

Virtual Observations 2016

SDSS: 20 queries (J.Gray, D.Slutz, A.S.Szalay, A.R.Thakar, J. van den Berg, P.Z.Kunszt, C. Stoughton MSR-TR-2002-1)

Q1: all galaxies without saturated pixels within 1'

declare @saturated bigint;-- initialized "saturated" flagset@saturated = dbo.fPhotoFlags('saturated'); -- avoids SQL2K optimizer problemselectG.objID, GN.distance-- return Galaxy Object ID andinto ##results-- angular distance (arc minutes)fromGalaxyas Gjoin fGetNearbyObjEq(185,-0.5, 1) as GN-- objects within 1' of ra=185 & dec=-.5on G.objID = GN.objID-- connects G and GNwhere (G.flags & @saturated) = 0-- not saturatedorder by distance-- sorted nearest first

- select objID -- find the object IDs
 - into ##results
 - from Galaxy -- join Galaxies with Extinction table
 - where r < 22 -- where brighter than 22 magnitude
 - and reddening_r > 0.175 -- extinction more than 0.175

Q4: find "large" galaxies

Select ObjID--into ##resultsfrom Galaxywhere r + rho < 24</td>

-- put the qualifying galaxies in a table

and isoA_r between 30 and 60 -- major axis between 30" and 60"

and $(power(q_r,2) + power(u_r,2)) > 0.25 - square of ellipticity is > 0.5 squared.$

Q5: find elliptical galaxies

```
-- initialized "binned" literal
declare @binned
                          bigint:
set @binned =
                          dbo.fPhotoFlags('BINNED1') +
                                                            -- avoids SQL2K optimizer problem
                          dbo.fPhotoFlags('BINNED2') +
                          dbo.fPhotoFlags('BINNED4');
declare @blended
                          bigint:
                                                            -- initialized "blended" literal
set @blended =
                          dbo.fPhotoFlags('BLENDED');
                                                            -- avoids SOL2K optimizer problem
                                                            -- initialized "noDeBlend" literal
declare @noDeBlend
                          bigint:
set @noDeBlend =
                          dbo.fPhotoFlags('NODEBLEND'); -- avoids SQL2K optimizer problem
                                                            -- initialized "child" literal
declare @child
                          bigint;
set @child = dbo.fPhotoFlags('CHILD');
                                                   -- avoids SQL2K optimizer problem
declare @edge
                                                            -- initialized "edge" literal
                         bigint:
set @edge = dbo.fPhotoFlags('EDGE'); -- avoids SQL2K optimizer problem
declare @saturated
                         bigint:
                                                            -- initialized "saturated" literal
set @saturated =
                          dbo.fPhotoFlags('SATURATED'); -- avoids SQL2K optimizer problem
select objID
into ##results
from Galaxy as G
                                  -- count galaxies
where |\text{Dev r} > 1.1 * |\text{Exp r}|
                                  -- red DeVaucouleurs fit likelihood greater than disk fit
```

```
and |Exp_r > 0 -- exponential disk fit likelihood in red band > 0
```

```
-- Color cut for an elliptical galaxy courtesy of James Annis of Fermilab
```

and (G.flags & @binned) > 0 and (G.flags & (@blended + @noDeBlend + @child)) != @blended and (G.flags & (@edge + @saturated)) = 0 and (G.petroMag_i > 17.5)

```
and (G.petroMag_r > 15.5 OR G.petroR50_r > 2) and (G.petroMag_r < 30 and G.g < 30 and G.r < 30 and G.i < 30)
```

```
and ((G.petroMag_r-G.reddening_r) < 19.2)
```

```
and ( ( ((G.petroMag_r - G.reddening_r) < (13.1 + -- deRed_r < 13.1 +
```

```
(7/3)*(G.g - G.r) + -- 0.7 / 0.3 * deRed_gr
```

```
4 *(G.r - G.i) -4 * 0.18 )) -- 1.2 / 0.3 * deRed_ri
```

```
and (( G.r - G.i - (G.g - G.r)/4 - 0.18) BETWEEN -0.2 AND 0.2 )
```

```
)
```

```
or
```

```
(( G.petroMag_r - G.reddening_r) < 19.5 ) -- deRed_r < 19.5 +
and (( G.r - G.i -(G.g - G.r)/4 -.18) > -- cperp = deRed_ri
```

