dpm/keygene.com/home/tutor

- SE: gb-se-kun.els.sara.nl
- Path /dpm/els.sara.nl/home/tutor

- SE: gb-se-lumc.lumc.nl
- Path /dpm/lumc.nl/home/tutor

Path

PUBLIC

17/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

- SE: gb-se-nki.els.sara.nl
- Path /dpm/els.sara.nl/home/tutor

- SE: gb-se-rug.sara.usor.nl
- Path /dpm/sara.usor.nl/home/tutor

- SE: gb-se-tud.ewi.tudelft.nl
- Path /dpm/ewi.tudelft.nl/home/tutor

- SE: gb-se-uu.science.uu.nl
- Path /dpm/science.uu.nl/home/tutor

- SE: gb-se-wur.els.sara.nl
- Path /dpm/els.sara.nl/home/tutor

- SE: se.grid.rug.nl
- Path /pnfs/grid.rug.nl/data/tutor

- SE: srm.grid.sara.nl
- Path /pnfs/grid.sara.nl/data/tutor

- SE: tbnl8.nikhef.nl
- Path /dpm/nikhef.nl/home/tutor

Here you will get back all SE for this VO with paths on these SEs. To query for the path specific SE:

$ lecg-info --vo tutor --list-se —-—query=‘'SE=srm.grid.sara.nl‘' —--attrs=Path

3.2.1. EXERCISE

1. Issue the command to retrieve information about Storage Elements.
2. Read and try to understand the output on the screen.

3. Find out how many Storage Elements support the tutorial VO “tutor” (i.e. how many SEs you
can use).

3.3. EXERCISE DM-2: LOOKING IN THE LCG FILE CATALOG

The LCG File Catalog (LFC) stores the Logical Filenames (LFNs) in a directory structure. It is therefore
possible to do an Is on the files in the LFC, to see what files are available. Another command that is
useful is the mkdir command to create a new directory in the LFC. When you are storing LFNs in the
LEC it is best to keep your files separated from files from other people. It is therefore wise to create your
own subdirectories where you store your LFNs. Note that subdirectories have to be created in advance,
before storing LFNs in them. So before you register a Grid file (see next section), you have to create the
directory first.

A file can have multiple LFNs. Extra LFNs are created as symbolic links in the LFC. Each file has one
main entry, and can have multiple symbolic links pointing to that file.

In order to access the LFC directly, an environment variable LFC_HOST has to be set. The best way to
set it is to make use of lcg-infosites to obtain the name of the LFC server.

$ export LFC_HOST=‘lcg-infosites —--vo tutor 1lfc‘

Note the special quotes around the command.

After LFC_HOST has been set, one can issue the commands Ifc-Is, Ifc-In, and Ifc-In (amongst others)
to study and work with the file catalog.

PUBLIC 18/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

3.3.1. EXERCISE

1. Set the LFC_HOST environment variable to the correct value.

2. Do an Ifc-Is on the file catalog, note that the toplevel directory for tutor is /grid/tutor. So the
command is 1fc-1s /grid/tutor.

3. Use Ifc-mkdir to create one or more subdirectories to use during the rest of the exercises.

3.4. EXERCISE DM-3: FILE REPLICATION WITH THE REPLICA MANAGER

In this exercise we will use the Replica Manager for replicating files between various SEs and get familiar
with the basic catalogue commands to list and delete replicas. The following commands can be used:

e lcg-cr copy and register a file

e lcg-Ir lists the replicas for a given LFN, GUID or SURL

o lcg-lg lists the GUID for a given LFN or SURL

e lcg-rep copy a file from one SE to another SE and registers it in the LFC
e lcg-aa add an alias in the LFC for a given GUID

e lcg-ra remove an alias in the LFC for a given GUID

o lcg-rf register a file residing on an SE in the LFC

o lcg-uf unregister a file residing on an SE in the LFC

e lcg-cp copy a Grid file to a local destination

o lcg-la lists the aliases for a given LFN, GUID or SURL

Extra information concerning each command can be obtained by inspecting the man-pages. Information
about the leg-cr command is shown with man lcg-cr, for example.

3.4.1. coPYANDREGISTERFILE; UPLOADING A FILE FROM THE Ul TO THE GRID

In order to upload a file to the Grid, i.e., to transfer it from the local machine to a Storage Element where
it must reside permanently, the copyAndRegisterFile (Icg-cr) command can be used (on a system with
a valid proxy):

$ leg-cr —-vo tutor -1 1lfn:/grid/tutor/exercises/testfile.dat -d srm.grid.sara.nl \
file://% (pwd) /testfile.dat
guid:11c00016-cec0-4530-bel9-££42644dalb0

where the only argument is the local file to be uploaded (a fully qualified URL) and the -1 option indicates
an LFN for it. The command returns the unique GUID for the file. If no LEN is provided, the file will
not be registered in the catalog with a logical file name. With this method you should always provide an
LEN, and your ability to retrieve the file now fully depends on the LEN.