(0.45 - 4*(G.g - G.r))) -- 0.45 - deRed_gr/0.25

and ((G.g - G.r) > (1.35 + 0.25 * (G.r - G.i)))

))

select G.ObjID, G.u, G.g, G.r, G.i, G.z
into ##results
from galaxy G, star S
where G.parentID > 0

-- output galaxy and magnitudes.

-- for each galaxy

-- galaxy has a "parent"

and G.parentID = S.parentID

-- star has the same parent

```
select cast(round((u-g),0) as int) as UG,
    cast(round((g-r),0) as int) as GR,
    cast(round((r-i),0) as int) as RI,
    cast(round((i-z),0) as int) as IZ,
    count(*) as pop
into ##results
from star
where (u+g+r+i+z) < 150 -- exclude bogus magnitudes (== 999)
group by cast(round((u-g),0) as int), cast(round((g-r),0) as int),
```

```
cast(round((r-i),0) as int), cast(round((i-z),0) as int)
order by count(*)
```

```
delete ##results where pop > 500
```


declare @unknown bigint; -- initialized "binned" literal

set @unknown = dbo.fSpecClass('UNKNOWN')

select specObjID

into ##results

from SpecObj

where SpecClass = @unknown

declare @qso int: @qso = dbo.fSpecClass('QSO');set declare @hiZ gso int; @hiZ qso =dbo.fSpecClass('HIZ-QSO'); set select s.specObjID, -- object id max(l.sigma*300000.0/l.wave) as veldisp, -- velocity dispersion avg(s.z) as z -- redshift into ##results SpecObj s, specLine I -- from the spectrum table and lines from where s.specObjID=I.specObjID -- line belongs to spectrum of this obj and ((s.specClass = @qso) or -- quasar (s.specClass = @hiZ qso)) -- or hiZ qso. and s.z between 2.5 and 2.7 -- redshift of 2.5 to 2.7 and l.sigma*300000.0/l.wave >2000.0 -- convert sigma to km/s and s.zConf > 0.9-- high confidence on redshift estimate group by s.specObjID

Q10-1: find galaxies with cut-out by spectral line

select G.ObjID -- return qualifying galaxies

into ##results

from Galaxy as G, -- G is the galaxy SpecObj as S, -- S is the spectra of galaxy G

SpecLine as L, -- L is a line of S specLineNames as LN -- the names of the lines

where G.ObjID = S.ObjID -- connect the galaxy to the spectrum

and S.SpecObjID = L.SpecObjID -- L is a line of S.

and L.LineId = LN.value -- L is the H alpha line

and LN.name = 'Ha 6565'

and L.ew > 40

```
select G.ObjID -- return qualifying galaxies
into ##results
from
        Galaxy as G, -- G is the galaxy
    SpecObj as S, -- S is the spectra of galaxy G
    SpecLine as L1, -- L1 is a line of S
    SpecLine as L2, -- L2 is a second line of S
    specLineNames as LN1, -- the names of the lines (Halpha)
specLineNames as LN2 -- the names of the lines (Hbeta)
where G.ObjID = S.ObjID -- connect the galaxy to the spectrum
 and S.SpecObilD = L1.SpecObilD -- L1 is a line of S.
 and S.SpecObjID = L2.SpecObjID -- L2 is a line of S. and L1.LineId = LN1.LineId
 and L1.LineId = LN1. value
 and LN1.name = 'Ha_6565' -- L1 is the H alpha line
 and L2.LineId = LN2.value -- L2 is the H alpha line
 and LN2.name = 'Hb 4863' --
 and L1.ew > 200 -- BIG Halpha
 and L2.ew > 10 -- significant Hbeta emission line
 and L2.ew * 20 < L1.ew -- Hbeta is comparatively small
```