The -d <destination> option selects the specified SE as the destination for the file. There the file will
be stored and given a “random” name. This file name is not known to the user. You need the LFN in
order to retrieve the file.

PUBLIC 19/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

A better way of storing a file on the Grid is to use a “destination path” instead of just the SE name after
the -d flag. Instead of only the SE hostname a complete SURL, including the SE hostname, the path
(accesspoint plus VO-specific directory) and a chosen filename, can be used as the destination. This is
illustrated by the following commands:

$ leg-cr —-d srm://srm.grid.sara.nl/pnfs/grid.sara.nl/data/tutor/testfile.dat \
> ——vo tutor -1 1lfn:/grid/tutor/exercises/testfile.dat file://$ (pwd)/testfile.dat

This allows the user to retrieve the file without using the LFN and use the SURL instead. Notice that in
this way the LFC is effectively bypassed. Users that keep precious data on the Grid should not depend
fully on the LFC and keep a list of SURLS of their valuable files.

Finally, in this and other commands the -n <#streams> option can be used to specify the the number of
parallel streams to be used in the transfer. This option can speed up data transfers over long distances.

3.4.2. LISTREPLICAS & LISTGUID; LISTING REPLICAS AND GUIDs

The Replica Manager allows users to list all the replicas of a file that have been successfully registered
with the Replica Location Service. For that purpose the listReplicas (Icg-Ir) command is used:

$ leg-lr —-vo tutor 1lfn:/grid/tutor/exercises/testfile.dat
srm://srm.grid.sara.nl/flatfiles/SE00/tutor/generated/2005-05-17/£f1i1ee4028505-9f4a-436b-84fe-£f2691dbddac8

Note: Instead of LFN the GUID or SURL can be used to specify the file for which all replicas must be listed.
The SURLSs of the replicas are returned.

Reciprocally, the listGUID (Icg-1g) return the GUID associated with a specified LFN or SURL:

$ leg-lg ——vo tutor 1lfn:/grid/tutor/exercises/testfile.dat
guid:11c00016-cec0-4530-bel9-£f£f42644dalb0

3.4.3. REPLICATEFILE; REPLICATING A FILE

Once a file is stored on an SE and registered with the Replica Location Service, the file can be replicated
using the replicateFile (Icg-rep) command, as in:

$ lecg-rep —-d se.grid.rug.nl —--vo tutor 1lfn:/grid/tutor/exercises/testfile.dat

where the file to be replicated can be specified using a LEN, GUID or even a particular SURL, and the -d
option is used to specify the SE where the new replica will be stored (and, as with CopyAndRegisterFile,
using either the SE hostname or a complete SURL). If this option is not set, then the an SE is chosen
automatically.

Note: For one GUID, there can be only one replica per SE. If the user tries to use the replicateFile command
with a destination SE that already holds a replica, the existing SURL will be returned, and no new replica
will be created.

3.4.4. CcOPYFILE; COPYING FILES OUT OF THE GRID

The copyFile (cp) command can be used to copy a Grid file to a non-Grid storage resource. This is
useful to have a local copy of the file. The command accepts the LFN, GUID or SURL of the file as its
first argument and a local filename as the second, as is shown in the following example:

$ leg-cp —-vo tutor lfn:/grid/tutor/exercises/testfile.dat file://$ (pwd)/testfile.dat

PUBLIC 20/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

Note: Although this command is designed to copy files from a SE to a non-Grid resources, if the proper
URL is used, a file could be transferred from one SE to another, or from out of the Grid to an SE. This should
not be done, since it has the same effect as using replicateFile but skipping the file registration, making this
replica invisible to Grid users.

3.4.5. DELETEFILE; DELETING REPLICAS

Once a file is stored on a Storage Element and registered with a catalogue, it can be deleted using the
deleteFile (del) command. If a SURL is provided as argument, then that particular replica will be deleted.
If a LFN is given instead, then the -s <SE> option must be used to indicate which one of the replicas
must be erased. The same is true if a GUID is specified, unless the -a option is used, in which case all
replicas of the file will be deleted and unregistered (on a best-effort basis).

The following commands:

$ lecg-del -s srm.grid.sara.nl —--vo tutor l1lfn:/grid/tutor/exercises/testfile.dat

and

$ lcg-del —-a —-vo tutor 1lfn:/grid/tutor/exercises/testfile.dat
remove, from the file system and the catalog, one particular replica and all available replicas of the file,

respectively.

3.4.6. EXERCISE

1. Create a file using e.g. the touch or echo commands. You can also use festfile.dat in the directory
DMexercise3

2. Find an SE which you want to use to copy your file to.

3. Copy the created file to the SE and register it in the replica catalogue with a Logical File Name.
4. Check if the copy was successful and that the file is registered.

5. Create a replica of the file at a different SE.

6. Repeat this until you get bored with it...

7. Inspect all created replicas.

8. Copy the file stored on Grid Storage back to you local account.

9. Cleanup and unregister all created replicas.

3.5. EXERCISE DM-4: ACCESSING A GRID FILE FROM A JOB

A job that is submitted to the Grid can, of course, access files stored on SEs. The best way to do that is
by making use of the lcg-cp command to copy the data to the WN the job runs on. In some cases it is
better to have the job run close to the data that it needs to access. For that purpose, the JDL file of the job
must include the name (GUID or LFEN) of the files to be accessed, in the InputData attribute; and the
protocol that will be used to access them in the DataAccessProtocol attribute. Currently, the only two
supported protocols to access Grid files are: GridFTP (gsiftp) and rfio (rfio).

The following exercise show how to access files from a Perl script.

PUBLIC 21/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

Note: The Logical File Names used in the exercises should be treated as exemplary. Since, the LFNs that
can be registered in the replica catalogue are unique, to be able to do these exercises the 1fn should be altered
accordingly.

3.5.1. EXERCISE

1. Change to the DMEXxercise4 directory, and study the .jd! and .p! files.
2. Copy and register the file values to a SE (e.g. srm.grid.sara.nl.) with your uniquely chosen LFN.
3. Change the LFNs in the scripts and JDL files to make them reflect your LEN.

4. Run the gsiftp.jdl job (Tip: first try to run the Perl scripts locally, this can save you a lot of
debugging time).

5. Retrieve, inspect and try to understand the output of the job.

3.5.2. ACCESSING A FILE USING THE GRIDFTP PROTOCOL

We assume that a user has registered a data file (called values) within the EGEE Grid, using Ifn:unique_name
as its LEN. The contents of the file are the following:

pi = 3.141592654
e = 2.718281828
tel = 020-5923000

The JDL file of the job (gsiftp.jdl) includes the LFN of the file, and the protocol (gsiftp) to be used when
accessing it. The contents of the JDL file follows:

Executable="gsiftp.pl";

StdOutput="std.out";

StdError="std.err";

InputSandbox={"gsiftp.pl"};
OutputSandbox={"std.out","std.err"};
InputData={"1lfn:/grid/tutor/mydir/uniquename"};
DataAccessProtocol={"gsiftp"};

The executable (gsiftp.pl) is a Perl program, that calls the leg-cp command to copy the Grid file to the
local filesystem of the Worker Node where the job is running. The rest of the script is simple Perl code
to show the data retrieved:

#!/usr/bin/perl

Copy the input data file to the WN local filesystem
system "lcg-cp --vo tutor 1lfn:/grid/tutor/mydir/uniquename file:///‘pwd‘/values";

Open it
open (file,’values’);

Read all the lines\\
@lines=<file>;

#Show the info

print "The values stored in the input data file are:\n";
print " @lines";

The job is submitted as usual:

Sglite-wms-job-submit -d $USER -o jobid gsiftp.jdl

And the results retrieved with:

$glite-wms-job-output -i jobid

PUBLIC 22/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

The std.out file obtained is this:

The values stored in the input data file are:

pi = 3.141592654
e = 2.718281828
tel = 020-5923000

3.6. EXERCISE DM-5: ACCESSING A GRID FILE FROM A JOB-2

Repeat exercise JS-7, this time not uploading file directly to the grid but copying and registering it first
with LFC.
To do this you have to use leg-cr command:

lcg-cr --vo tutor -1 1fn:/grid/tutor/demol7/image.fits -d srm.grid.sara.nl file://$(pwd)/image.fits

You have to put an image in your own directory on grid (/grid/tutor/demol7). Remember lfn of the file
and replicate file on other SE:

lcg-rep -d se.grid.rug.nl --vo tutor lfn:/grid/tutor/demol7/image.fits

Create a shell script which will copy image file from grid using Ifn to the directory on CE (see previous
exercise) and execute SeXtractor on this image. Please, note, that if you are running sextractor from a
shell on CE you have to change permissions on this file first (chmod 755 sex).