Q11: find galaxies of certain type with spectral anomalies

1	123	24	283	
	18		1	
	1	8.	48	
11	198	3 88	10	5

<pre>select distinct G.ObjID return qualifying galaxies into ##results</pre>				
from Galaxy as G, G is the galaxy SpecObj as S, S is the spectra of galaxy G				
SpecLine as L, L is a line of S				
specLineNames as LN, the type of line				
XCRedshiftas XC the template cross-correlationwhere G.ObjID = S.ObjID connect galaxy to the spectrum				
and S.SpecObjID = L.SpecObjID L is a line of S				
and S.SpecObjID = XC.SpecObjID CC is a cross-correlation with templates				
and XC.tempNo = 8 Template('Elliptical') CC says "elliptical"				
and L.LineID = LN.value line type is found				
and LN.Name = 'UNKNOWN' but not identified				
and L.ew > 10 a prominent (wide) line				
and S.SpecObjID not in (insist that there are no other lines select S.SpecObjID that are know and are very close to this one from SpecLine as L1, L1 is another line specLineNames as LN1				
where S.SpecObjID = $L1.SpecObjID$ for this object				
and abs(L.wave - L1.wave) <.01 at nearly the same wavelength				
and L1.LineID = LN1.value line found and				
and LN1.Name != 'UNKNOWN' it IS identified)				

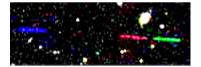
Q12: create density map for galaxies

```
--- First find the grided galaxy count (with the color cut)
--- In local tangent plane, ra/cos(dec) is a "linear" degree.
declare @LeftShift16 bigint;
                                      -- used to convert 20-deep htmIds to 6-deep IDs
        @LeftShift16 = power(2,28);
set
select cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0 as raCosDec,
         cast(dec*30 as int)/30.0
                                                                  as dec,
         count(*)
                                                                 as pop
into ##GalaxvGrid
from
       Galaxy as G ,
         dbo.fHTM_Cover('CONVEX J2000 6 6 175 -5 175 5 185 5 185 -5') as T
where htmID between T.HTMIDstart*@LeftShift16 and T. HTMIDend*@LeftShift16
  and ra between 175 and 185
  and dec between -5 and 5
  and u-q > 1
  and r < 21.5
group by cast((ra/cos(cast(dec^{30} as int)/30.0))^{30} as int)/30.0)
            cast(dec*30 as int)/30.0
--- now build mask grid.
select cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0 as raCosDec,
cast(dec*30 as int)/30.0
                                                         as dec,
count(*)
                                                         as pop
into ##MaskGrid
from photoObj as PO,
      dbo.fHTM_Cover('CONVEX J2000 6 6 175 -5 175 5 185 5 185 -5') as T,
      photoType as PT
where htmID between T.HTMIDstart*@LeftShift16 and T. HTMIDend*@LeftShift16
  and ra between 175 and 185
  and dec between -5 and 5
  and PO.type = PT.value
  and PT.name in ('COSMIC_RAY', 'DEFECT', 'GHOST', 'TRAIL', 'UNKNOWN')