Create a JDL file which will run a shell, upload configuration file of Sextractor and sex and download
results.

PUBLIC 23/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

4. JLITE

jLite is a package which provides an interface to Grid according to gLite standards.

4.1. INSTALL JLITE

1. Download jlite-0.2.zip from

http://code.google.com/p/jlite/

2. Unzip this into a suitable location

4.2. SETUP YOUR GRID CERTIFICATE

1. Create a directory .globus inside your home directory.

2. Put your certificate files (userkey.pem and usercert.pem) into this directory. Check the permissions
on the files. They shoud look like:

-rw-r--r-- 1 fokke fokke 1902 2010-09-22 10:30
/home/fokke/.globus/usercert.pem
e e 1 fokke fokke 1144 2010-09-22 10:30
/home/fokke/.globus/userkey.pem

4.3. SETUP THE CA CERTIFICATES

1. Create a directory etc/certs/ca in your jlite directory and go to this directory

>cd etc/certs/ca

2. Download the CA root certificates from www.eugridpma.org

>wget \
https://dist.eugridpma.info/distribution/igtf/current/accredited/igtf-preinstalled-bundle-classic.tar.gz
>wget \
https://dist.eugridpma.info/distribution/igtf/current/accredited/igtf-preinstalled-bundle-mics.tar.gz
>tar xzf igtf-preinstalled-bundle-classic.tar.gz

>tar xzvf igtf-preinstalled-bundle-mics.tar.gz

3. Add the CA for tutorials in order to be able to use your tutorial certificate. Since this is not an
official CA (just for training) it is not included in the Terena distribution.

>wget \
http://certificate.nikhef.nl/egee-ne/8cl3c962.signing_policy
> wget \

http://certificate.nikhef.nl/egee-ne/8cl3c962.0

4.4. SETUP THE VOMSES DIRECTORY IN THE JLITE DIRECTORY

1. cd to the jlite directory
2. mkdir etc/vomses

3. cd etc/vomses Put the following (single) line into a file called lofar:

"tutor" "voms.grid.sara.nl"™ "30007"
"/O=dutchgrid/O=hosts/OU=sara.nl/CN=voms.grid.sara.nl"
"tutor"

PUBLIC 24/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

4. The precise information for a VO on the SARA VOMS server can be found at:
https://voms.grid.sara.nl:8443/voms/tutor/configuration/configuration.action
There you should replace tutor by the correct VO name. A list of supported VOs can be seen at:

https://voms.grid.sara.nl:8443/vomses/

4.5. SETUP THE VOMS DIRECTORY IN THE JLITE DIRECTORY

1. cd to the jlite directory
2. mkdir etc/certs/voms
3. cd etc/certs/voms

4. Get the voms server certificate from
https://voms.grid.sara.nl:8443/vomses

Open this site in a browser.

5. When using Firefox, click on the certificate info in the address bar. Then ”More Information” ->
”View certificate” -> “Details” -> “Export” and save the file in PEM X.509 format into the just
created etc/voms directory. Note that the instructions are browser and version dependent. NOTE
that this certificate has an expiration date and has to be replaced every year.

4.6. ADD THE JLITE CLI PATH TO YOUR PATH ENVIRONMENT VARIABLE
>export PATH=$PATH:$HOME/jlite-0.2/cli
4.7. CREATE A VOMS PROXY

>proxy-init.sh lofar
4.8. INSTALL THE DCACHE SRM CLIENT

>mkdir \S$SHOME/d-cache

>cd d-cache

>wget http://www.dcache.org/downloads/1.9/dcache-srmclient-1.9.5-23.noarch.rpm
>rpm2cpio dcache-srmclient-1.9.5-23.noarch.rpm | cpio -idmv

>mv opt/d-cache/* .

>rmdir opt/d-cache

4.9. SET D-CACHE

Add d-cache to you path

>export PATH=\S$PATH:\S$HOME/d-cache/srm/bin

Tell d-cache where your voms proxy lives (pick your own file!):

>export X509_USER_PROXY=/tmp/x509%up_u_~fokke

Tell d-cache where your certificates are (e.g.):

>export X509_CERT_DIR=\$HOME/jlite-0.2/etc/certs/ca

PUBLIC 25/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

Now you should be able to use the srm commands, e.g.

srmcp -debug -streams_num 1 \
srm://se.grid.rug.nl:8443/pnfs/grid.rug.nl/data/tutor/test_8.dat \
file:///‘pwd‘/test_8.dat

Notel This will not work for you, but is an example for a VO I am a member of. Note2 I had to
set the streams_num to 1 because my machine is firewalled. You can use multiple streams if you
open up a range of ports (e.g. 20000-21000) and specify these ports using the environment variable
GLOBUS_TCP_PORT_RANGE: e.g. export GLOBUS_TCP_PORT_RANGE=20000,21000

4.10. SET UP WMS CONNECTION

Define the WMS location (workload management system for job submission)

1. Change to the jlite directory
2. mkdir etc/wms

3. cd etc/wms

4. Create a directory “tutor”

5. cd tutor

6. Create a file called with the following contents (for the tutor VO):

[
WMProxyEndpoints =
{"https://wmsd4.grid.sara.nl:7443/glite_wms_wmproxy_server"}

]

4.11. TEST THE JOB SUBMISSION

1. Create a HelloWorld job file: helloworld. jdl

Executable = "/bin/echo";

Arguments = "Hello World";

StdOutput = "message.txt";

StdError = "stderror";

OutputSandbox = {"message.txt","stderror"};

Requirements= RegExp ("grid.rug.nl",other.GlueCEUniquelId);
Rank = (-other.GlueCEStateEstimatedResponseTime);

The requirement is to run in Groningen.

2. Create a delegated proxy at the WMS system:

>proxy-delegate.sh

3. Submit the job

>job-submit.sh -o jid helloworld.jdl

4. The job id is stored in jid, and can be shown using:

>job-status.sh -i jid

5. Job output can be obtained using job-output.sh

PUBLIC 26/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

4.11.1. EXERCISE

1. Repeat Exersize JS-7 (source extraction on Grid) using jLite.

2. Note the difference in the syntax of gLite and jLite commands.

PUBLIC 27/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

A GETTING ACCESS TO THE GRID

A1. GRID CERTIFICATES

While you are using computer systems that are scattered all over the world, the administrators of all those
machines will want to know who is using their machines and storage. In the past, you had to contact
each site administrator separately, and you would get a username and a password for every new site. By
providing this combination, the administrator could be sure who was using the system. But the user was
obliged to remember as many passwords as there were sites. This cumbersome way of working is not
suitable for the Grid, where you will be accessing many different sites without you even knowing.

On the Grid, you will be using a certificate. This certificate binds together your identity (name, affiliation,
etc.) and a unique piece of digital data called a public key. A third party that is trusted by all sites in the
EGEE infrastructure digitally signs the combination of your name and the public key.

The use of a public key to authenticate yourself is based on a special mathematical trick, called asym-
metric cryptography. If you would pick two large prime numbers and multiply them, it is virtually
impossible to factorise the product into the two numbers again. The individual prime numbers are used
to generate an encryption and a decryption function and the product of the two, and then the two num-
bers are destroyed. If you only have the encryption function, it is impossible to derive the decryption
functions from it (and vice versa). So, if you distribute the encryption function called public key widely
(e.g. you put it on the web) but keep the decryption function private (private key), everyone can send you
encrypted messages, but only you can read them and even the sender cannot get the message back!

This method is quite useful if you want to authenticate yourself to a remote site without revealing any
personal information: if the remote site knows your public key, it can encrypt a challenge (e.g. a random
number) using this key and ask you to decrypt it. If you can, you obviously own the private key and
therefore you are who you say you are but still the remote site has to know all the public keys of every
one of its customers.

It all becomes simpler if we introduce a trusted third party, a human that can authenticate people in
person called a Certification Authority (CA). When you go to a CA you bring along your public key and
an identifier containing your full name and possibly an affiliation. Now the CA has to make sure by
some other means that you are indeed who you claim to be. The CA may ask for a passport or drivers
license, it could contact your boss to verify your affiliation, make a phone call to your office, etc. When
the CA is reasonably convinced of your identity, it will take your public key and your identifier and put
those together in a certificate. As a proof of authentication, the CA will then calculate a digest (hash) of
the combination of the two and encrypt it with the private key of the CA. Everyone can recalculate the
digest, decrypt the signature using the public key of the CA and verify that these two are the same. If
you show up at a remote site that only knows your name (identifier) and trust the CA that you got your
certificate from, the site knows that whoever can decrypt the challenge sent, corresponds to the name
they have in their list of allowed users.