group by cast((ra/cos(cast(dec^{30} as int)/30.0))^{30} as int)/30.0)
          cast(dec*30 as int)/30.0
```

```
declare @RightShift12 bigint;
     @RightShift12 = power(2,24);
set
select (htmID /@RightShift12) as htm 8, -- group by 8-deep HTMID (rshift HTM by 12)
avg(ra) as ra,
avg(dec) as [dec],
count(*) as pop
                -- return center point and count for display
 into ##results
                              -- put the answer in the results set.
 from
          Galaxy
                                    -- only look at galaxies
 where (0.7*u - 0.5*g - 0.2*i) < 1.25 -- meeting this color cut
    and r < 21.75
                              -- fainter than 21.75 magnitude in red band.
  group by (htmID /@RightShift12) -- group into 8-deep HTM buckets..HTM buckets
```



```
declare @star int;
                                        -- initialized "star" literal
        @star = dbo.fPhotoType('Star'); -- avoids SQL2K optimizer problem
set
select s1.objID as ObjID1, s2.objID as ObjID2 -- select object IDs of star and its pair
into ##results
from
                                      -- the primary star
      star
                 as
                    s1,
                                              -- the second observation of the star
           photoObj as s2,
                                              -- the neighbor record
           neighbors <mark>as</mark>
                         Ν
where s1.objID = N.objID
                                        -- insist the stars are neighbors
   and s2.objID = N.neighborObjID
                                       -- using precomputed neighbors table
   and distanceMins < 0.5/60
                                               -- distance is ½ arc second or less
   and s1.run != s2.run
                                              -- observations are two different runs
   and s2.type = @star
                                              -- s2 is indeed a star
   and s1.u between 1 and 27
                                              -- S1 magnitudes are reasonable
   and s1.g between 1 and 27
   and s1.r between 1 and 27
       s1.i between 1 and 27
   and
        s1.z between 1 and 27
   and
        s2.u between 1 and 27
                                              -- S2 magnitudes are reasonable.
   and
        s2.g between 1 and 27
   and
        s2.r between 1 and 27
   and
        s2.i between 1 and 27
   and
        s2.z between 1 and 27
   and
   and (
                                        -- and one of the colors is different.
                 abs(S1.u-S2.u) > .1 + (abs(S1.Err_u) + abs(S2.Err_u))
            or abs(S1.q-S2.q) > .1 + (abs(S1.Err_q) + abs(S2.Err_q))
            or abs(S1.r-S2.r) > .1 + (abs(S1.Err_r) + abs(S2.Err_r))
            or abs(S1.i-S2.i) > .1 + (abs(S1.Err_i) + abs(S2.Err_i))
            or abs(S1.z-S2.z) > .1 + (abs(S1.Err_z) + abs(S2.Err_z))
```


Q15: find suspected asteroids

STOI	v mooving	
select	objID,	return object ID
	<pre>sqrt(power(rowv,2) + power(colv, 2)) as velocity,</pre>	velocity
	dbo.fGetUrlExpId(objID) <mark>as</mark> Url	url of image to examine it.
into	##results	
from	PhotoObj	check each object.
where	(power(rowv,2) + power(colv, 2)) between 50 and 1000	9 square of velocity
and	rowv >= 0 and colv >=0	negative values indicate error


```
--- fast mooving
select r.objID as rId, g.objId as gId,
r.run, r.camcol,
r.field as field, g.field as gField,
       r.ra as ra_r, r.dec as dec_r,
g.ra as ra_g, g.dec as dec_g, --(note acos(x) ~ x for x~1)
       sqrt(power(r.cx-g.cx,2)+power(r.cy-g.cy,2)+power(r.cz-g.cz,2)) *
(180*60/PI()) as distance,
       dbo. fGetUrlExpId (r.objID) as rURL,
                                                -- returns URL for image of object
       dbo. fGetUrlExpId (q.objID) as qURL
from PhotoObj r, PhotoObj g
where r.run = g.run and r.camcol=g.camcol -- same run and camera column
  and abs(g.field-r.field) <= 1</pre>
                                              -- adjacent fields
       -- the red selection criteria
  and ((power(r.q_r,2) + power(r.u_r,2)) > 0.111111) -- q/u is ellipticity
  and r.fiberMag r between 6 and 22
  and r.fiberMag_r < r.fiberMag_u
  and r.fiberMag_r < r.fiberMag_g</pre>
  and r.fiberMag_r < r.fiberMag_i
  and r.fiberMag_r < r.fiberMag_z
  and r.parentID=0
  and r.isoA_r/r.isoB_r > 1.5
  and r.isoA_r > 2.0
      -- the green selection criteria
  and ((power(g.q_g,2) + power(g.u_g,2)) > 0.111111)
  and g.fiberMag_g between 6 and 22
  and g.fiberMag_g < g.fiberMag_u</pre>
  and g.fiberMag_g < g.fiberMag_r</pre>
  and g.fiberMag_g < g.fiberMag_i
  and g.fiberMag_g < g.fiberMag_z</pre>
  and g.parentID=0
  and g.isoA_g/g.isoB_g > 1.5
  and g.isoA_g > 2.0
-- the match-up of the pair -- (note acos(x) \sim x for x~1)
  and sqrt(power(r.cx-g.cx,2)+power(r.cy-g.cy,2)+power(r.cz-g.cz,2))*(180*60/pi()) < 4.0
  and abs(r.fiberMag_r-g.fiberMag_g)< 2.0</pre>
```



```
select count(*) as 'total',
sum( case when (type=3) then 1 else 0 end) as 'Galaxies',
sum( case when (type=6) then 1 else 0 end) as 'Stars',
sum( case when (type not in (3,6)) then 1 else 0 end) as 'Other'
from PhotoPrimary -- for each object
where (( u - g > 2.0) or (u > 22.3) ) -- apply the quasar color cut.
  and ( i between 0 and 19 )
  and ( g - r > 1.0 )
  and ( (r - i < 0.08 + 0.42 * (g - r - 0.96)) or (g - r > 2.26 ) )
  and ( i - z < 0.25 )</pre>
```

```
declare @star int;
                                   -- initialized "star" literal
       @star = dbo.fPhotoType('Star'); -- avoids SQL2K optimizer problem
set
select
        s1.objID as s1, s2.objID as s2 -- return star pairs
      ##results
into
from Star
                                   -- S1 is the white dwarf
              S1,
        Neighbors N,
                                   -- N is the precomputed neighbors links
        Star
                   S2
                                   -- S2 is the second star
    where S1.objID = N. objID
                                       -- S1 and S2 are neighbors-within 30 arc sec
        and S2.objID = N.NeighborObjID
        and N.NeighborObjType = @star
                                           -- and S2 is a star
        and N.DistanceMins < .05
                                           -- the 3 arcsecond test
        and (S1.u - S1.g) < 0.4 -- and S1 meets Paul Szkody's color cut for
        and (S1.g - S1.r) < 0.7 -- white dwarfs.
        and (S1.r - S1.i) > 0.4
        and (S1.i - S1.z) > 0.4
```

Q18: find candidates for strong gravitational lensing

select distinct P.ObjID	count distinct cases (will get min objid)
into ##results	oid compare gets minimum object
From photoPrimary P, Neighbors N, photoPrimary L	P is the primary object N is the neighbor link L is the lens candidate of P
where P.ObjID = N.ObjID	N is a neighbor record
and L.ObjID = N.NeighborOb	jID L is a neighbor of P
and P.ObjID < L.ObjID	avoid duplicates
and abs((P.u-P.g)-(L.u-L.g))<0	0.05 L and P have similar spectra.
and abs((P.g-P.r)-(L.g-L.r))<0.	.05
and abs((P.r-P.i)-(L.r-L.i))<0.0	5
and abs((P.i-P.z)-(L.i-L.z))<0.0)5