A2. GETTING A CERTIFICATE

This subsection will try to familiarise you with the procedure of making a certificate request for a cer-
tificate that is useful in real life. The exact procedure is different for every CA and therefore differs per
country. As employee of a Dutch institute you need a medium-security CA certificate from the DutchGrid
CA, in order to be able to use the Grid. The website for this CA is http://www.dutchgrid.nl/ca. On this
page you will find a link to a web form that will help you to generate a certificate request. When you
fill in all information and make your way through the certification details, you can in the end download
a shell script and an application form. You can run the shell script on for example the user interface ma-
chine. The shell script is called makerequest.sh by default and is usually written to your home directory

PUBLIC 28/35

http://www.dutchgrid.nl/ca
http://www.dutchgrid.nl/ca

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

or Desktop. You have to download the application form as well, print it out and fill in the missing details.
Don’t forget the ”proof-of-possesion challenge”, this information is generated when you run the script.

When you run the shell script (run it only once!), it will generate a new, unique public and private key
and mail a certificate request to jca@nikhef.nl;. Note that the machine has to be able to send mail for
this. Otherwise you have to mail the request yourself, see the CA webpage for more information.

For large CAs, it is very difficult to contact everyone personally. Therefore, the task of authenticating
people has been issued to Registration Authorities (RA)s. Like a CA, an RA is a real person, maybe the
head of your personnel department, or your team leader. The RAs do not sign certificates themselves, but
tell a CA that a particular person belongs to a particular certificate request and that they should sign the
request. The task of an RA is simple, and many RAs can be appointed for one CA. On the other hand,
running a proper CA is a complex task, requiring a secure environment and personnel.

You will find the Registration Authority that you have to go to mentioned on the web page with the
script. The RA is also named on the application form. You will have to go to the RA in person. Bring the
signed application form and a valid picture-ID (passport, national identity card, or drivers license) with
you. The RA will check your identity and sign the application form as well.

You then have to send the application form, together with a photocopy of the picture-ID used to the CA.

After a while, you get a certificate back from the CA by e-mail. You need to store the certificate in a file
called usercert.pem in the .globus directory, where your private key userkey.pem should also be stored.
Note that the private and public keys should belong together, otherwise you will see all kinds of strange
eITor messages.

It does not matter how much bogus is in the certificate file, as long as you keep the fragment between
BEGIN CERTIFICATE and END CERTIFICATE intact.

A3. REGISTERING IN A VIRTUAL ORGANISATION

If you want to make use of the EGEE Grid, you should register with a Virtual Organisation (VO). This
may be your high energy physics experiment (LHCb, Babar) or your community (vlemed, lofar, dans,
Isgrid, dteam).

When registering you have to agree to the Acceptable Use Policy of the VO. In order to register with a
VO you must authenticate yourself with your certificate to a web site, and therefore you need to have
your certificate available inside your web browser.

A3.1. IMPORTING CERTIFICATE IN A BROWSER

The files you have on disk are suitable for Grid use, but need to be converted to a different format to be
used in web browsers. This format is called PKCS#12, and files have the extension .p/2. This format is
special in the sense that a single file contains both your public and your private key, and the combination
is again protected with a pass phrase (here called export password).

The openssl program can be used to convert between the different formats:

$ cd $HOME/.globus
$ openssl pkcsl2 —-export —in usercert.pem -—-inkey userkey.pem \
—-out packed-cert.pl2

The file packed-cert.p12 now contains both your certificate and your private key, and can be imported in
an internet browser. In this tutorial we will use Konqueror (also installed on the UI), but Internet Explorer
or Firefox would work as well. The certificate in Konqueror can be imported via:

Settings -> Configure Konqueror which will open the Settings window. Then, on the left, click
Crypto to open the cryptography settings page. Under the tab Your Certificates you can then import

PUBLIC 29/35

mailto:ca@nikhef.nl

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

your certificate by pressing the Import button. In addition to importing the certificate, you need to set the
"Default Action’ to Send under the Authentication tab.

Konqueror will protect its certificate store with a password as well. Enter a good password in the dia-
logue. If the browser does not ask you for a password, you will have to set it manually later. In the file
browser window you will subsequently get, go to your .globus directory and select the packed-cert.p12
file. Again, you will have to provide a password, this time the export password you gave to openssl when
you created the PKCS#12 file. You have now successfully imported your certificate and you can close the
Konqueror security window.

A3.2. REQUESTING ACCESS TO A VO

You are now ready to apply for a VO membership. For the NL-Grid infrastructure you can register at the
following website (see Figure 2):
https://voms.grid.sara.nl:8443/vomses/

List of ¥Os configured on this server

astron
astrap
dans
emutd
esr
lofar
Isarid
magic
ncf
omegac
phicos
pier
tutar
vldhi
wledut %
wlefi
vlemed
vlibu
scia

Figure 2: NL Grid VOMS server

Press OK whenever asked (the web site is protected with a certificate from the DutchGrid CA, which is
not recognised by default in Firefox). Using your personal certificate, you can authenticate to the web
site.

You will see a list of VOs supported by this server. Select the tutor VO and then you follow the directions
shown on your screen. You will see that all the data from your certificate is already filled in. You also
have to agree to the usage guidelines shown.

PUBLIC 30/35

https://voms.grid.sara.nl:8443/vomses/
https://voms.grid.sara.nl:8443/vomses/

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

A3.3. EXCERCISES

1. Convert your certificate and private key into a PKCS#12 file.
2. Import the certificate into a browser.

3. Register for the tutor VO at the VOMS web page. Note that you need to supply a valid e-mail
adress for this. Ask one of the tutorial assistants if you are not able to receive mail during the
tutorial.

4. Ask one of the tutorial assistants to approve your request.

A4. SETTING UP THE AUTHENTICATION ENVIRONMENT

In reality, applying for a certificate may take a day or two. Remember that it requires action by real
human beings. The temporary tutorial certificates can be generated on the fly however. The only thing
you have to do now is get it and install it in the proper directory.

In this tutorial you will be working from a User Interface (UI). So, first you have to login to the UI, if
you have not done so already.

The certificate and private key file should be installed in the .globus directory. Note that the the private
key file should be read-only and only readable for yourself.

$ cd SHOME/.globus

$ 1s -1

total 24

-IW-r--r-- 1 demo07 demo 249 Aug 10 13:43 certreql8629.cnf
-rw-r--r-- 1 demo07 demo 2513 Aug 10 13:43 certreql8629.txt
SEY=RocEoe 1 demo07 demo 4499 Aug 10 13:47 usercert.pem
SEossosmoo 1 demo07 demo 963 Aug 10 13:43 userkey.pem
-IW-r--r-- 1 demo07 demo 2077 Aug 10 13:43 userrequest.pem

Note the protection set on your private key file userkey.pem. The permissions are very restrictive and
are set this way for a reason: your possession of the private key is the only proof remote sites have that
they are indeed talking to you. If you would give that key to someone else (or if it gets stolen), you will
be held liable for any damage that may be done to the remote site! In any case, if the user key is world
readable or worse, it will not be trusted by the Grid. In case the permission of this file is not read-only
for the owner of the file only, please change it using chmod 400 userkey.pem.

The private key must also be protected with a pass phrase. You have given this pass phrase when running
the makerequest.sh script. If the key gets stolen and you did not set a pass phrase anyone can pretend to
be you.

You can always see what is in a certificate using the openssl command. This is a toolkit for handling
certificates, keys and requests. The table below lists a few useful commands:

show the contents of a certificate:

openssl x509 -text -noout -in <usercert.pem>

show the contents of a certificate request:

openssl req -text -noout -in <userrequest.pem>

writes a new copy of the private key with a new pass phrase:

openssl rsa -in private_key_file -des3 -out new_private_key_file

In principle you are now ready to start with the exercises for working on the Grid (e.g. job submission,
data management ...). But the certificates you have obtained for this tutorial are only useful for the
duration of the tutorial (plus some extra days). For prolonged use of the Grid you have to make a request
for a real certificate and register with a Virtual Organisation (VO).

PUBLIC 31/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

A4.1. EXERCISES

1. If you have not yet retrieved your certificate, retrieve your tutorial certificate from the CA server,
and store it in the .globus directory.

2. Look in your certificate directory, and look inside your certificate using the openssl command.
What is your subject name?

PUBLIC 32/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

B CERTIFICATE WITH TERENA

B1. FAST WAY TO OBTAIN CERTIFICATE

The fastest way to obtain a certificate is to use already existing identification, i.e., your P-number in
Groningen Univercity.

1. Connect to TCS eScience Portal
https://tcs-escience-portal.terena.org

2. Go to "My Certificates” and select Netherlands, then Groningen Uniersity
3. Login with your P-number and password
4. Create a new certificate following the instructions

5. Execute install to keystore” in your browser

You will have a new certificate installed in your browser. In the case of Firefox go to Edit-> Preferences->
Encription ->View ->Certificates-> Your Certificates, here you should see Terena certificate.
Backup this certificate to your hard disk as PKCS#12 file. Use this file to create public and private keys:

#Private key

>openssl pkcsl2 -nocerts -in cert.pl2 -out “user/.globus/userkey.pem

#Public key:

>openssl pkcsl2 -clcerts -nokeys -in cert.pl2 -out “user/.globus/usercert.pem
#Permissions:

>chmod 0600 userkey.pem

>chmod 0644 usercert.pem

If you are using OpenSSL with version higher than 0.9 you have to convert your certificate to a proper
version

openssl rsa -des3 -in userkey.pem -out newuserkey.pem

B2. VIRTUAL ORGANIZATION

To get access to any resources on Grid you have to register youself with the Virtual Organization you are
affiliated with. Go to

https://voms.grid.sara.nl:8443/voms/omegac/sibling/siblings.action

select your VO and register your certificate with VO (VO administrator should confirm your registration).