Q19: find QSO-galaxy pairs


```
select Q.ObjID as Quasar candidate ID, G.ObjID as Galaxy ID
into ##results
                                -- Q is the specObj of the guasar candidate
from SpecObj
                    as Q,
                                 -- N is the Neighbors list of Q
          Neighbors
                    as N,
          Galaxy
                                -- G is the nearby galaxy
                    as G,
          SpecClass
                    as SC,
          SpecLine
                    as L, -- L is the broad line we are looking for
          SpecLineNames as LN
where Q.SpecClass = SC.class
   and SC.name in ('QSO', 'HIZ_QSO') -- Spectrum says "QSO"
   and Q.SpecObjID = L.SpecObjID -- L is a spectral line of Q.
   and L.LineID = LN.value -- line found and
   and LN.Name != 'UNKNOWN' --
                                        not not identified
   and L.ew < -10 -- but its a prominent absorption line
   and Q.ObjID = N.ObjID -- N is a neighbor record
   and G.ObjID = N.NeighborObjID -- G is a neighbor of Q
   and N.distanceMins < (10.0/60.0) -- and it is within 10 arcseconds of the Q.
```

```
-- initialized "binned" literal
declare @binned
                      bigint:
       @binned =
                      dbo.fPhotoFlags('BINNED1') + -- avoids SOL2K optimizer problem
set
dbo.fPhotoFlags('BINNED2') +dbo.fPhotoFlags('BINNED4') ;
declare @blended
                                                    -- initialized "blended" literal
                      bigint;
                      dbo.fPhotoFlags('BLENDED'); -- avoids SQL2K optimizer problem
       @blended =
set
declare @noDeBlend
                      bigint;
                                                   -- initialized "noDeBlend" literal
                      dbo.fPhotoFlags('NODEBLEND'); -- avoids SOL2K optimizer problem
set
       @noDeBlend =
                                                   -- initialized "child" literal
declare @child
                      bigint;
       @child =
                      dbo.fPhotoFlags('CHILD');
                                                   -- avoids SQL2K optimizer problem
set
                                                   -- initialized "edge" literal
declare @edge
                      bigint:
                      dbo.fPhotoFlags('EDGE');
       @edge =
                                                   -- avoids SQL2K optimizer problem
set
                                                   -- initialized "saturated" literal
declare @saturated
                      bigint:
                      dbo.fPhotoFlags('SATURATED'); -- avoids SOL2K optimizer problem
set
       @saturated=
select G.obiID, count(*) as pop
into ##results
from
       Galaxy
                                            -- first gravitational lens candidate
                  as G,
       Neighbors as N,
                                            -- precomputed list of neighbors
       Galaxy
                  as U,
                                            -- a neighbor galaxy of G
                                            -- photoZ of first galaxy
       PhotoZ
                  as GpZ,
       PhotoZ
                  as NpZ
                                            -- photoZ of second galaxy
where G.objID = N.objID
                                    -- connect G and U via the neighbors table
and U.obiID = N.neighborObiID
                                    -- so that we know G and U are within
and N.objID < N.neighborObjID
                                    -- 30 arcseconds of one another.
and G.objID = GpZ.objID
                                    -- join to photoZ of G
and U.objID = NpZ.objID
                                     -- join to photoZ of N
and G.ra between 160 and 170
                                     -- restrict search to a part of the sky
and G.dec between -5 and 5
                                     -- that is in database
and abs(GpZ.Z - NpZ.Z) < 0.05 -- restrict the photoZ differences
-- Color cut for an BCG courtesy of James Annis of Fermilab
and (G.flags & @binned) > 0 and (G.flags & ( @blended + @noDeBlend + @child)) != @blended
and (G.flags & (@edge + @saturated)) = 0 and G.petroMag_i > 17.5 and (G.petroMag_r > 15.5 or G.petroR50_r > 2)
    and (G.g >0 and G.r >0 and G.i >0) and ( ( ((G.petroMag_r-G.reddening_r) < 19.2)
              and ((G.petroMag r - G.reddening r)
                             < (12.38 + (7/3)*( G.g- G.r ) + 4 *( G.r - G.i ) ) )
              and ((abs(G.r - G.i - (G.g - G.r)/4 - 0.18)) < 0.2)
              and ((G.petroMag_r - G.reddening_r +
                             2.5*Log10(2*pi()*G.petroR50_r* G.petroR50_r )) < 24.2 )
              )
           or ( ((G.petroMag_r - G.reddening_r)
                                                       < 19.5
                                                                                   )
               and ((G.r - G.i - (G.g - G.r)/4 - 0.18) > (0.45 - 4*(G.g - G.r))
                                                                                      )
               and ((G.g - G.r) > (1.35 + 0.25 * (G.r - G.i))
               and ((G.petroMag_r - G.reddening_r +
                             2.5*Log10(2*pi()*G.petroR50_r* G.petroR50_r )) < 23.3 )
            ))
```

group by G.objID