PUBLIC 33/35

VIRTUAL OBSERVATIONS 2012 VORIl
Werkcollege 8: Grid Middleware

Date: October 22, 2012

C JoB STATUS DEFINITION

As already mentioned in chapter 3, a job can find itself in one of several possible states, the definition of
which is given in this table.

Status Definition

SUBMITTED | The job has been submitted by the user but not yet processed by the
Network Server

WAITING The job has been accepted by the Network Server but not yet processed
by the Workload Manager

READY The job has been assigned to a Computing Element but not yet trans-
ferred to it

SCHEDULED | The job is waiting in the Computing Element’s queue

RUNNING The job is running

DONE The job has finished

ABORTED The job has been aborted by the WMS (e.g. because it took too long, or
the proxy certificate expired, etc.)

CANCELLED | The job has been cancelled by the user

CLEARED The Output Sandbox has been transferred to the User Interface

Only a limited set of transitions between states is allowed. These transitions are depicted in Figure 3.

PUBLIC 34/35

VIRTUAL OBSERVATIONS 2012
‘Werkcollege 8: Grid Middleware

Doc. Identifier:
V02012-W8-01

Date: October 22, 2012

SUBMITTED

Y

WAITING

CANCELLED

e SE—

A

SCHEDULED

DONE(failed)

>

.

ABORTED

RUNNING

DONE(ok)

CLEARED

-

Figure 3: Possible job states in the LCG-2

PUBLIC

35/35

	1. Introduction
	1.1. Working environment
	1.2. Getting access to the Grid
	1.2.1. Creating a proxy

	1.3. Getting the exercises

	2. Job submission
	2.1. Introduction
	2.2. A Simple JDL Job
	2.3. Job Submission
	2.4. Exercise JS-1: ``Hello World''
	2.4.1. exercise
	2.4.2. The Job Description Language
	2.4.3. Pool Accounts
	2.4.4. More on exercise JS-1: "Hello World" at a different source
	2.4.5. exercise

	2.5. Exercise JS-2: Ping a host from a node; the submission of shell scripts to the Grid
	2.5.1. exercise
	2.5.2. exercise

	2.6. Exercise JS-4: Checksum on a large InputSandbox transferred file
	2.6.1. exercise

	2.7. Exercise JS-5: A small cascade of ``Hello World'' jobs
	2.7.1. exercise

	2.8. Exercise JS-7: Data processing

	3. Data management
	3.1. Introduction
	3.1.1. gLite Data Management Tools

	3.2. Exercise DM-1: Discover Grid storage
	3.2.1. exercise

	3.3. Exercise DM-2: Looking in the LCG File Catalog
	3.3.1. exercise

	3.4. Exercise DM-3: File replication with the Replica Manager
	3.4.1. copyAndRegisterFile; Uploading a file from the UI to the Grid
	3.4.2. listReplicas & listGUID; Listing replicas and GUIDs
	3.4.3. replicateFile; Replicating a file
	3.4.4. copyFile; Copying files out of the Grid
	3.4.5. deleteFile; Deleting replicas
	3.4.6. exercise

	3.5. Exercise DM-4: Accessing a Grid file from a job
	3.5.1. exercise
	3.5.2. Accessing a file using the GridFTP protocol

	3.6. Exercise DM-5: Accessing a Grid file from a job-2

	4. jLite
	4.1. Install jlite
	4.2. Setup your Grid certificate
	4.3. Setup the CA certificates
	4.4. Setup the vomses directory in the jlite directory
	4.5. Setup the voms directory in the jlite directory
	4.6. Add the jlite cli path to your PATH environment variable
	4.7. Create a voms proxy
	4.8. Install the dcache srm client
	4.9. Set d-cache
	4.10. Set up WMS connection
	4.11. Test the job submission
	4.11.1. exercise

	A Getting access to the Grid
	A1. Grid certificates
	A2. Getting a certificate
	A3. Registering in a Virtual Organisation
	A3.1. Importing certificate in a browser
	A3.2. Requesting access to a VO
	A3.3. Excercises

	A4. Setting up the authentication environment
	A4.1. Exercises

	B Certificate with Terena
	B1. Fast way to obtain certificate
	B2. Virtual Organization

	C Job Status Definition

